

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Production of iron in blast furnace follows the following equation

 $Fe_{3}O_{4}(s) + 4CO(g) \longrightarrow 3Fe(I) + 4CO_{2}(g)$

when 4.640 kg of Fe_3O_4 and 2.520 kg of CO are allowed to react then the amount of iron (in g) produced is:

[Given : Molar Atomic mass $(g mol^{-1})$: Fe = 56

Molar Atomic mass (g mol⁻¹) : O = 16

Molar Atomic mass (g mol⁻¹) : C = 12]

- (A) 1400
- (B) 2200
- (C) 3360
- (D) 4200

Answer (C)

Sol.

 $\begin{array}{rcl} \mathsf{Fe}_3\mathsf{O}_4(\mathsf{s}) & + & \mathsf{4CO}(\mathsf{g}) & \to & \mathsf{3Fe}(\mathsf{I}) & + & \mathsf{4CO}_2(\mathsf{g}) \\ & & \mathsf{10}^3 \times \frac{4.64}{232} \mathsf{moles} & & \frac{2.52 \times 10^3}{28} \mathsf{moles} & & \mathsf{60 \ mole = 60 \times 56} \\ & & \mathsf{20moles} & & \mathsf{90 \ moles} & \\ & & \mathsf{90-80} & & & \end{array}$

- 2. Which of the following statements are **correct**?
 - (A) The electronic configuration of Cr is [Ar] $3a^{5}4s^{1}$.
 - (B) The magnetic quantum number may have a negative value.
 - (C) In the ground state of an atom, the orbitals are filled in order of their increasing energies.
 - (D) The total number of nodes are given by n 2.

Choose the **most appropriate** answer from the options given below :

- (A) (A), (C) and (D) only
- (B) (A) and (B) only
- (C) (A) and (C) only
- (D) (A), (B) and (C) only

Answer (D)

Sol. $Cr = (Ar)3a^{5}4s^{1}$

M = +I to -I

As per Aufbau principle, orbitals are filled in increasing order of energy.

Total number of nodes = (n - 1)

- 3. Arrange the following in the decreasing order of their covalent character :
 - (A) LiCl
 - (B) NaCl
 - (C) KCI
 - (D) CsCl

Choose the **most appropriate** answer from the options given below :

- $(\mathsf{A}) \ (\mathsf{A}) > (\mathsf{C}) > (\mathsf{B}) > (\mathsf{D})$
- (B) (B) > (A) > (C) > (D)
- (C) (A) > (B) > (C) > (D)
- (D) (A) > (B) > (D) > (C)

Answer (C)

Δ

Sol. Covalent character ∞ polarising power of cation

Correct decreasing order of covalent character

LiCl > NaCl > KCl > CsCl

- The solubility of AgCl will be maximum in which of the following?
 - (A) 0.01 M KCI
 - (B) 0.01 M HCI
 - (C) 0.01 M AgNO₃
 - (D) Deionised water

Answer (D)

- **Sol.** Solubility decreases with increasing the concentration of common ion. Therefore, the maximum solubility of AgCI will be in deionized water.
- 5. Which of the following is a **correct** statement?
 - (A) Brownian motion destabilises sols.
 - (B) Any amount of dispersed phase can be added to emulsion without destabilising it.

JEE (Main)-2022 : Phase-1 (29-06-2022)-Morning

- (C) Mixing two oppositely charged sols in equal amount neutralises charges and stabilises colloids.
- (D) Presence of equal and similar charges on colloidal particles provides stability to the colloidal solution.

Answer (D)

- **Sol.** Presence of equal and similar charges on colloidal particle provides stability to the colloidal solution.
- The electronic configuration of Pt(atomic number 78) is:
 - (A) [Xe] 4f¹⁴ 5d⁹ 6s¹
 - (B) [Kr] 4f14 5d10
 - (C) [Xe] 4f¹⁴ 5d¹⁰
 - (D) [Xe] 4f¹⁴ 5d⁸ 6s²

Answer (A)

Sol. $Pt = [Xe] 4f^{14} 5d^9 6s^1$

- 7. In isolation of which one of the following metals from their ores, the use of cyanide salt is not commonly involved?
 - (A) Zinc (B) Gold
 - (C) Silver (D) Copper

Answer (D)

Sol. In the extraction of Silver and Gold, NaCN is used to leach the metal.

$$4Au(s) + 8C\overline{N}(aq) + 2H_2O + O_2(g) \rightarrow$$
$$4\left\lceil Au(CN)_2 \right\rceil^{-}(aq) + 4OH^{-}(aq)$$

$$2[Au(CN)_2]^-(aq) + Zn \rightarrow 2Au(s) + [(Zn(CN)_4)]^{2-}(aq)$$

In case of ore containing ZnS and PbS, the depressant used is NaCN.

8. Which one of following reactions indicates the reducing ability of hydrogen peroxide in basic medium?

(A) HOCI +
$$H_2O_2 \rightarrow H_3O^+ + CI^- + O_2$$

(B) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_3$

(C)
$$2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$$

(D)
$$Mn^{2+} + H_2O_2 \rightarrow Mn^{4+} + 2OH^{-}$$

Answer (C)

Sol.
$$2MnO_4^{+7} + 3H_2O_2 \rightarrow$$

 $2MnO_2^{+4} + 3O_2 + 2H_2O + 2O\overline{H}$

In basic medium MnO_4^- is reduced to MnO_2 , whereas in acidic medium it is reduced to Mn^{+2} .

9. Match List-I with List-II.

	List-I (Metal)		List-II	
			(Emitted light	
			wavelength (nm))	
(A)	Li	(I)	670.8	
(B)	Na	(II)	589.2	
(C)	Rb	(III)	780.0	
(D)	Cs	(IV)	455.5	

Choose the **most appropriate** answer from the options given below:

(A) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)

(B) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)

(C) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)

(D) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)

Answer (A)

Sol.

Metal	Li	Na	К	Rb	Cs
Colour	Crimson-red Yellow		Violet	Red violet	Blue
λ /nm	670.8	589.2	766.5	780.0	455.5

10. Match List-I with List-II.

List-I	Lis	t-ll
(Metal)	(Ap	plication)
(A) Cs	(I)	High temperature
		thermometer
(B) Ga	(II)	Water repellent
		sprays
(C) B	(III)	Photoelectric cells
(D) Si	(IV)	Bullet proof vest

Choose the **most appropriate** answer from the options given below:

- (A) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (B) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
- (C) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
- (D) (A)-(I), (B)-(IV), (C)-(II), (D)-(III)

Answer (A) Sol. Metal

Application

Cs	Photoelectric cells
Ga	High temperature
	thermometer
В	Bullet proof vest
Si	Water repellent
	sprays

- The oxoacid of phosphorus that is easily obtained from a reaction of alkali and white phosphorus and has two P-H bonds, is:
 - (A) Phosphonic acid (B) Phosphinic acid
 - (C) Pyrophosphorus acid(D) Hypophosphoric acid

Answer (B)

Sol. White phosphorus + alkali \rightarrow H₃PO₂

H₃PO₂ = phosphinic acid

- 12. The acid that is believed to be mainly responsible for the damage of Taj Mahal is
 - (A) sulfuric acid (B) hydrofluoric acid
 - (C) phosphoric acid (D) hydrochloric acid

Answer (A)

- **Sol.** $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$
- Two isomers 'A' and 'B' with molecular formula C₄H₈ give different products on oxidation with KMnO₄/H⁺ results in effervescence of a gas and gives ketone. The compound 'A' is
 - (A) But-1-ene
 - (B) cis-But-2-ene
 - (C) trans-But-2-ene
 - (D) 2-methyl propene

Answer (D)

Sol.
$$CH_3 - C = CH_2 \xrightarrow{KMnO_4|H^+} CH_3 - \overrightarrow{C} - CH_3 + CO_2$$

 $CH_3 \xrightarrow{H_3} CH_3 - \overrightarrow{C} - CH_3 + CO_2$

 \cap

JEE (Main)-2022 : Phase-1 (29-06-2022)-Morning

In the given conversion the compound A is:

Answer (B)

15. Given below are two statements:

Statement I: The esterification of carboxylic acid with an alcohol is a nucleophilic acyl substitution.

Statement II: Electron withdrawing groups in the carboxylic acid will increase the rate of esterification reaction.

Choose the most appropriate option :

- (A) Both Statement I and Statement II are correct.
- (B) Both **Statement I** and **Statement II** are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct.

Answer (A)

Sol. Esterification of carboxylic acid with an alcohol is nucleophilic acyl substitution and presence of electron withdrawing group in the carboxylic acid increases the rate of esterification reaction.

\bigotimes		
		JEE (Main)-2022 : Phase-1 (29-06-2022)-Morning
(A) Both Statem	ent I and Statement II are correct.	Sol. Number of moles of $NH_3 = 5$
(B) Both Statem	ent I and Statement II are correct.	So, required $\Delta H = 5 \times 23.4$
(C) Statement	is correct but Statement II is	= 117 kJ
incorrect.		3. 1.2 mL of acetic acid is dissolved in water to make
(D) Statement I is incorrect but Statement II is		2.0 L of solution. The depression in freezing point
correct.		observed for this strength of acid is 0.0198°C. The
Answer (C)		percentage of dissociation of the acid is
ОН		(Nearest integer)
Sol.	pKa = 10	[Given: Density of acetic acid is 1.02 g mL ⁻¹
\bigcirc		Molar mass of acetic acid is 60 g mol ⁻¹
Alcohol	pKa ≈ 16	$K_f(H_2O) = 1.85 \text{ K kg mol}^{-1}$]

SECTION - B

pKa ≈ 15

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Geraniol, a volatile organic compound, is a component of rose oil. The density of the vapour is 0.46 gL⁻¹ at 257°C and 100 mm Hg. The molar mass of geraniol is <u>g mol -1</u>. (Nearest Integer) [Given: R = 0.082 L atm K⁻¹ mol⁻¹]

Answer (152)

 H_2O

Sol.
$$\frac{PM}{RT} = d = M = \frac{0.46 \times 0.082 \times 530 \times 760}{100}$$

 $\approx 152 \text{ g mol}^{-1}$

 17.0 g of NH₃ completely vapourises at – 33.42°C and 1 bar pressure and the enthalpy change in the process is 23.4 kJ mol⁻¹. The enthalpy change for the vapourisation of 85 g of NH₃ under the same conditions is _____ kJ.

Answer (117)

Answer (5)

Sol. $\Delta T_b = i \times K_b \times m$

Moles of solute (acetic acid) = $\frac{1.2 \times 1.02}{60}$

As moles of solute are very less.

So, take molarity and molality same.

$$0.0198 = i \times 1.85 \times \frac{1.2 \times 1.02}{60 \times 2}$$

$$\alpha = \frac{i-1}{n-1} = \frac{0.05}{1} = 0.05$$

A dilute solution of sulphuric acid is electrolysed using a current of 0.10 A for 2 hours to produce hydrogen and oxygen gas. The total volume of gases produced at STP is _____ cm³. (Nearest integer)

[Given : Faraday constant F = 96500 C mol⁻¹ at STP, molar volume of an ideal gas is 22.7 L mol⁻¹]

Answer (127 cm³)

Sol. 2 F produces = $\frac{3}{2}$ mole of gas

0.10 ×2 × 3600 coulomb produces

$$=\frac{\frac{3}{2}\times0.1\times2\times3600}{2\times96500}$$

= 0.0056 moles of gas

JEE (Main)-2022 : Phase-1 (29-06-2022)-Morning

Volume of gas produced = 0.0056 × 22.7 L

≃ 0.127 L

5. The activation energy of one of the reactions in a biochemical process is 532611 J mol⁻¹. When the temperature falls from 310 K to 300 K, the change in rate constant observed is $k_{300} = x \times 10^{-3} k_{310}$. The value of x is _____.

Answer (1)

Sol.
$$\log\left(\frac{K_{310}}{K_{300}}\right) = \frac{532611}{8.3} \left(\frac{1}{300} - \frac{1}{310}\right)$$

 $\frac{K_{310}}{K_{300}} = 10^3 \implies K_{300} = 1 \times 10^{-3} \times K_{310}$

 The number of terminal oxygen atoms present in the product B obtained from the following reaction is _____.

$$FeCr_2O_4 + Na_2CO_3 + O_2 \rightarrow A + Fe_2O_3 + CO_2$$

 $A + H^+ \rightarrow B + H_2O + Na^+$

Answer (6)

Sol.
$$FeCr_2O_4 + Na_2CO_3 + O_2 \longrightarrow Fe_2O_3 + CO_2 + Na_2CrO_4$$
(A)

$$Na_{2}CrO_{4} + H^{+} \longrightarrow Cr_{2}O_{7}^{-2} + H_{2}O + Na^{+}$$

 An acidified manganate solution undergoes disproportionation reaction. The spin-only magnetic moment value of the product having manganese in higher oxidation state is _____ B.M. (Nearest integer)

Sol.
$$MnO_4^{-2} \xrightarrow{H^+} MnO_2 + MnO_4^- + H_2O$$

$$Mn^{+7} = d^0$$

Hence, magnetic moment = zero

 Kjeldahl's method was used for the estimation of nitrogen in an organic compound. The ammonia evolved from 0.55 g of the compound neutralised 12.5 mL of 1 M H₂SO₄ solution. The percentage of nitrogen in the compound is _____. (Nearest integer)

Answer (64)

Sol. % N =
$$\frac{1.4 \times N \times V}{\text{Massof organic compound}}$$

$$=\frac{1.4\times2\times12.5}{0.55}=63.63\%\simeq64$$

9. Observe structures of the following compounds

The total number of structures/compounds which possess asymmetric carbon atoms is _____.

Answer (3)

$$10. \quad C_6H_{12}O_6 \xrightarrow{Zymase} A \xrightarrow{NaOl} B+CHI_3$$

The number of carbon atoms present in the product B is _____.

Answer (1)

Sol.
$$\begin{array}{c} C_{6}H_{12}O_{6} \xrightarrow{zymose} C_{2}H_{5}OH \xrightarrow{NaOI} \\ HCOONa + CHI_{3} \\ (B) \end{array}$$