

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

 Compound A contains 8.7% Hydrogen, 74% Carbon and 17.3% Nitrogen. The molecular formula of the compound is,

Given : Atomic masses of C, H and N are 12, 1 and 14 amu respectively.

The molar mass of the compound A is 162 g mol⁻¹.

- (A) $C_4H_6N_2$ (B) C_2H_3N
- (C) C_5H_7N (D) $C_{10}H_{14}N_2$

Answer (D)

Sol.

Element	%mass	Moles	Whole number ratio
С	74	6.17	5
Н	8.7	8.7	7
Ν	17.3	1.236	1

Empirical Formula = C₅H₇N

Empirical formula mass = 81 g

n × 81 = 162

n = 2

Hence molecular formula is $C_{10}H_{14}N_2$

- 2. Consider the following statements :
 - (A) The principal quantum number 'n' is a positive integer with values of 'n' = 1, 2, 3,
 - (B) The azimuthal quantum number 'l' for a given
 'n' (principal quantum number) can have values
 as 'l' = 0, 1, 2, ...n

- (C) Magnetic orbital quantum number 'm_l' for a particular 'l' (azimuthal quantum number) has (2l + 1) values.
- (D) $\pm 1/2$ are the two possible orientations of electron spin.
- (E) For I = 5, there will be a total of 9 orbital

Which of the above statements are correct?

- (A) (A), (B) and (C)
- (B) (A), (C), (D) and (E)
- (C) (A), (C) and (D)
- (D) (A), (B), (C) and (D)

Answer (C)

Sol. Possible values of I for a given 'n' = $0, 1, 2 \dots (n-1)$

For I = 5, total orbitals = 2I + 1

= 2(5) + 1 = 11 orbital

Hence A, C and D are correct statements

- In the structure of SF₄, the lone pair of electrons on S is in.
 - (A) Equatorial position and there are two lone pairbond pair repulsions at 90°
 - (B) Equatorial position and there are three lone pair
 bond pair repulsions at 90°
 - (C) Axial position and there are three lone pairbond pair repulsion at 90°
 - (D) Axial position and there are two lone pair bond pair repulsion at 90°

Answer (A)

Sol. SF₄ \rightarrow *sp*³*d* hybridisation.

The lone pair of electrons on S is in equatorial position and there are two lone pair-bond pair repulsions at 90°.

	ash Tash		JEE (Main)-2022 : Phase	-1 (2	28-06-2022)-Evening
4.	A student needs to prepare a buffer solution of	Ans	wer (C)		
	propanoic acid and its sodium salt with pH 4.		(A) Negatively charged	sol	CdS sol
	The ratio of $[CH_3CH_2COO^-]$ required to make		(B) Macromolecular colle	oid	Starch
	[CH ₃ CH ₂ COOH]		(C) Positively charged set	ol	Fe ₂ O ₃ .xH ₂ O
	buffer is		(D) Cheese		A gel
	Given : $K_a(CH_3CH_2COOH) = 1.3 \times 10^{-5}$	6.	Match List-I with List-II:		
	(A) 0.03 (B) 0.13		List-I(Oxide)		List-II (Nature)
	(C) 0.23 (D) 0.33		(A) Cl ₂ O ₇	(I)	Amphoteric
Ans	wer (B)		(B) Na ₂ O	(II)	Basic
Sol.	$CH_3CH_2COOH \Longrightarrow CH_3CH_2COO^- + H^+$		(C) AI_2O_3	(III)	Neutral
	From Henderson equation		(D) N ₂ O	(IV)) Acidic
	[CH₃CH₂COO ⁻]		Choose the correct answ	wer f	from the options given
	$pH = pK_a + \log \frac{1}{[CH_3CH_2COOH]}$				
			(1) A-IV, B-III, C-I, D-II (3) A-II B-IV C-III D-I		(2)A-IV, B-II, C-II, D-III (4)A-I, B-II, C-III, D-IV
	$4 = -\log 1.3 \times 10^{-5} + \log \frac{[CH_3 GH_2 GGG]}{[CH_2 CH_2 COOH]}$	Δns	(3) A-II, D-IV, C-III, D-I		(+)A-1, D-11, O-111, D-17
		Sol	(A) $Cl_{2}O_{7} \rightarrow Acidic$		
	$-\log 10^{-4} = -\log 1.3 \times 10^{-5} + \log \frac{\left[CH_{3}CH_{2}COO^{-}\right]}{\left[CH_{3}CH_{2}COOH\right]}$ $-\log 10^{-4} = -\log 1.3 \times 10^{-5} \frac{\left[CH_{3}CH_{2}COOH\right]}{\left[CH_{3}CH_{2}COOH\right]}$	301.	(R) Na \circ \rightarrow Basic		
		1	(C) Al ₂ O ₂ \rightarrow Amphoteric		
			(D) $N_2O \rightarrow Neutral$		
	CH₃CH₂COO⁻]		(b) $N_2O \rightarrow Neutral$		
			oxides of metals are basic in nature whereas oxides of non metals are acidic in nature. N_2O is a		
	$\begin{bmatrix} 10^{-1} \\ -1.5 \\ \times 10 \end{bmatrix} \begin{bmatrix} CH_3 CH_2 COO^{-1} \end{bmatrix}$		neutral oxide.		
		7.	In the metallurgical extra	actio	on of copper, following
	$\frac{[CH_{3}CH_{2}CCC]}{[CH_{2}CCOH]} = 0.13$	$\langle \rangle$	reaction is used :		
5	Match List-List-List-List-		$FeO + SiO_2 \rightarrow FeSiO_3$		
5.			FeO and FeSiO ₃ respect	tively	y are.
	(A) Negatively charged (I) $Fe_0O_0 \cdot xH_0O$		(1) Gangue and flux	(2)	Flux and slag
			(3) Slag and flux	(4)	Gangue and slag
	(B) Macromolecular (II) CdS sol	Ans	wer (D)		
	colloid	Sol.	$FeO + SiO_2 \rightarrow FeSiO3$		
	(C) Positively charged (III) Starch		Gangue Slag		
	sol	8.	Hydrogen has three	isot	topes: protium (¹ H),
	(D) Cheese (IV) a gel		deuterium (² H or D) and t	tritiu	m (³ H or T). They have
	Choose the correct answer from the options given		nearly same chemical	prc v diff	fer in
			(1) Number of protons	y ani	
	(A) (A) – (II), (B) – (III), (C) – (IV), (D) – (I) (B) (A) (II) (B) (IV (C) (III) (D) (IV)		(2) Atomic number		
	(D) (A) = (II), (D) = (I), (C) = (III), (D) = (IV) $(C) (A) = (II) (B) = (III) (C) (I) (D) (IV)$		(3) Electronic configurat	ion	
	(C) (A) = (I), (B) = (III), (C) = (I), (D) = (IV) $(D) (A) = (I) (B) = (III), (C) = (II), (D) = (IV)$		(4) Atomic mass		
	$(\Box) ((\uparrow), (\Box), (\Box), (\Box), (\Box) = ((\lor))$		(.) /		

JEE (Main)-2022 : Phase-1 (28-06-2022)-Evening

Answer (D)

Sol. ¹H, ²D and ³H have same atomic number but their atomic masses are different.

Isotopes have same atomic number i.e. same number of protons

- Among the following, basic oxide is: 9.
 - (1) SO₃ (2) SiO₂
 - (3) CaO (4) Al_2O_3

Answer (C)

Sol. Since, oxides of metals are basic in nature. Hence CaO is a basic oxide

SO3 and SiO2 are acidic oxides and Al2O3 is a amphoteric oxide

- 10. Among the given oxides of nitrogen ; N₂O, N₂O₃, N_2O_4 and N_2O_5 , the number of compound/(s) having N - N bond is:
 - (1) 1 (2) 2 (4) 4
 - (3) 3

Answer (C)

 $N=N=O \leftrightarrow N\equiv N=O$

(N_2O_5)

- N₂O, N₂O₃ and N₂O₄ contain N N bond
- 11. Which of the following oxoacids of sulphur contains "S" in two different oxidation states?

.....

(A) $H_2S_2O_3$	(B) H ₂ S ₂ O ₆
(C) H ₂ S ₂ O ₇	(D) H ₂ S ₂ O ₈

Answer (A)

- 12. Correct statement about photo-chemical smog is:
 - (A) It occurs in humid climate.
 - (B) It is a mixture of smoke, fog and SO₂.
 - (C) It is reducing smog.
 - (D) It results from reaction of unsaturated hydrocarbons.

Answer (D)

Sol. Photochemical smog occurs in warm, dry and sunny climate. The main components of photochemical smog result from the action of unsaturated hydrocarbons and nitrogen oxides.

This is an oxidising smog.

13. The correct IUPAC name of the following compound is:

- (A) 4-methyl-2-nitro-5-oxohept-3-enal
- (B) 4-methyl-5-oxo-2-nitrohept-3-enal
- (C) 4-methyl-6-nitro-3-oxohept-4-enal
- (D) 6-formyl-4-methyl-2-nitrohex-3-enal

Answer (C)

4-methyl-6-nitro-3-oxohept-4-enal

- 12 -

JEE (Main)-2022 : Phase-1 (28-06-2022)-Evening

 Isobutyraldehyde on reaction with formaldehyde and K₂CO₃ gives compound 'A'. Compound 'A' reacts with KCN and yields compound 'B', which on hydrolysis gives a stable compound 'C'. The compound 'C' is

(A)
$$HO-CH_2-C-CH-COOH$$

 $|$ |
 CH_3
 $|$ |
 CH_3OH

17. With respect to the following reaction, consider the given statements:

$$\underbrace{HNO_{3}}_{H_{2}SO_{4}, 288 \text{ k}} \text{ products}$$

- (A) o-Nitroaniline and p-nitroaniline are the predominant products.
- (B) p-Nitroaniline and m-nitroaniline are the predominant products.
- (C) HNO3 acts as an acid.
- (D) H_2SO_4 acts as an acid.
- Choose the correct option.
- (A) (A) and (C) are correct statements.
- (B) (A) and (D) are correct statements.
- (C) (B) and (D) are correct statements.
- (D) (B) and (C) are correct statements.

Answer (C)

18. Given below are two statements, one is Assertion(A) and other is Reason (R).

Assertion (A): Natural rubber is a linear polymer of isoprene called *cis*-polyisoprene with elastic properties.

Reason (R): The *cis*-polyisoprene molecules consist of various chains held together by strong polar interactions with coiled structure.

In the light of the above statements, choose the **correct** one from the options given below:

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (C) (A) is true but (R) is false.
- (D) (A) is false but (R) is true.

Answer (C)

The cis-polyisoprene molecule consists of various chains held together by weak van der Waals interactions and has a coiled structure.

Hence assertion is true but reason is false.

- When sugar 'X' is boiled with dilute H₂SO₄ in alcoholic solution, two isomers 'A' and 'B' are formed. 'A' on oxidation with HNO₃ yields saccharic acid whereas 'B' is laevorotatory. The compound 'X' is :
 - (A) Maltose
 - (B) Sucrose
 - (C) Lactose
 - (D) Starch

Answer (B)

Sol. $C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$ Sucrose $CHO \xrightarrow[(A)]{} CHO \xrightarrow[(B)]{} CHO \xrightarrow[(B)]{} CHO \xrightarrow[(B)]{} CHO \xrightarrow[(CHOH)_4]{} CH_2OH \xrightarrow[(CHOH)_{accord} COOH]{} COOH \xrightarrow[(CHOH)_4]{} CH_2OH \xrightarrow[(CHOH)_{accord} COOH]{} COOH \xrightarrow[(CHOH)_{accord} COOH]{} COOH]{} COOH \xrightarrow[(CHOH)_{accord} COOH]{} COOH]{} COOH \xrightarrow[(CHOH)_{accord} COOH]{} COOH]$

D-(-)-Fructose is a laevorotatory compound.

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

 100 g of an ideal gas is kept in a cylinder of 416 L volume at 27°C under 1.5 bar pressure. The molar mass of the gas is _____ g mol⁻¹. (Nearest integer).

(Given : R = 0.083 L bar K⁻¹ mol⁻¹)

JEE (Main)-2022 : Phase-1 (28-06-2022)-Evening

Answer (4)

Sol. From combined gas law,

$$PV = nRT$$
$$PV = \frac{W}{M}RT$$
$$1.5 \times 416 = \frac{100}{M} \times 0.083 \times 300$$

M = 4 g/mol

2. For combustion of one mole of magnesium in an open container at 300 K and 1 bar pressure, $\Delta_{\rm C} {\rm H}^{\odot} = -601.70 \ {\rm kJ \ mol^{-1}}$, the magnitude of change in internal energy for the reaction is _____ kJ. (Nearest integer)

(Given : R = 8.3 J K⁻¹ mol⁻¹)

Answer (600)

Sol. Mg(s) +
$$\frac{1}{2}$$
 O₂(g) \longrightarrow MgO(s)
 $\Delta H = \Delta U + \Delta ngRT$
 $\Delta ng = -\frac{1}{2}$
 $-601.70 = \Delta U - \frac{1}{2}$ (8.3) (300) × 10⁻³
 $\Delta U = -601.70 + 1.245$

 $\Delta U \simeq -600 \text{ kJ}$

Magnitude of change in internal energy is 600 kJ.

2.5 g of protein containing only glycine (C₂H₅NO₂) is dissolved in water to make 500 mL of solution. The osmotic pressure of this solution at 300 K is found to be 5.03 × 10⁻³ bar. The total number of glycine units present in the protein is _____.

(Given : $R = 0.083 L bar K^{-1} mol^{-1}$)

Answer (330)

Sol. Since,

 $\pi = icRT$

- $5.03 \times 10^{-3} = \frac{2.5}{M} \times \frac{1000}{500} \times 0.083 \times 300$ Molar mass of protein = 24751.5 g/mol Number of glycine units in protein = $\frac{24751.5}{75}$ = 330
- 4. For the given reactions $\operatorname{Sn}^{2+} + 2e^- \to \operatorname{Sn}^{2+}$

 $Sn^{4+} + 4e^- \rightarrow Sn$

the electrode potentials are; $E_{Sn^{2+}/Sn}^{o} = -0.140 \text{ V}$ and $E_{Sn^{4+}/Sn}^{o} = 0.010 \text{ V}$. The magnitude of standard electrode potential for Sn⁴⁺ / Sn²⁺ i.e. $E_{Sn^{4+}/Sn^{2+}}^{o}$ is

$$_$$
 × 10⁻² V. (Nearest integer)

Answer (16)

Sol. Sn
$$\longrightarrow$$
 Sn²⁺ + 2e⁻ $E_1^o = 0.140 V$
Sn⁴⁺ + 4e⁻ \longrightarrow Sn $E_2^o = 0.010 V$
Sn⁴⁺ + 2e⁻ \longrightarrow Sn²⁺ E_{cell}^o
 $E_{cell}^o = \frac{n_2 E_2^o + n_1 E_1^o}{n} = \frac{4(0.010) + 2(0.140)}{2}$
 $E_{cell}^o = 0.16 V = 16 \times 10^{-2} V$

A radioactive element has a half life of 200 days. The percentage of original activity remaining after 83 days is _____. (Nearest integer) (Given : antilog 0.125 = 1.333, antilog 0.693 = 4.93)

Answer (75)

Sol.
$$\lambda = \frac{2.303}{t} \log \frac{A_0}{A}$$

 $\frac{0.693}{200} = \frac{2.303}{83} \log \frac{A_0}{A}$
 $\frac{A}{A_0} = 0.75$

Hence, percentage of original activity remaining after 83 days is 75%

6. [Fe(CN)₆]^{4–}

[Fe(CN)₆]³⁻

[Ti(CN)₆]³⁻

[Ni(CN)₄]²⁻

[Co(CN)₆]³⁻

Among the given complexes, number of paramagnetic complexes is_____.

Answer (2)

Sol.	Valence shell	Magnetic nature		
	configuration			
[Fe(CN) ₆] ^{4–}	3d ⁶ (Pairing)	Diamagnetic		
[Fe(CN) ₆] ³⁻	3d ⁵ (Pairing)	Paramagnetic		
[Ti(CN) ₆] ^{3–}	3d ¹	Paramagnetic		
[Ni(CN)4] ²⁻	3d ⁸ (Pairing)	Diamagnetic		
[Co(CN) ₆] ³⁻	3d ⁶ (Pairing)	Diamagnetic		

 (a) CoCl₃·4 NH₃, (b) CoCl₃·5NH₃, (c) CoCl₃.6NH₃ and (d) CoCl(NO₃)₂·5NH₃. Number of complex(es) which will exist in cis-trans form is/are_____.

Answer (1)

Sol. $CoCl_3 \cdot 4NH_3 \Rightarrow [Co(NH_3)_4Cl_2]Cl$

 $CoCl_3 \cdot 5NH_3 \Longrightarrow [Co(NH_3)_5Cl]Cl_2$

 $\text{CoCl}_3 \cdot 6\text{NH}_3 \Longrightarrow [\text{Co}(\text{NH}_3)_6]\text{Cl}_3$

Only [Co(NH₃)₄Cl₂] can show geometrical isomerism. Hence can exist in cis-trans form.

 The complete combustion of 0.492 g of an organic compound containing 'C', 'H' and 'O' gives 0.793 g of CO₂ and 0.442 g of H₂O. The percentage of oxygen composition in the organic compound is_____.[nearest integer]

Answer (46)

Sol. $C_xH_yO_z + O_2 \longrightarrow CO_2 + H_2O$

weight of carbon
$$= \frac{0.793}{44} \times 12 = 0.216$$
 g

JEE (Main)-2022 : Phase-1 (28-06-2022)-Evening

weight of hydrogen $= \frac{0.442}{18} \times 2 = 0.05 \text{ g}$

weight of oxygen = 0.492 - (0.216 + 0.05)

= 0.226 g

% by mass of oxygen in compound $= \frac{0.226}{0.492} \times 100$

≃ 46%

The major product of the following reaction contains_____bromine atom(s).

Answer (1)

(Major Product)

 0.01 M KMnO₄ solution was added to 20.0 mL of 0.05 M Mohr's salt solution through a burette. The initial reading of 50 mL burette is zero. The volume of KMnO₄ solution left in burette after the end point is _____ml. [nearest integer]

Answer (30)

Sol. Meq of oxidising agent = Meq of reducing agent

$$(M \times V \times n_F)_{KMnO_4} = (M \times V \times n_F)_{Mohr's salt}$$

 $0.01\!\times\!20\!\times\!5=0.05\!\times\!V\!\times\!1$

Volume required = 20 ml

Since initial volume of KMnO₄ in burette is 50 ml. Hence volume of KMnO₄ left in the burette after end point is 30 ml.