MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. If $\sum_{k=1}^{31}\left({ }^{31} C_{k}\right)\left({ }^{31} C_{k-1}\right)-\sum_{k=1}^{30}\left({ }^{30} C_{k}\right)\left({ }^{30} C_{k-1}\right)=\frac{\alpha(60!)}{(30!)(31!)}$,
where $\alpha \in \mathbf{R}$, then the value of 16α is equal to
(A) 1411
(B) 1320
(C) 1615
(D) 1855

Answer (A)

Sol. $\sum_{k=1}^{31}{ }^{31} C_{k}{ }^{31} C_{k-1}-\sum_{k=1}^{30}{ }^{30} C_{k}{ }^{30} C_{k-1}$
$=\sum_{k=1}^{31}{ }^{31} C_{k} \cdot{ }^{31} C_{32-k}-\sum_{k=1}^{30}{ }^{30} C_{k} \cdot{ }^{30} C_{31-k}$
$={ }^{62} C_{32}-{ }^{60} C_{31}$
$=\frac{60!}{31!29!}\left(\frac{62 \cdot 61}{32 \cdot 30}-1\right)=\frac{60!}{31!29!} \frac{2822}{32 \cdot 30}$
$\alpha=\frac{2822}{32} \Rightarrow 16 \alpha=1411$
2. Let a function $f: \mathrm{N} \rightarrow \mathrm{N}$ be defined by
$f(n)=\left[\begin{array}{cl}2 n, & n=2,4,6,8, \ldots . \\ n-1, & n=3,7,11,15, \ldots \ldots \\ \frac{n+1}{2}, & n=1,5,9,13, \ldots\end{array}\right.$
then, f is
(A) One-one but not onto
(B) Onto but not one-one
(C) Neither one-one nor onto
(D) One-one and onto

Answer (D)

Sol. When $n=1,5,9,13$ then $\frac{n+1}{2}$ will give all odd numbers.
When $n=3,7,11,15 \ldots$
$n-1$ will be even but not divisible by 4
When $n=2,4,6,8, \ldots$
Then $2 n$ will give all multiples of 4
So range will be N.
And no two values of n give same y, so function is one-one and onto.
3. If the system of linear equations
$2 x+3 y-z=-2$
$x+y+z=4$
$x-y+|\lambda| z=4 \lambda-4$
where $\lambda \in R$, has no solution, then
(A) $\lambda=7$
(B) $\lambda=-7$
(C) $\lambda=8$
(D) $\lambda^{2}=1$

Answer (B)

Sol. $\Delta=\left|\begin{array}{ccc}2 & 3 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & |\lambda|\end{array}\right|=0 \Rightarrow|\lambda|=7$
But at $\lambda=7, D_{x}=D_{y}=D_{z}=0$
$P_{1}: 2 x+3 y-z=-2$
$P_{2}: x+y+z=4$
$P_{3}: x-y+|\lambda| z=4 \lambda-4$
So clearly $5 P_{2}-2 P_{1}=P_{3}$, so at $\lambda=7$, system of equation is having infinite solutions.
So $\lambda=-7$ is correct answer.
4. Let A be a matrix of order 3×3 and $\operatorname{det}(A)=2$. Then $\operatorname{det}\left(\operatorname{det}(A) \operatorname{adj}\left(5 \operatorname{adj}\left(A^{3}\right)\right)\right)$ is equal to
\qquad .
(A) 512×10^{6}
(B) 256×10^{6}
(C) 1024×10^{6}
(D) 256×10^{11}

Answer (A)

Sol. $|A|=2$
$\| A\left|\operatorname{adj}\left(5 \operatorname{adj} A^{3}\right)\right|$
$=|25| A\left|\operatorname{adj}\left(\operatorname{adj} A^{3}\right)\right|$
$=25^{3}|A|^{3} \cdot\left|\operatorname{adj} A^{3}\right|^{2}$
$=25^{3} \cdot 2^{3} \cdot\left|A^{3}\right|^{4}$
$=25^{3} \cdot 2^{3} \cdot 2^{12}=10^{6} \cdot 512$
5. The total number of 5 -digit numbers, formed by using the digits $1,2,3,5,6,7$ without repetition, which are multiple of 6 , is
(A) 36
(B) 48
(C) 60
(D) 72

Answer (D)
Sol. Number should be divisible by 6 and it should be even.
Total sum $=1+2+3+5+6+7=24$
So number removed should be of type 3 .
C-1 : excluding $3^{\ldots} \underset{2}{\text { theys }}=4!\times 2=48$

Total cases $=48+24=72$
6. Let $A_{1}, A_{2}, A_{3}, \ldots$ be an increasing geometric progression of positive real numbers. If $A_{1} A_{3} A_{5} A_{7}=$ $\frac{1}{1296}$ and $A_{2}+A_{4}=\frac{7}{36}$, then, the value of $A_{6}+A_{8}$ $+A_{10}$ is equal to
(A) 33
(B) 37
(C) 43
(D) 47

Answer (C)
Sol. $\frac{A_{4}}{r^{3}} \cdot \frac{A_{4}}{r} \cdot A_{4} r \cdot A_{4} r^{3}=\frac{1}{1296}$
$A_{4}=\frac{1}{6}$
$A_{2}=\frac{7}{36}-\frac{1}{6}=\frac{1}{36}$
So $A_{6}+A_{8}+A_{10}=1+6+36$

$$
=43
$$

7. Let $[f]$ denote the greatest integer less than or equal to t. Then, the value of the integral $\int_{0}^{1}\left[-8 x^{2}+6 x-1\right] d x$ is equal to
(A) -1
(B) $\frac{-5}{4}$
(C) $\frac{\sqrt{17}-13}{8}$
(D) $\frac{\sqrt{17}-16}{8}$

Answer (C)

Sol. $\int_{0}^{1}\left[-8 x^{2}+6 x-1\right] d x$

$=\int_{0}^{\frac{1}{4}}(-1) d x+\int_{\frac{1}{4}}^{\frac{3}{4}} 0 d x+\int_{\frac{1}{2}}^{\frac{3}{4}}-1 d x+\int_{\frac{3}{4}}^{\frac{3+\sqrt{17}}{8}}-2 d x+\int_{\frac{3+\sqrt{17}}{8}}^{1}-3 d x$
$=-\frac{1}{4}-\frac{1}{4}-2\left(\frac{3+\sqrt{17}}{8}-\frac{3}{4}\right)-3\left(1-\frac{3+\sqrt{17}}{8}\right)$
$=\frac{\sqrt{17}-13}{8}$
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
f(x)=\left[\begin{array}{ll}
{\left[e^{x}\right],} & x<0 \\
a e^{x}+[x-1], & 0 \leq x<1 \\
b+[\sin (\pi x)], & 1 \leq x<2 \\
{\left[e^{-x}\right]-c,} & x \geq 2
\end{array}\right.
$$

Where $a, b, c \in \mathbb{R}$ and $[t]$ denotes greatest integer less than or equal to t. Then, which of the following statements is true?
(A) There exists $a, b, c \in \mathbb{R}$ such that f is continuous on \mathbb{R}.
(B) If f is discontinuous at exactly one point, then $a+b+c=1$
(C) If f is discontinuous at exactly one point, then $a+b+c \neq 1$
(D) f is discontinuous at atleast two points, for any values of a, b and c

Answer (C)

Sol. $f(x)=\left\{\begin{array}{cl}0 & x<0 \\ a e^{x}-1 & 0 \leq x<1 \\ b & x=1 \\ b-1 & 1<x<2 \\ -c & x \geq 2\end{array}\right.$

To be continuous at $x=0$
$a-1=0$
to be continuous at $x=1$
$a e-1=b=b-1 \Rightarrow$ not possible
to be continuous at $x=2$
$b-1=-c \Rightarrow b+c=1$
If $a=1$ and $b+c=1$ then $f(x)$ is discontinuous at exactly one point
9. The area of the region $S=\left\{(x, y): y^{2} \leq 8 x, y \geq \sqrt{2} x, x \geq 1\right\}$ is
(A) $\frac{13 \sqrt{2}}{6}$
(B) $\frac{11 \sqrt{2}}{6}$
(C) $\frac{5 \sqrt{2}}{6}$
(D) $\frac{19 \sqrt{2}}{6}$

Answer (B)

Sol.

Required area

$$
\begin{aligned}
& =\int_{1}^{4}(\sqrt{8 x}-\sqrt{2} x) d x \\
& =\frac{2 \sqrt{8}}{3} x^{\frac{3}{2}}-\left.\frac{x^{2}}{\sqrt{2}}\right|_{1} ^{4} \\
& =\frac{16 \sqrt{3}}{3}-\frac{16}{\sqrt{2}}-\frac{2 \sqrt{8}}{3}+\frac{1}{\sqrt{2}} \\
& =\frac{11 \sqrt{2}}{6} \text { sq. units }
\end{aligned}
$$

10. Let the solution curve $y=y(x)$ of the differential equation
$\left[\frac{x}{\sqrt{x^{2}-y^{2}}}+e^{\frac{y}{x}}\right] x \frac{d y}{d x}=x+\left[\frac{x}{\sqrt{x^{2}-y^{2}}}+e^{\frac{y}{x}}\right] y$
pass through the points $(1,0)$ and $(2 \alpha, \alpha), \alpha>0$. Then α is equal to
(A) $\frac{1}{2} \exp \left(\frac{\pi}{6}+\sqrt{e}-1\right)$
(B) $\frac{1}{2} \exp \left(\frac{\pi}{3}+e-1\right)$
(C) $\exp \left(\frac{\pi}{6}+\sqrt{e}+1\right)$
(D) $2 \exp \left(\frac{\pi}{3}+\sqrt{e}-1\right)$

Answer (A)
Sol. $\left(\frac{1}{\sqrt{1-\frac{y^{2}}{x^{2}}}}+e^{\frac{y}{x}}\right) \frac{d y}{d x}=1+\left(\frac{1}{\sqrt{1-\frac{y^{2}}{x^{2}}}}+e^{\frac{y}{x}}\right) \frac{y}{x}$
Putting $y=t x$

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{1-t^{2}}}+e^{t}\right)\left(t+x \frac{d t}{d x}\right)=1+\left(\frac{1}{\sqrt{1-t^{2}}}+e^{t}\right) t \\
& \Rightarrow x\left(\frac{1}{\sqrt{1-t^{2}}}+e^{t}\right) \frac{d t}{d x}=1 \\
& \Rightarrow \sin ^{-1} t+e^{t}=\ln x+C \\
& \Rightarrow \sin ^{-1}\left(\frac{y}{x}\right)+e^{y / x}=\ln x+C \\
& \text { at } x=1, y=0 \\
& \text { So, } 0+e^{0}=0+C \Rightarrow C=1 \\
& \text { at }(2 \alpha, \alpha) \\
& \sin ^{-1}\left(\frac{y}{x}\right)+e^{y / x}=\ln x+1 \\
& \Rightarrow \frac{\pi}{6}+e^{\frac{1}{2}}-1=\ln (2 \alpha) \\
& \left.\Rightarrow \alpha=\frac{1}{2} e^{\frac{\pi}{6}+e^{\frac{1}{2}}-1}\right)
\end{aligned}
$$

11. Let $y=y(x)$ be the solution of the differential equation $x\left(1-x^{2}\right) \frac{d y}{d x}+\left(3 x^{2} y-y-4 x^{3}\right)=0, x>1$, with $y(2)=-2$. Then $y(3)$ is equal to
(A) -18
(B) -12
(C) -6
(D) -3

Answer (A)

Sol. $\frac{d y}{d x}+\frac{y\left(3 x^{2}-1\right)}{x\left(1-x^{2}\right)}=\frac{4 x^{3}}{x\left(1-x^{2}\right)}$

$$
\begin{aligned}
I F=e^{\int \frac{3 x^{2}-1}{x-x^{3}} d x}=e^{-\ln \left|x^{3}-x\right|}= & e^{-\ln \left(x^{3}-x\right)} \\
& =\frac{1}{x^{3}-x}
\end{aligned}
$$

Solution of D.E. can be given by

$$
\begin{aligned}
& y \cdot \frac{1}{x^{3}-x}=\int \frac{4 x^{3}}{x\left(1-x^{2}\right)} \cdot \frac{1}{x\left(x^{2}-1\right)} d x \\
\Rightarrow & \frac{y}{x^{3}-x}=\int \frac{-4 x}{\left(x^{2}-1\right)^{2}} d x \\
\Rightarrow & \frac{y}{x^{3}-x}=\frac{2}{\left(x^{2}-1\right)}+c
\end{aligned}
$$

at $x=2, y=-2$

$$
\frac{-2}{6}=\frac{2}{3}+c \Rightarrow c=-1
$$

at $x=3 \Rightarrow \frac{y}{24}=\frac{2}{8}-1 \Rightarrow y=-18$
12. The number of real solutions of $x^{7}+5 x^{3}+3 x+1=$ 0 is equal to \qquad -.
(A) 0
(B) 1
(C) 3
(D) 5

Answer (B)

Sol.

$f^{\prime}(x)=7 x^{6}+15 x^{2}+3>0 \forall x \in R$
$f(x)$ is always increasing
So clearly it intersects
x-axis at only one point
13. Let the eccentricity of the hyperbola $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\sqrt{\frac{5}{2}}$ and length of its latus rectum be $6 \sqrt{2}$, If $y=2 x+c$ is a tangent to the hyperbola H. then the value of c^{2} is equal to
(A) 18
(B) 20
(C) 24
(D) 32

Answer (B)

Sol. $1+\frac{b^{2}}{a^{2}}=\frac{5}{2} \Rightarrow \frac{b^{2}}{a^{2}}=\frac{3}{2}$
$\frac{2 b^{2}}{a}=6 \sqrt{2} \Rightarrow 2 \cdot \frac{3}{2} \cdot a=6 \sqrt{2}$
$\Rightarrow \quad a=2 \sqrt{2}, b^{2}=12$
$c^{2}=a^{2} m^{2}-b^{2}=8.4-12=20$
14. If the tangents drawn at the points $O(0,0)$ and $P(1+\sqrt{5}, 2)$ on the circle $x^{2}+y^{2}-2 x-4 y=0$ intersect at the point Q, then the area of the triangle $O P Q$ is equal to
(A) $\frac{3+\sqrt{5}}{2}$
(B) $\frac{4+2 \sqrt{5}}{2}$
(C) $\frac{5+3 \sqrt{5}}{2}$
(D) $\frac{7+3 \sqrt{5}}{2}$

Answer (C)
Sol.

$$
\begin{aligned}
& \tan 2 \theta=2 \Rightarrow \frac{2 \tan \theta}{1-\tan ^{2} \theta}=2 \\
& \tan \theta=\frac{\sqrt{5}-1}{2} \quad \text { (as } \theta \text { is acute) }
\end{aligned}
$$

$$
\text { Area }=\frac{1}{2} L^{2} \sin 2 \theta=\frac{1}{2} \cdot \frac{5}{\tan ^{2} \theta} \cdot 2 \sin \theta \cos \theta
$$

$$
=\frac{5 \sin \theta \cos \theta}{\sin ^{2} \theta} \cdot \cos ^{2} \theta
$$

$$
=5 \cot \theta \cdot \cos ^{2} \theta
$$

$$
=5 \cdot \frac{2}{\sqrt{5}-1} \cdot \frac{1}{1+\left(\frac{\sqrt{5}-1}{2}\right)^{2}}
$$

$$
=\frac{10}{\sqrt{5}-1} \cdot \frac{4}{4+6-2 \sqrt{5}}
$$

$$
=\frac{40}{2 \sqrt{5}(\sqrt{5}-1)^{2}}=\frac{4 \sqrt{5}}{6-2 \sqrt{5}}
$$

$$
=\frac{4 \sqrt{5}(6+2 \sqrt{5})}{16}
$$

$$
=\frac{\sqrt{5}(3+\sqrt{5})}{2}
$$

15. If two distinct points Q, R lie on the line of intersection of the planes $-x+2 y-z=0$ and $3 x-$ $5 y+2 z=0$ and $P Q=P R=\sqrt{18}$ where the point P is $(1,-2,3)$, then the area of the triangle $P Q R$ is equal to
(A) $\frac{2}{3} \sqrt{38}$
(B) $\frac{4}{3} \sqrt{38}$
(C) $\frac{8}{3} \sqrt{38}$
(D) $\sqrt{\frac{152}{3}}$

Answer (B)

Sol.

Line L is $x=y=z$

$$
\begin{aligned}
& \overrightarrow{P Q} \cdot(\hat{i}+\hat{j}+\hat{k})=0 \\
\Rightarrow & (\alpha-3)+\alpha+2+\alpha-1=0 \\
\Rightarrow & \alpha=\frac{2}{3} \text { so, } T=\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right) \\
& P T=\sqrt{\frac{38}{3}} \\
\Rightarrow & Q T=\frac{4}{\sqrt{3}}
\end{aligned}
$$

So, Area $=\left(\frac{1}{2} \times \frac{4}{\sqrt{3}} \times \frac{\sqrt{38}}{\sqrt{3}}\right) \cdot 2$

$$
=\frac{4 \sqrt{38}}{3} \text { sq units }
$$

16. The acute angle between the planes P_{1} and P_{2}, when P_{1} and P_{2} are the planes passing through the intersection of the planes $5 x+8 y+13 z-29=0$ and $8 x-7 y+z-20=0$ and the points $(2,1,3)$ and $(0,1,2)$, respectively, is
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{12}$

Answer (A)

Sol. Family of Plane's equation can be given by
$(5+8 \lambda) x+(8-7 \lambda) y+(13+\lambda) z-(29+20 \lambda)=0$
P_{1} passes through $(2,1,3)$
$\Rightarrow(10+16 \lambda)+(8-7 \lambda)+(39+3 \lambda)-(29+20 \lambda)=0$
$\Rightarrow-8 \lambda+28=0 \Rightarrow \lambda=\frac{7}{2}$
d.r, s of normal to P_{1}
$\left\langle 33, \frac{-33}{2}, \frac{33}{2}\right\rangle$ or $\left\langle 1,-\frac{1}{2}, \frac{1}{2}\right\rangle$
P_{2} passes through $(0,1,2)$
$\Rightarrow 8-7 \lambda+26+2 \lambda-(29+20 \lambda)=0$
$\Rightarrow 5-25 \lambda=0$
$\Rightarrow \lambda=\frac{1}{5}$
d.r, s of normal to P_{2}
$\left\langle\frac{33}{5}, \frac{33}{5}, \frac{66}{5}\right\rangle$ or $\langle 1,1,2\rangle$
Angle between normals

$$
\begin{aligned}
& =\frac{\left(\hat{i}-\frac{1}{2} \hat{j}+\frac{1}{2} \hat{k}\right) \cdot(\hat{i}+\hat{j}+2 \hat{k})}{\frac{\sqrt{3}}{2}} \\
& \cos \theta=\frac{1-\frac{1}{2}+1}{3}=\frac{1}{2} \\
& \theta=\frac{\pi}{3}
\end{aligned}
$$

17. Let the plane $P: \vec{r} \cdot \vec{a}=d$ contain the line of intersection of two planes $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=6$ and $\vec{r} \cdot(-6 \hat{i}+5 \hat{j}-\hat{k})=7$. If the plane P passes through the point $\left(2,3, \frac{1}{2}\right)$, then the value of $\frac{|13 \vec{a}|^{2}}{d^{2}}$ is equal to
(A) 90
(B) 93
(C) 95
(D) 97

Answer (B)

Sol. $P_{1}: x+3 y-z=6$
$P_{2}:-6 x+5 y-z=7$
Family of planes passing through line of intersection of P_{1} and P_{2} is given by $x(1-6 \lambda)+y(3$ $+5 \lambda)+z(-1-\lambda)-(6+7 \lambda)=0$

It passes through $\left(2,3, \frac{1}{2}\right)$
So, $2(1-6 \lambda)+3(3+5 \lambda)+\frac{1}{2}(-1-\lambda)-(6+7 \lambda)=0$
$\Rightarrow 2-12 \lambda+9+15 \lambda-\frac{1}{2}-\frac{\lambda}{2}-6-7 \lambda=0$
$\Rightarrow \frac{9}{2}-\frac{9 \lambda}{2}=0 \Rightarrow \lambda=1$
Required plane is
$-5 x+8 y-2 z-13=0$
Or $\vec{r} \cdot(-5 \hat{i}+8 \hat{j}-2 \hat{k})=13$
$\frac{|13 \vec{a}|^{2}}{|d|^{2}}=\frac{13^{2}}{(13)^{2}} \cdot|\vec{a}|^{2}=93$
18. The probability, that in a randomly selected 3-digit number at least two digits are odd, is
(A) $\frac{19}{36}$
(B) $\frac{15}{36}$
(C) $\frac{13}{36}$
(D) $\frac{23}{36}$

Answer (A)

Sol. Required cases = Total - all digits even - exactly one digit even
Total = 900 ways
All even $\Rightarrow \overrightarrow{4} \underset{5}{\overrightarrow{7}} \underset{5}{\vec{\pi}}=100$ ways
One digit odd $\Rightarrow \frac{\text { oded }^{7}}{5} \frac{\pi}{5} \xrightarrow[5]{7}=125$ ways
$\overrightarrow{4} \frac{\text { od }^{7}}{5} \xrightarrow[5]{\overrightarrow{7}}=100$ ways
$\overrightarrow{4} \frac{\pi}{5} \frac{\text { odel }}{5}=100$ ways
Required probability $=\frac{900-425}{900}=\frac{19}{36}$
19. Let $A B$ and $P Q$ be two vertical poles, 160 m apart from each other. Let C be the middle point of B and Q, which are feet of these two poles. Let $\frac{\pi}{8}$ and θ be the angles of elevation from C to P and A, respectively. If the height of pole $P Q$ is twice the height of pole $A B$, then $\tan ^{2} \theta$ is equal to
(A) $\frac{3-2 \sqrt{2}}{2}$
(B) $\frac{3+\sqrt{2}}{2}$
(C) $\frac{3-2 \sqrt{2}}{4}$
(D) $\frac{3-\sqrt{2}}{4}$

Answer (C)

Sol.

$\frac{\ell}{80}=\tan \theta$
$\frac{2 l}{80}=\tan \frac{\pi}{8}$
From (i) and (ii)
$\frac{1}{2}=\frac{\tan \theta}{\tan \frac{\pi}{8}} \Rightarrow \tan ^{2} \theta=\frac{1}{4} \tan ^{2} \frac{\pi}{8}$
$\Rightarrow \tan ^{2} \theta=\frac{\sqrt{2}-1}{4(\sqrt{2}+1)}=\frac{3-2 \sqrt{2}}{4}$
20. Let p, q, r be three logical statements. Consider the compound statements
$S_{1}:((\sim p) \vee q) \vee((\sim p) \vee r)$ and
$S_{2}: p \rightarrow(q \vee r)$
Then, which of the following is NOT true?
(A) If S_{2} is True, then S_{1} is True
(B) If S_{2} is False, then S_{1} is False
(C) If S_{2} is False, then S_{1} is True
(D) If S_{1} is False, then S_{2} is False

Answer (C)

Sol. $S_{1}:(\sim p \vee q) \vee(\sim p \vee r)$
$\cong(\sim p \vee q \vee r)$
$S_{2}: \sim p \vee(q \vee r)$
Both are same
So, option (C) is incorrect.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let R_{1} and R_{2} be relations on the set $\{1,2, \ldots . ., 50\}$ such that
$R_{1}=\left\{\left(p, p^{n}\right): p\right.$ is a prime and $n \geq 0$ is an integer $\}$ and $R_{2}=\left\{\left(p, p^{n}\right): p\right.$ is a prime and $n=0$ or 1$\}$.
Then, the number of elements in $R_{1}-R_{2}$ is \qquad -.

Answer (8)

Sol. $R_{1}-R_{2}=\left\{\left(2,2^{2}\right),\left(2,2^{3}\right),\left(2,2^{4}\right),\left(2,2^{5}\right),\left(3,3^{2}\right)\right.$ $\left.\left(3,3^{3}\right),\left(5,5^{2}\right),\left(7,7^{2}\right)\right\}$
So number of elements = 8
2. The number of real solutions of the equation $e^{4 x}+4 e^{3 x}-58 e^{2 x}+4 e^{x}+1=0$ is \qquad .

Answer (2)

Sol. Dividing by $e^{2 x}$
$e^{2 x}+4 e^{x}-58+4 e^{-x}+e^{-2 x}=0$
$\Rightarrow\left(e^{x}+e^{-x}\right)^{2}+4\left(e^{x}+e^{-x}\right)-60=0$
Let $e^{x}+\mathrm{e}^{-x}=t \in[2, \infty)$
$\Rightarrow t^{2}+4 t-60=0$
$\Rightarrow t=6$ is only possible solution
$e^{x}+e^{-x}=6 \Rightarrow e^{2 x}-6 e^{x}+1=0$
Let $e^{x}=p$,
$p^{2}-6 p+1=0$
$\Rightarrow p=\frac{3+\sqrt{5}}{2}$ OR $\frac{3-\sqrt{5}}{2}$
So $x=\ln \left(\frac{3+\sqrt{5}}{2}\right)$ OR $\ln \left(\frac{3-\sqrt{5}}{2}\right)$
3. The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5 . Then, the correct variance is equal to \qquad .
Answer (17)

Sol. $\frac{\Sigma x_{i}^{2}}{15}-8^{2}=9 \Rightarrow \Sigma x_{i}^{2}=15 \times 73=1095$
Let \bar{x}_{C} be corrected mean $\bar{x}_{C}=9$
$\Sigma x_{C}^{2}=1095-25+400=1470$
Correct variance $=\frac{1470}{15}-(9)^{2}=98-81=17$
4. If $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+3 \hat{j}+\hat{k} \quad$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are coplanar vectors and $\vec{a} \cdot \vec{c}=5, \vec{b} \perp \vec{c}$, then $122\left(c_{1}+c_{2}+c_{3}\right)$ is equal to
\qquad -

Answer (150)

Sol. $2 C_{1}+C_{2}+3 C_{3}=5$
$3 C_{1}+3 C_{2}+C_{3}=0$

$$
\begin{align*}
& {[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}
2 & 1 & 3 \\
3 & 3 & 1 \\
C_{1} & C_{2} & C_{3}
\end{array}\right|} \tag{ii}\\
& \quad=2\left(3 C_{3}-C_{2}\right)-1\left(3 C_{3}-C_{1}\right)+3\left(3 C_{2}-3 C_{1}\right) \\
& =3 C_{3}+7 C_{2}-8 C_{1} \\
& \Rightarrow 8 C_{1}-7 C_{2}-3 C_{3}=0 \quad \ldots \text { (iii) } \tag{iii}
\end{align*}
$$

$C_{1}=\frac{10}{122}, C_{2}=\frac{-85}{122}, C_{3}=\frac{225}{122}$
So $122\left(C_{1}+C_{2}+C_{3}\right)=150$
5. A ray of light passing through the point $P(2,3)$ reflects on the x-axis at point A and the reflected ray passes through the point $Q(5,4)$. Let R be the point that divides the line segment $A Q$ internally into the ratio $2: 1$. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle $P A Q$ be (α, β). Then, the value of $7 \alpha+3 \beta$ is equal to \qquad .
Answer (31)
Sol.

$\frac{4}{5-\alpha}=\frac{3}{\alpha-2} \Rightarrow 4 \alpha-8=15-3 \alpha$
$\alpha=\frac{23}{7}$
$A=\left(\frac{23}{7}, 0\right) Q=(5,4)$

$$
\begin{aligned}
R & =\left(\frac{10+\frac{23}{7}}{3}, \frac{8}{3}\right) \\
& =\left(\frac{31}{7}, \frac{8}{3}\right)
\end{aligned}
$$

Bisector of angle $P A Q$ is $X=\frac{23}{7}$
$\Rightarrow \quad M=\left(\frac{23}{7}, \frac{8}{3}\right)$
So, $7 \alpha+3 \beta=31$
6. Let $/$ be a line which is normal to the curve $y=2 x^{2}$ $+x+2$ at a point P on the curve. If the point $Q(6,4)$ lies on the line / and O is origin, then the area of the triangle $O P Q$ is equal to \qquad -.
Answer (13)
Sol.

$\frac{y_{1}-4}{x_{1}-6}=-\frac{1}{4 x_{1}+1}$
$\Rightarrow \frac{2 x_{1}^{2}+x_{1}-2}{x_{1}-6}=-\frac{1}{4 x_{1}+1}$
$\Rightarrow 6-x_{1}=8 x_{1}^{3}+6 x_{1}^{2}-7 x_{1}-2$
$\Rightarrow 8 x_{1}^{3}+6 x_{1}^{2}-6 x_{1}-8=0$

$$
\text { So } x_{1}=1 \Rightarrow y_{1}=5
$$

Area $=\left|\frac{1}{2}\right| \begin{array}{lll}0 & 0 & 1 \\ 6 & 4 & 1 \\ 1 & 5 & 1\end{array}| |=13$.
7. Let $A=\left\{1, a_{1}, a_{2} \ldots a_{18}, 77\right\}$ be a set of integers with $1<a_{1}<a_{2}<\ldots<a_{18}<77$. Let the set $A+A=$ $\{x+y: x, y \in A\}$ contain exactly 39 elements. Then, the value of $a_{1}+a_{2}+\ldots+a_{18}$ is equal to \qquad .

Answer (702)

Sol. If we write the elements of $A+A$, we can certainly find 39 distinct elements as $1+1,1+a_{1}, 1+a_{2}, \ldots . .1$ $+a_{18}, 1+77, a_{1}+77, a_{2}+77, \ldots \ldots . a_{18}+77,77+77$.
It means all other sums are already present in these 39 values, which is only possible in case when all numbers are in A.P.

Let the common difference be ' d '.
$77=1+19 d \Rightarrow d=4$
So, $\sum_{i=1}^{18} a_{1}=\frac{18}{2}\left[2 a_{1}+17 d\right]=9[10+68]=702$
8. The number of positive integers k such that the constant term in the binomial expansion of $\left(2 x^{3}+\frac{3}{x^{k}}\right)^{12}, x \neq 0$ is $2^{8} \cdot \ell$, where ℓ is an odd integer, is \qquad .

Answer (2)

Sol. $T_{r+1}={ }^{12} C_{r}\left(2 x^{3}\right)^{12-r}\left(\frac{3}{x^{k}}\right)^{r}$
$={ }^{12} C_{r} 2^{12-r} 3^{r} x^{36-3 r-k r}$
For constant term $36-3 r-k r=0$

$$
r=\frac{36}{3+k}
$$

So, k can be $1,3,6,9,15,33$
In order to get 2^{8}, check by putting values of k and corresponding in general term. By checking, it is possible only where $k=3$ or 6
9. The number of elements in the set
$\{z=a+i b \in \mathbb{C}: a, b \in \mathbb{Z}$ and $1<|z-3+2 i|<4\}$ is
\qquad -

Answer (40)

Sol.

at line $y=-2$, we have $(5,-2)(6,-2)(1,-2)(0,-2)$ $\Rightarrow 4$ points
at line $y=-1$, we have $(4,-1)(5,-1)(6,-1)(2,-1)$
$(1,-1)(0,-1) \Rightarrow 6$ points
at line $y=0$, we have $(0,0)(1,0)(2,0)(3,0)(4,0)$ $(5,0)(6,0) \Rightarrow 7$ points
at line $y=1$, we have $(1,1),(2,1),(3,1),(4,1),(5,1)$ i.e. 5 points symmetrically
at line $y=-5$, we have 5 points
at line $y=-4$, we have 7 points
at line $y=-3$, we have 6 points
So Total integral points $=2(5+7+6)+4$

$$
=40
$$

10. Let the lines $y+2 x=\sqrt{11}+7 \sqrt{7}$ and
$2 y+x=2 \sqrt{11}+6 \sqrt{7}$ be normal to a circle
$C:(x-h)^{2}+(y-k)^{2}=r^{2}$. If the line $\sqrt{11} y-3 x=\frac{5 \sqrt{77}}{3}+11$ is tangent to the circle C, then the value of $(5 h-8 k)^{2}+5 r^{2}$ is equal to
\qquad

Answer (816)

Sol. $L_{1}: y+2 x=\sqrt{11}+7 \sqrt{7}$
$L_{2}: 2 y+x=2 \sqrt{11}+6 \sqrt{7}$
Point of intersection of these two lines is centre of circle i.e. $\left(\frac{8}{3} \sqrt{7}, \sqrt{11}+\frac{5}{3} \sqrt{7}\right)$
\perp^{r} from centre to line $3 x-\sqrt{11} y+\left(\frac{5 \sqrt{77}}{3}+11\right)=0$
is radius of circle
$\Rightarrow r=\left|\frac{8 \sqrt{7}-11-\frac{5}{3} \sqrt{77}+\frac{5 \sqrt{77}}{3}+11}{\sqrt{20}}\right|$
$=\left|\sqrt[4]{\frac{7}{5}}\right|=\sqrt[4]{\frac{7}{5}}$ units
So $(5 h-8 K)^{2}+5 r^{2}$
$=\left(\frac{40}{3} \sqrt{7}-8 \sqrt{11}-\frac{40}{3} \sqrt{7}\right)^{2}+5.16 \cdot \frac{7}{5}$
$=64 \times 11+112=816$.

