MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. If
$$\sum_{k=1}^{31} {31 \choose k} {31 \choose k} - \sum_{k=1}^{30} {30 \choose k} {30 \choose k} {30 \choose k-1} = \frac{\alpha(60!)}{(30!)(31!)},$$

where $\alpha \in \mathbf{R}$, then the value of 16α is equal to

- (A) 1411
- (B) 1320
- (C) 1615
- (D) 1855

Answer (A)

Sol.
$$\sum_{k=1}^{31} {}^{31}C_k {}^{31}C_{k-1} - \sum_{k=1}^{30} {}^{30}C_k {}^{30}C_{k-1}$$
$$= \sum_{k=1}^{31} {}^{31}C_k {}^{31}C_{32-k} - \sum_{k=1}^{30} {}^{30}C_k {}^{30}C_{31-k}$$
$$= {}^{62}C_{32} - {}^{60}C_{31}$$
$$= \frac{60!}{31!29!} \left(\frac{62 \cdot 61}{32 \cdot 30} - 1\right) = \frac{60!}{31!29!} \frac{2822}{32 \cdot 30}$$
$$\alpha = \frac{2822}{32} \implies 16\alpha = 1411$$

2. Let a function $f: \mathbb{N} \to \mathbb{N}$ be defined by

$$f(n) = \begin{bmatrix} 2n, & n = 2, 4, 6, 8, \dots \\ n-1, & n = 3, 7, 11, 15, \dots \\ \frac{n+1}{2}, & n = 1, 5, 9, 13, \dots \end{bmatrix}$$

then, f is

- (A) One-one but not onto
- (B) Onto but not one-one
- (C) Neither one-one nor onto
- (D) One-one and onto

Answer (D)

Sol. When n = 1, 5, 9, 13 then $\frac{n+1}{2}$ will give all odd numbers.

When n = 3, 7, 11, 15 ...

n-1 will be even but not divisible by 4

When n = 2, 4, 6, 8, ...

Then 2n will give all multiples of 4

So range will be N.

And no two values of *n* give same *y*, so function is one-one and onto.

3. If the system of linear equations

$$2x + 3y - z = -2$$

$$x + y + z = 4$$

$$x - y + |\lambda|z = 4\lambda - 4$$

where $\lambda \in R$, has no solution, then

(A)
$$\lambda = 7$$

(B)
$$\lambda = -7$$

(C)
$$\lambda = 8$$

(D)
$$\lambda^2 = 1$$

Answer (B)

Sol.
$$\Delta = \begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & |\lambda| \end{vmatrix} = 0 \implies |\lambda| = 7$$

But at $\lambda = 7$, $D_x = D_y = D_z = 0$

$$P_1: 2x + 3y - z = -2$$

$$P_2: x + y + z = 4$$

$$P_3: x-y+|\lambda|z=4\lambda-4$$

So clearly $5P_2 - 2P_1 = P_3$, so at $\lambda = 7$, system of equation is having infinite solutions.

So $\lambda = -7$ is correct answer.

4. Let A be a matrix of order 3×3 and det (A) = 2. Then det (det (A) adj $(5 \text{ adj } (A^3))$) is equal to

- (A) 512×10^6
- (B) 256×10^6
- (C) 1024×10^6
- (D) 256×10^{11}

Answer (A)

Sol. |A| = 2

 $||A| \text{ adj}(5 \text{ adj } A^3)|$

 $= |25|A| \text{ adj(adj } A^3)|$

 $= 25^3 |A|^3 \cdot |adj A^3|^2$

 $= 25^3 \cdot 2^3 \cdot |A^3|^4$

 $= 25^3 \cdot 2^3 \cdot 2^{12} = 10^6 \cdot 512$

- The total number of 5-digit numbers, formed by using the digits 1, 2, 3, 5, 6, 7 without repetition, which are multiple of 6, is
 - (A) 36

(B) 48

(C) 60

(D) 72

Answer (D)

Sol. Number should be divisible by 6 and it should be

Total sum = 1 + 2 + 3 + 5 + 6 + 7 = 24

So number removed should be of type 3.

C-2 : excluding 6 _ _ _ _ 1 way = 4! = 24

Total cases = 48 + 24 = 72

Let A_1 , A_2 , A_3 , ... be an increasing geometric progression of positive real numbers. If $A_1A_3A_5A_7 =$

 $\frac{1}{1296}$ and $A_2 + A_4 = \frac{7}{36}$, then, the value of $A_6 + A_8$

+ A₁₀ is equal to

(A) 33

(B) 37

(C) 43

(D) 47

Answer (C)

Sol.
$$\frac{A_4}{r^3} \cdot \frac{A_4}{r} \cdot A_4 r \cdot A_4 r^3 = \frac{1}{1296}$$

$$A_4=\frac{1}{6}$$

$$A_2 = \frac{7}{36} - \frac{1}{6} = \frac{1}{36}$$

So $A_6 + A_8 + A_{10} = 1 + 6 + 36$

= 43

7. Let [t] denote the greatest integer less than or equal to t. Then, the value of the

$$\int_{0}^{1} \left[-8x^{2} + 6x - 1 \right] dx$$
 is equal to

- (A) -1
- (C) $\frac{\sqrt{17}-13}{8}$ (D) $\frac{\sqrt{17}-16}{8}$

Answer (C)

Sol.
$$\int_{0}^{1} \left[-8x^{2} + 6x - 1 \right] dx$$

$$=\int_{0}^{\frac{1}{4}} (-1) dx + \int_{\frac{1}{4}}^{\frac{3}{4}} 0 dx + \int_{\frac{1}{2}}^{\frac{3}{4}} -1 dx + \int_{\frac{3}{4}}^{\frac{3+\sqrt{17}}{8}} -2 dx + \int_{\frac{3+\sqrt{17}}{8}}^{1} -3 dx$$

$$= -\frac{1}{4} - \frac{1}{4} - 2\left(\frac{3 + \sqrt{17}}{8} - \frac{3}{4}\right) - 3\left(1 - \frac{3 + \sqrt{17}}{8}\right)$$

$$=\frac{\sqrt{17}-13}{8}$$

8. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{bmatrix} e^{x}, & x < 0 \\ ae^{x} + [x-1], & 0 \le x < 1 \\ b + [\sin(\pi x)], & 1 \le x < 2 \\ [e^{-x}] - c, & x \ge 2 \end{bmatrix}$$

Where $a, b, c \in \mathbb{R}$ and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?

- (A) There exists $a, b, c \in \mathbb{R}$ such that f is continuous on \mathbb{R} .
- (B) If f is discontinuous at exactly one point, then a + b + c = 1
- (C) If f is discontinuous at exactly one point, then $a+b+c \neq 1$
- (D) f is discontinuous at atleast two points, for any values of a, b and c

Answer (C)

Sol.
$$f(x) = \begin{cases} 0 & x < 0 \\ ae^{x} - 1 & 0 \le x < 1 \\ b & x = 1 \\ b - 1 & 1 < x < 2 \\ -c & x \ge 2 \end{cases}$$

JEE (Main)-2022: Phase-1 (28-06-2022)-Morning

To be continuous at x = 0

$$a - 1 = 0$$

to be continuous at x = 1

$$ae - 1 = b = b - 1 \Rightarrow$$
 not possible

to be continuous at x = 2

$$b-1=-c \Rightarrow b+c=1$$

If a = 1 and b + c = 1 then f(x) is discontinuous at exactly one point

9. The area of the region $S = \{(x, y): y^2 \le 8x, y \ge \sqrt{2}x, x \ge 1\}$

is

(A)
$$\frac{13\sqrt{2}}{6}$$

(B)
$$\frac{11\sqrt{2}}{6}$$

(C)
$$\frac{5\sqrt{2}}{6}$$

(D)
$$\frac{19\sqrt{2}}{6}$$

Answer (B)

Sol.

Required area

$$= \int_{1}^{4} \left(\sqrt{8x} - \sqrt{2}x \right) dx$$

$$= \frac{2\sqrt{8}}{3} x^{\frac{3}{2}} - \frac{x^2}{\sqrt{2}} \bigg|_{1}^{4}$$

$$=\frac{16\sqrt{3}}{3}-\frac{16}{\sqrt{2}}-\frac{2\sqrt{8}}{3}+\frac{1}{\sqrt{2}}$$

$$=\frac{11\sqrt{2}}{6} \text{ sq. units}$$

10. Let the solution curve y = y(x) of the differential equation

$$\left[\frac{x}{\sqrt{x^2 - y^2}} + e^{\frac{y}{x}}\right] x \frac{dy}{dx} = x + \left[\frac{x}{\sqrt{x^2 - y^2}} + e^{\frac{y}{x}}\right] y$$

pass through the points (1, 0) and (2 α , α), α > 0. Then α is equal to

(A)
$$\frac{1}{2} \exp \left(\frac{\pi}{6} + \sqrt{e} - 1 \right)$$
 (B) $\frac{1}{2} \exp \left(\frac{\pi}{3} + e - 1 \right)$

(C)
$$\exp\left(\frac{\pi}{6} + \sqrt{e} + 1\right)$$
 (D) $2\exp\left(\frac{\pi}{3} + \sqrt{e} - 1\right)$

Answer (A)

Sol.
$$\left(\frac{1}{\sqrt{1-\frac{y^2}{x^2}}} + e^{\frac{y}{x}}\right) \frac{dy}{dx} = 1 + \left(\frac{1}{\sqrt{1-\frac{y^2}{x^2}}} + e^{\frac{y}{x}}\right) \frac{y}{x}$$

Putting y = tx

$$\left(\frac{1}{\sqrt{1-t^2}} + e^t\right)\left(t + x\frac{dt}{dx}\right) = 1 + \left(\frac{1}{\sqrt{1-t^2}} + e^t\right)t$$

$$\Rightarrow x \left(\frac{1}{\sqrt{1-t^2}} + e^t \right) \frac{dt}{dx} = 1$$

$$\Rightarrow$$
 $\sin^{-1} t + e^t = \ln x + C$

$$\Rightarrow \sin^{-1}\left(\frac{y}{x}\right) + e^{y/x} = \ln x + C$$

at
$$x = 1$$
, $y = 0$

So,
$$0 + e^0 = 0 + C \Rightarrow C = 1$$

at
$$(2\alpha, \alpha)$$

$$\sin^{-1}\left(\frac{y}{x}\right) + e^{y/x} = \ln x + 1$$

$$\Rightarrow \frac{\pi}{6} + e^{\frac{1}{2}} - 1 = \ln(2\alpha)$$

$$\Rightarrow \alpha = \frac{1}{2}e^{\left(\frac{\pi}{6} + e^{\frac{1}{2}} - 1\right)}$$

11. Let y = y(x) be the solution of the differential equation $x(1-x^2)\frac{dy}{dx} + (3x^2y - y - 4x^3) = 0, x > 1,$

with y(2) = -2. Then y(3) is equal to

$$(C) -6$$

$$(D) -3$$

Answer (A)

Sol.
$$\frac{dy}{dx} + \frac{y(3x^2 - 1)}{x(1 - x^2)} = \frac{4x^3}{x(1 - x^2)}$$

$$IF = e^{\int \frac{3x^2 - 1}{x - x^3} dx} = e^{-\ln|x^3 - x|} = e^{-\ln(x^3 - x)}$$
$$= \frac{1}{x^3 - x}$$

Solution of D.E. can be given by

$$y.\frac{1}{x^3-x} = \int \frac{4x^3}{x(1-x^2)} \cdot \frac{1}{x(x^2-1)} dx$$

$$\Rightarrow \frac{y}{x^3-x} = \int \frac{-4x}{(x^2-1)^2} dx$$

$$\Rightarrow \frac{y}{x^3 - x} = \frac{2}{(x^2 - 1)} + c$$

at
$$x = 2$$
, $y = -2$

$$\frac{-2}{6} = \frac{2}{3} + c \implies c = -1$$

at
$$x = 3 \Rightarrow \frac{y}{24} = \frac{2}{8} - 1 \Rightarrow y = -18$$

- 12. The number of real solutions of $x^7 + 5x^3 + 3x + 1 = 0$ is equal to _____.
 - (A) 0

(B) 1

(C) 3

(D) 5

Answer (B)

Sol.

$$f'(x) = 7x^6 + 15x^2 + 3 > 0 \ \forall x \in R$$

f(x) is always increasing

So clearly it intersects

x-axis at only one point

13. Let the eccentricity of the hyperbola $H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ be } \sqrt{\frac{5}{2}} \text{ and length of its latus}$

rectum be $6\sqrt{2}$, If y = 2x + c is a tangent to the hyperbola H. then the value of c^2 is equal to

(A) 18

(B) 20

(C) 24

(D) 32

Answer (B)

Sol. $1 + \frac{b^2}{a^2} = \frac{5}{2} \Rightarrow \frac{b^2}{a^2} = \frac{3}{2}$

$$\frac{2b^2}{a} = 6\sqrt{2} \Rightarrow 2.\frac{3}{2}.a = 6\sqrt{2}$$

$$\Rightarrow a = 2\sqrt{2}, b^2 = 12$$

$$c^2 = a^2m^2 - b^2 = 8.4 - 12 = 20$$

- 14. If the tangents drawn at the points O(0, 0) and $P(1+\sqrt{5}, 2)$ on the circle $x^2 + y^2 2x 4y = 0$ intersect at the point Q, then the area of the triangle OPQ is equal to
 - (A) $\frac{3+\sqrt{5}}{2}$
- (B) $\frac{4+2\sqrt{5}}{2}$
- (C) $\frac{5+3\sqrt{5}}{2}$
- (D) $\frac{7+3\sqrt{5}}{2}$

Answer (C)

Sol.

$$\tan 2\theta = 2 \Rightarrow \frac{2 \tan \theta}{1 - \tan^2 \theta} = 2$$

$$\tan \theta = \frac{\sqrt{5} - 1}{2}$$

(as θ is acute)

Area =
$$\frac{1}{2}L^2 \sin 2\theta = \frac{1}{2} \cdot \frac{5}{\tan^2 \theta} \cdot 2 \sin \theta \cos \theta$$

$$=\frac{5\sin\theta\cos\theta}{\sin^2\theta}.\cos^2\theta$$

=
$$5\cot\theta.\cos^2\theta$$

$$=5.\frac{2}{\sqrt{5}-1}.\frac{1}{1+\left(\frac{\sqrt{5}-1}{2}\right)^2}$$

$$=\frac{10}{\sqrt{5}-1}\cdot\frac{4}{4+6-2\sqrt{5}}$$

$$=\frac{40}{2\sqrt{5}(\sqrt{5}-1)^2}=\frac{4\sqrt{5}}{6-2\sqrt{5}}$$

$$=\frac{4\sqrt{5}(6+2\sqrt{5})}{16}$$

$$=\frac{\sqrt{5}(3+\sqrt{5})}{2}$$

JEE (Main)-2022 : Phase-1 (28-06-2022)-Morning

- 15. If two distinct points Q, R lie on the line of intersection of the planes -x + 2y z = 0 and 3x 5y + 2z = 0 and $PQ = PR = \sqrt{18}$ where the point P is (1, -2, 3), then the area of the triangle PQR is equal to
 - (A) $\frac{2}{3}\sqrt{38}$
- (B) $\frac{4}{3}\sqrt{38}$
- (C) $\frac{8}{3}\sqrt{38}$
- (D) $\sqrt{\frac{152}{3}}$

Answer (B)

Sol.

Line L is x = y = z

$$\overrightarrow{PQ}.(\hat{i}+\hat{j}+\hat{k})=0$$

$$\Rightarrow$$
 $(\alpha - 3) + \alpha + 2 + \alpha - 1 = 0$

$$\Rightarrow \alpha = \frac{2}{3} \text{ so, } T = \left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$$

$$PT = \sqrt{\frac{38}{3}}$$

$$\Rightarrow$$
 QT = $\frac{4}{\sqrt{3}}$

So, Area =
$$\left(\frac{1}{2} \times \frac{4}{\sqrt{3}} \times \frac{\sqrt{38}}{\sqrt{3}}\right).2$$

$$= \frac{4\sqrt{38}}{3} \text{ sq units}$$

- 16. The acute angle between the planes P_1 and P_2 , when P_1 and P_2 are the planes passing through the intersection of the planes 5x + 8y + 13z 29 = 0 and 8x 7y + z 20 = 0 and the points (2, 1, 3) and (0, 1, 2), respectively, is
 - (A) $\frac{\pi}{3}$

(B) $\frac{\pi}{4}$

(C) $\frac{\pi}{6}$

(D) $\frac{\pi}{12}$

Answer (A)

Sol. Family of Plane's equation can be given by

$$(5+8\lambda)x + (8-7\lambda)y + (13+\lambda)z - (29+20\lambda) = 0$$

P₁ passes through (2, 1, 3)

$$\Rightarrow (10 + 16\lambda) + (8 - 7\lambda) + (39 + 3\lambda) - (29 + 20\lambda) = 0$$

$$\Rightarrow$$
 $-8\lambda + 28 = 0 \Rightarrow \lambda = \frac{7}{2}$

d.r, s of normal to P_1

$$\left\langle 33, \frac{-33}{2}, \frac{33}{2} \right\rangle$$
 or $\left\langle 1, -\frac{1}{2}, \frac{1}{2} \right\rangle$

 P_2 passes through (0, 1, 2)

$$\Rightarrow 8-7\lambda+26+2\lambda-(29+20\lambda)=0$$

$$\Rightarrow 5-25\lambda=0$$

$$\Rightarrow \lambda = \frac{1}{5}$$

d.r, s of normal to P_2

$$\left\langle \frac{33}{5}, \frac{33}{5}, \frac{66}{5} \right\rangle$$
 or $\left\langle 1, 1, 2 \right\rangle$

Angle between normals

$$=\frac{\left(\hat{i}-\frac{1}{2}\hat{j}+\frac{1}{2}\hat{k}\right)\cdot\left(\hat{i}+\hat{j}+2\hat{k}\right)}{\frac{\sqrt{3}}{2}}$$

$$\cos \theta = \frac{1 - \frac{1}{2} + 1}{3} = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

- 17. Let the plane $P: \vec{r} \cdot \vec{a} = d$ contain the line of intersection of two planes $\vec{r} \cdot (\hat{i} + 3\hat{j} \hat{k}) = 6$ and $\vec{r} \cdot (-6\hat{i} + 5\hat{j} \hat{k}) = 7$. If the plane P passes through the point $\left(2, 3, \frac{1}{2}\right)$, then the value of $\frac{|13\vec{a}|^2}{d^2}$ is equal to
 - (A) 90
 - (B) 93
 - (C) 95
 - (D) 97

Answer (B)

$$P_2$$
: $-6x + 5y - z = 7$

Family of planes passing through line of intersection of P_1 and P_2 is given by $x(1 - 6\lambda) + y(3 + 5\lambda) + z(-1 - \lambda) - (6 + 7\lambda) = 0$

It passes through $\left(2,3,\frac{1}{2}\right)$

So,
$$2(1-6\lambda)+3(3+5\lambda)+\frac{1}{2}(-1-\lambda)-(6+7\lambda)=0$$

$$\Rightarrow 2-12\lambda+9+15\lambda-\frac{1}{2}-\frac{\lambda}{2}-6-7\lambda=0$$

$$\Rightarrow \frac{9}{2} - \frac{9\lambda}{2} = 0 \Rightarrow \lambda = 1$$

Required plane is

$$-5x + 8y - 2z - 13 = 0$$

Or
$$\vec{r} \cdot (-5\hat{i} + 8\hat{j} - 2\hat{k}) = 13$$

$$\frac{\left|13\bar{a}\right|^2}{\left|d\right|^2} = \frac{13^2}{(13)^2} \cdot \left|\vec{a}\right|^2 = 93$$

- 18. The probability, that in a randomly selected 3-digit number at least two digits are odd, is
 - (A) $\frac{19}{36}$
- (B) $\frac{15}{36}$

- (C) $\frac{13}{36}$
- (D) $\frac{23}{36}$

Answer (A)

Sol. Required cases = Total – all digits even – exactly one digit even

Total = 900 ways

All even
$$\Rightarrow \frac{7}{4}, \frac{7}{5}, \frac{7}{5} = 100 \text{ ways}$$

One digit odd
$$\Rightarrow \frac{\text{odd}^{7}}{5} \frac{1}{5} = 125 \text{ ways}$$

$$\frac{\cancel{4}}{\cancel{5}} \frac{\text{odd}}{\cancel{5}} = 100 \text{ ways}$$

$$\frac{\cancel{4}}{\cancel{5}} = \frac{\cancel{5}}{\cancel{5}} = 100 \text{ ways}$$

Required probability =
$$\frac{900 - 425}{900} = \frac{19}{36}$$

JEE (Main)-2022 : Phase-1 (28-06-2022)-Morning

19. Let *AB* and *PQ* be two vertical poles, 160 m apart from each other. Let *C* be the middle point of *B* and

Q, which are feet of these two poles. Let $\frac{\pi}{8}$ and θ

be the angles of elevation from C to P and A, respectively. If the height of pole PQ is twice the height of pole AB, then $\tan^2\theta$ is equal to

- (A) $\frac{3-2\sqrt{2}}{2}$
- (B) $\frac{3+\sqrt{2}}{2}$
- (C) $\frac{3-2\sqrt{2}}{4}$
- (D) $\frac{3-\sqrt{2}}{4}$

Answer (C)

$$\frac{\ell}{80} = \tan \theta \qquad \qquad \dots (i)$$

$$\frac{2\ell}{80} = \tan\frac{\pi}{8} \qquad ...(ii)$$

From (i) and (ii)

$$\frac{1}{2} = \frac{\tan \theta}{\tan \frac{\pi}{8}} \Rightarrow \tan^2 \theta = \frac{1}{4} \tan^2 \frac{\pi}{8}$$

$$\Rightarrow \tan^2 \theta = \frac{\sqrt{2} - 1}{4(\sqrt{2} + 1)} = \frac{3 - 2\sqrt{2}}{4}$$

20. Let *p*, *q*, *r* be three logical statements. Consider the compound statements

$$S_1: ((\sim p) \vee q) \vee ((\sim p) \vee r)$$
 and

$$S_2: p \rightarrow (q \vee r)$$

Then, which of the following is **NOT** true?

- (A) If S₂ is True, then S₁ is True
- (B) If S_2 is False, then S_1 is False
- (C) If S_2 is False, then S_1 is True
- (D) If S_1 is False, then S_2 is False

Answer (C)

Sol.
$$S_1$$
: $(\sim p \lor q) \lor (\sim p \lor r)$

$$\cong (\sim p \lor q \lor r)$$

$$S_2$$
: $\sim p \vee (q \vee r)$

Both are same

So, option (C) is incorrect.

Aakasi Hubyuus

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let R_1 and R_2 be relations on the set {1, 2,, 50} such that

 $R_1 = \{(p, p^n) : p \text{ is a prime and } n \ge 0 \text{ is an integer} \}$ and $R_2 = \{(p, p^n) : p \text{ is a prime and } n = 0 \text{ or 1} \}.$

Then, the number of elements in $R_1 - R_2$ is _____

Answer (8)

Sol. $R_1 - R_2 = \{(2, 2^2), (2, 2^3), (2, 2^4), (2, 2^5), (3, 3^2), (3, 3^3), (5, 5^2), (7, 7^2)\}$

So number of elements = 8

2. The number of real solutions of the equation $e^{4x} + 4e^{3x} - 58e^{2x} + 4e^{x} + 1 = 0$ is

Answer (2)

Sol. Dividing by e^{2x}

$$e^{2x} + 4e^x - 58 + 4e^{-x} + e^{-2x} = 0$$

$$\Rightarrow$$
 $(e^x + e^{-x})^2 + 4(e^x + e^{-x}) - 60 = 0$

Let
$$e^x + e^{-x} = t \in [2, \infty)$$

$$\Rightarrow t^2 + 4t - 60 = 0$$

 \Rightarrow t = 6 is only possible solution

$$e^{x} + e^{-x} = 6 \Rightarrow e^{2x} - 6e^{x} + 1 = 0$$

Let
$$e^x = p$$
,

$$p^2 - 6p + 1 = 0$$

$$\Rightarrow p = \frac{3 + \sqrt{5}}{2} \text{ OR } \frac{3 - \sqrt{5}}{2}$$

So
$$x = \ln\left(\frac{3+\sqrt{5}}{2}\right)$$
 OR $\ln\left(\frac{3-\sqrt{5}}{2}\right)$

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively.
On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to ______.

Answer (17)

Sol.
$$\frac{\Sigma x_i^2}{15} - 8^2 = 9 \Rightarrow \Sigma x_i^2 = 15 \times 73 = 1095$$

Let \overline{x}_c be corrected mean $\overline{x}_c = 9$

$$\Sigma x_c^2 = 1095 - 25 + 400 = 1470$$

Correct variance =
$$\frac{1470}{15} - (9)^2 = 98 - 81 = 17$$

4. If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are coplanar vectors and $\vec{a} \cdot \vec{c} = 5$, $\vec{b} \perp \vec{c}$, then $122(c_1 + c_2 + c_3)$ is equal to

Answer (150)

Sol.
$$2C_1 + C_2 + 3C_3 = 5$$
 ...(i)

$$3C_1 + 3C_2 + C_3 = 0$$
 ...(ii)

$$\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} 2 & 1 & 3 \\ 3 & 3 & 1 \\ C_1 & C_2 & C_3 \end{vmatrix}$$
$$= 2(3C_3 - C_2) - 1(3C_3 - C_1) + 3(3C_2 - 3C_1)$$
$$= 3C_3 + 7C_2 - 8C_1$$

$$\Rightarrow 8C_1 - 7C_2 - 3C_3 = 0 \qquad ...($$

$$C_1 = \frac{10}{122}, C_2 = \frac{-85}{122}, C_3 = \frac{225}{122}$$

So
$$122(C_1 + C_2 + C_3) = 150$$

5. A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2:1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be (α, β) . Then, the value of $7\alpha + 3\beta$ is equal to

Answer (31)

Sol.

$$\frac{4}{5-\alpha} = \frac{3}{\alpha-2} \Rightarrow 4\alpha - 8 = 15 - 3\alpha$$

$$\alpha = \frac{23}{7}$$

$$A = \left(\frac{23}{7}, 0\right) Q = (5, 4)$$

$$R = \left(\frac{10 + \frac{23}{7}}{3}, \frac{8}{3}\right)$$

$$=\left(\frac{31}{7},\frac{8}{3}\right)$$

Bisector of angle PAQ is $X = \frac{23}{7}$

$$\Rightarrow M = \left(\frac{23}{7}, \frac{8}{3}\right)$$

So,
$$7\alpha + 3\beta = 31$$

6. Let *I* be a line which is normal to the curve $y = 2x^2 + x + 2$ at a point *P* on the curve. If the point Q(6, 4) lies on the line *I* and *O* is origin, then the area of the triangle *OPQ* is equal to ______.

Answer (13)

Sol.

$$\frac{y_1 - 4}{x_1 - 6} = -\frac{1}{4x_1 + 1}$$

$$\Rightarrow \frac{2x_1^2 + x_1 - 2}{x_1 - 6} = -\frac{1}{4x_1 + 1}$$

$$\Rightarrow$$
 6- $x_1 = 8x_1^3 + 6x_1^2 - 7x_1 - 2$

$$\Rightarrow 8x_1^3 + 6x_1^2 - 6x_1 - 8 = 0$$

So
$$x_1 = 1 \Rightarrow y_1 = 5$$

Area =
$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 2 & 6 & 4 & 1 \\ 1 & 5 & 1 \end{vmatrix} = 13$$
.

7. Let $A = \{1, a_1, a_2...a_{18}, 77\}$ be a set of integers with $1 < a_1 < a_2 < < a_{18} < 77$. Let the set $A + A = \{x + y : x, y \in A\}$ contain exactly 39 elements. Then, the value of $a_1 + a_2 + ... + a_{18}$ is equal to _____.

Answer (702)

Sol. If we write the elements of A + A, we can certainly find 39 distinct elements as 1 + 1, $1 + a_1$, $1 + a_2$,.....1 $+ a_{18}$, 1 + 77, $a_1 + 77$, $a_2 + 77$,..... $a_{18} + 77$, 77 + 77.

It means all other sums are already present in these 39 values, which is only possible in case when all numbers are in A.P.

Let the common difference be 'd'.

$$77 = 1 + 19d \Rightarrow d = 4$$

So,
$$\sum_{i=4}^{18} a_1 = \frac{18}{2} [2a_1 + 17d] = 9[10 + 68] = 702$$

8. The number of positive integers k such that the constant term in the binomial expansion of $\left(2x^3 + \frac{3}{x^k}\right)^{12}$, $x \neq 0$ is $2^8 \cdot \ell$, where ℓ is an odd

Answer (2)

integer, is

Sol.
$$T_{r+1} = {}^{12}C_r \left(2x^3\right)^{12-r} \left(\frac{3}{x^k}\right)^r$$
$$= {}^{12}C_r 2^{12-r} 3^r x^{36-3r-kr}$$

For constant term 36 - 3r - kr = 0

$$r = \frac{36}{3+k}$$

So, k can be 1, 3, 6, 9, 15, 33

In order to get 2^8 , check by putting values of k and corresponding in general term. By checking, it is possible only where k = 3 or 6

9. The number of elements in the set

$$\{z = a + ib \in \mathbb{C} : a, b \in \mathbb{Z} \text{ and } 1 < |z - 3 + 2i| < 4\} \text{ is}$$

Answer (40)

Sol.

at line y = -2, we have (5, -2) (6, -2) (1, -2) (0, -2) \Rightarrow 4 points

JEE (Main)-2022: Phase-1 (28-06-2022)-Morning

at line y = -1, we have (4, -1) (5, -1) (6, -1) (2, -1) (1, -1) $(0, -1) \Rightarrow 6$ points

at line y = 0, we have (0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) $(6, 0) \Rightarrow 7$ points

at line y = 1, we have (1, 1), (2, 1), (3, 1), (4, 1), (5, 1) i.e. 5 points

symmetrically

at line y = -5, we have 5 points

at line y = -4, we have 7 points

at line y = -3, we have 6 points

So Total integral points = 2(5 + 7 + 6) + 4

10. Let the lines $y + 2x = \sqrt{11} + 7\sqrt{7}$ and $2y + x = 2\sqrt{11} + 6\sqrt{7}$ be normal to a circle $C: (x - h)^2 + (y - k)^2 = r^2$. If the line $\sqrt{11}y - 3x = \frac{5\sqrt{77}}{3} + 11$ is tangent to the circle C, then the value of $(5h - 8k)^2 + 5r^2$ is equal to

Answer (816)

Sol.
$$L_1: y+2x=\sqrt{11}+7\sqrt{7}$$

$$L_2$$
: $2y + x = 2\sqrt{11} + 6\sqrt{7}$

Point of intersection of these two lines is centre of circle i.e. $\left(\frac{8}{3}\sqrt{7},\sqrt{11}+\frac{5}{3}\sqrt{7}\right)$

$$\perp^r$$
 from centre to line $3x - \sqrt{11}y + \left(\frac{5\sqrt{77}}{3} + 11\right) = 0$

is radius of circle

$$\Rightarrow r = \frac{8\sqrt{7} - 11 - \frac{5}{3}\sqrt{77} + \frac{5\sqrt{77}}{3} + 11}{\sqrt{20}}$$

$$= \left| \sqrt[4]{\frac{7}{5}} \right| = \sqrt[4]{\frac{7}{5}} \text{ units}$$

So
$$(5h - 8K)^2 + 5r^2$$

$$= \left(\frac{40}{3}\sqrt{7} - 8\sqrt{11} - \frac{40}{3}\sqrt{7}\right)^2 + 5.16.\frac{7}{5}$$

$$= 64 \times 11 + 112 = 816.$$