

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Match List-I with List-II.

	List-I	I	List-II
	(Compound)		(Shape)
	(A) BrF₅	(1)	bent
	(B) [CrF ₆] ^{3–}	(II) s	square pyramidal
	(C) O ₃	(III) t	trigonal bipyramidal
	(D) PCI ₅	(IV)	octahedral
	Choose the correct answer from the options given below :		
	(A) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)		
	(B) (A)-(IV), (B)-(III),	(C)-(II), (D)-(I)
	(C) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)		
	(D) (A)-(III), (B)-(IV),	(C)-(II), (D)-(I)
Answer (C)			
Sol.	(A) BrF ₅ – square py	ramidal	
	(B) [CrF ₆] ³⁻ – octahe	dral	

- (C) O₃-bent
- (D) PCI5 trigonal bipyramidal
- 2. Match List-I with List-II.

List-I List-II (Processes/ (Catalyst)

Reactions)

- (A) $2SO_2(g) + O_2(g)$ (I) Fe(s) $\rightarrow 2SO_3(g)$
- (B) $4NH_3(g) + 5O_2(g)$ (II) Pt(s) Rh(s) $\rightarrow 4NO(g) + 6H_2O(g)$
- (C) $N_2(g) + 3H_2(g)$ (III) V_2O_5

 $\rightarrow 2NH_3(g)$

(D) Vegetable $oil(I) + H_2$ (IV) Ni(s)

 \rightarrow Vegetable ghee(s)

Choose the **correct** answer from the options given below :

- (A) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (B) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (C) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
- (D) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)

Answer (B)

- **Sol.** (A) $2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3$
 - (B) $4NH_3(g) + 5O_2(g) \xrightarrow{Pt(s)-Rh(s)} \rightarrow$

 $4NO(g) + 6H_2O(g)$

- (C) $N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_3(g)$
- (D) Vegetable oil(I) + $H_2 \xrightarrow{Ni(s)}$

Vegetable ghee(s)

3. Given two statements below:

Statement I : In Cl₂ molecule the covalent radius is double of the atomic radius of chlorine.

Statement II : Radius of anionic species is always greater than their parent atomic radius.

Choose the **most appropriate** answer from options given below:

- (A) Both Statement I and Statement II are correct.
- (B) Both **Statement I** and **Statement II** are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct.

Answer (D)

- **Sol.** Covalent radius is not double of atomic radius.
 - Radius of anionic species is always greater than their parent atomic radius as nuclear charge decreases in anionic counterpart.

JEE (Main)-2022 : Phase-2 (26-07-2022)-Morning Refining using liguation method is the most suitable 8. Which of the given reactions is not an example of 4. disproportionation reaction? for metals with: (A) $2H_2O_2 \rightarrow 2H_2O + O_2$ (A) Low melting point (B) $2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$ (B) High boiling point (C) High electrical conductivity

(D) Less tendency to be soluble in melts than impurities

Answer (A)

- **Sol.** Refining using liquation method is the most suitable for metals with low melting point.
- 5. Which of the following can be used to prevent the decomposition of H₂O₂?
 - (A) Urea (B) Formaldehyde
 - (C) Formic acid (D) Ethanol

Answer (A)

- **Sol.** Urea is used as a stabilizer for the storage of H_2O_2 .
- Reaction of BeCl₂ with LiAlH₄ gives : 6.
 - (A) AICI3
 - (B) BeH₂
 - (C) LiH
 - (D) LiCl
 - (E) BeAlH₄

Choose the correct answer from options given below :

- (A) (A), (D) and (E) (B) (A), (B) and (D)
- (C) (D) and (E) (D) (B), (C) and (D)

Answer (B)

Sol. $2BeCl_2 + LiAlH_4 \rightarrow 2BeH_2 + LiCl + AlCl_3$

- 7. Borazine, also known as inorganic benzene, can be prepared by the reaction of 3-equivalents of "X" with 6-equivalents of "Y". "X" and "Y", respectively are:
 - (A) B(OH)₃ and NH₃
 - (B) B₂H₆ and NH₃
 - (C) B₂H₆ and HN₃
 - (D) NH₃ and B₂O₃

Answer (B)

Sol. $3B_2H_6 + 6NH_3 \rightarrow 2B_3N_3H_6$ (Borazine

- (C) $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$ (D) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$ Answer (C) **Sol.** $\overset{+7}{MnO_4^-} + 4H^+ + 3e^- \longrightarrow \overset{+4}{MnO_2} + 2H_2O$ The above reaction involves the reduction of MnO_{4}^{-} to MnO₂. 9. The dark purple colour of KMnO₄ disappears in the titration with oxalic acid in acidic medium. The overall change in the oxidation number of manganese in the reaction is :
 - (A) 5 (B) 1
 - (C) 7 (D) 2

Answer (A)

Sol. $2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow$

$$K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$$

Change is oxidation state Mn is 5.

10.
$$\dot{CI} + CH_4 \rightarrow A + B$$

A and B in the above atmospheric reaction step are:

- (B) CHCl, and H, (A) C_2H_6 and CI_2
- (C) $\dot{C}H_3$ and HCI (D) C_2H_6 and HCI

Answer (C)

Sol.
$$\dot{C}I + CH_4 \rightarrow \dot{C}H_3 + HCI_{(A)}$$

- 11. Which technique among the following, is most appropriate in separation of a mixture of 100 mg of p-nitrophenol and picric acid?
 - (A) Steam distillation
 - (B) 2-5 ft long column of silica gel
 - (C) Sublimation
 - (D) Preparative TLC (Thin Layer Chromatography)

Answer (D)

Sol. Thin layer chromatography is a technique used to isolate non-volatile mixtures.

Hence, mixture of p-nitrophenol and Picric acid is separated by TLC.

- 12. The difference in the reaction of phenol with bromine in chloroform and bromine in water medium is due to:
 - (A) Hyperconjugation in substrate
 - (B) Polarity of solvent
 - (C) Free radical formation
 - (D) Electromeric effect of substrate

Answer (B)

- **Sol.** Phenol gives different products with bromine in chloroform and water medium due to the polarity difference between chloroform and water acting as solvent
- 13. Which of the following compounds is not aromatic?

Answer (C)

Sol. H

is a non-planar compound,

hence it is not aromatic.

14. The products formed in the following reaction, **A** and **B** are

Answer (C)

Sol.

15. Which reactant will give the following alcohol on reaction with one mole of phenyl magnesium bromide (PhMgBr) followed by acidic hydrolysis?

(A)
$$CH_3 - C \equiv N$$
 (B) $Ph - C \equiv N$
(C) $CH_3 - C - O - Ph$ (D) $Ph - C - CH_3$

ö

Answer (D)

- 11 -

JEE (Main)-2022 : Phase-2 (26-07-2022)-Morning

16. The major product of the following reaction is

Answer (A)

(When G = EDG) (When G = EWG)

 $EDG \rightarrow Electron$ donating group

 $\text{EWG} \rightarrow \text{Electron}$ withdrawing group

17. The correct stability order of the following diazonium salt is

Sol. Diazonium salt containing aryl group directly linked to electron donating group is most stable due to resonance. The +M effect stabilizes the intermediate whereas Electron withdrawing group on benzene destabilizes the intermediate at para position.

$$\begin{array}{c} \bigoplus \\ N \equiv N \\ N \equiv N \\ & \longrightarrow \\ N = N \\ \oplus \\ N = N \\ & \oplus$$

Order will be A > C > D > B.

- 18. Stearic acid and polyethylene glycol react to form which one of the following soap/s detergents?
 - (A) Cationic detergent (B) Soap
 - (C) Anionic detergent (D) Non-ionic detergent

Answer (D)

Sol. $CH_3(CH_2)_{16}COOH + HO(CH_2CH_2O)_nCH_2CH_2OH$

(Stearic acid) $-H_2O$ (Polyethylene glycol)

 $CH_{3}(CH_{2})_{16}COO(CH_{2}CH_{2}O)_{n}CH_{2}CH_{2}OH$

The product do not contain any ion in their constitution hence it is a non-ionic detergent.

19. Which one of the following is a reducing sugar?

- 12 -

Sol.
$$H - C \rightarrow OH$$

H - C - OH
H - C - H

The sugar gives +ve Tollen's test hence it's a reducing sugar.

20. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Experimental reaction of CH₃CI with aniline and anhydrous AICI3 does not give o and p-methylaniline.

Reason (R): The –NH₂ group of aniline becomes deactivating because of salt formation with anhydrous AICI3 and hence yields *m*-methyl aniline as the product.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (C) (A) is true, but (R) is false.
- (D) (A) is false, but (R) is true.

JEE (Main)-2022 : Phase-2 (26-07-2022)-Morning

Answer (C)

Aniline does not undergo Friedel Craft reaction because the reagent AICI₃ being electron deficient acts as a Lewis acid.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation. truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

Chlorophyll extracted from the crushed green 1. leaves was dissolved in water to make 2 L solution of Mg of concentration 48 ppm. The number of atoms of Mg in this solution is $x \times 10^{20}$ atoms. The value of x is _____. (Nearest integer)

(Given : Atomic mass of Mg is 24 g mol⁻¹; $N_A = 6.02 \times$ 10²³ mol⁻¹)

Answer (24)

Sol. In $2L \rightarrow 96$ mg of Mg

Number of atoms of Mg =
$$\frac{96 \times 10^{-3}}{24} \times N_A$$

= $4 \times 10^{-3} \times 6 \times 10^{23}$
= 24×10^{20}

x = 24

2. A mixture of hydrogen and oxygen contains 40% hydrogen by mass when the pressure is 2.2 bar. The partial pressure of hydrogen is _____ bar. (Nearest integer)

Answer (2)

JEE (Main)-2022 : Phase-2 (26-07-2022)-Morning

Sol. 40% w/w hydrogen gas is given in mixture of H_2 and

Wt. of H₂ = 40 g
Wt. of O₂ = 60 g

$$\chi_{H_2} = \frac{n_{H_2}}{n_{H_2} + n_{O_2}}$$

 $= \frac{\frac{40}{2}}{\frac{40}{2} + \frac{60}{32}}$
 $= \frac{20}{20 + 1.875}$
 $= \frac{20}{21.875} = 0.914$
P_{H2} = $\chi_{H_2} \times P_T$
 $= 0.914 \times 2.2$
 $= 2.01 \approx 2$ bar

ovvaon

 The wavelength of an electron and a neutron will become equal when the velocity of the electron is x times the velocity of neutron. The value of x is _____. (Nearest integer)

(Mass of electron is 9.1 × 10^{-31} kg and mass of neutron is 1.6×10^{-27} kg)

Answer (1758)

Sol.
$$\lambda_e = \frac{h}{m_e \times V_e}$$
, $\lambda_N = \frac{h}{m_N \times V_N}$
 $\lambda_e = \lambda_N$ When $V_e = xV_N$
 $\frac{1}{m_e V_e} = \frac{1}{m_N \times V_N}$
 $\frac{m_N}{m_e} = \frac{V_e}{V_N} = x$
 $x = \frac{1.6 \times 10^{-27}}{9.1 \times 10^{-31}}$
 $= 0.17582 \times 10^4$
 ≈ 1758

 2.4 g coal is burnt in a bomb calorimeter in excess of oxygen at 298 K and 1 atm pressure. The temperature of the calorimeter rises from 298 K to 300 K. The enthalpy change during the combustion of coal is -x kJ mol⁻¹. The value of x is _____. (Nearest integer)

(Given : Heat capacity of bomb calorimeter is 20.0 kJ K⁻¹. Assume coal to be pure carbon)

Answer (200)

Sol. Q (Heat evolved) =
$$-\frac{C_{system} \Delta T}{n}$$

 $n_{coal} = \frac{2.4}{12}$
 $Q = \frac{-20(300 - 298)}{0.2}$
 $Q = -200 \text{ kJ / mol}$

x = 200

5. When 800 mL of 0.5 M nitric acid is heated in a beaker, its volume is reduced to half and 11.5 g of nitric acid is evaporated. The molarity of the remaining nitric acid solution is $x \times 10^{-2}$ M. (Nearest integer)

(Molar mass of nitric acid is 63 g mol⁻¹)

Answer (54)

Sol. m moles of $HNO_3 = 800 \times 0.5$

Moles of HNO₃ = 400 × 10^{-3}

= 0.4 moles

Weight of $HNO_3 = 0.4 \times 63 \text{ g}$

Remaining acid = 25.2 - 11.5

$$\mathsf{M} = \frac{13.7 \times 1000}{400 \times 63}$$

$$=\frac{137}{252}=0.54$$

6. At 298 K, the equilibrium constant is 2 × 10¹⁵ for the reaction:

$$Cu(s) + 2Ag^{+}(aq) \implies Cu^{2+}(aq) + 2Ag(s)$$

The equilibrium constant for the reaction

$$\frac{1}{2}Cu^{2+}(aq) + Ag(s) \underbrace{\longrightarrow} \frac{1}{2}Cu(s) + Ag^{+}(aq)$$

is $x \times 10^{-8}$. The value of x is _____ (Nearest integer)

Answer (2)

Sol. $Cu(s) + 2Ag^{+}(aq) \implies Cu^{2+}(aq) + 2Ag(s)$

 $k = 2 \times 10^{15}$

$$\frac{1}{2}Cu(s) + Ag^{+}(aq) \xrightarrow{} Cu^{+2}(aq) + 2Ag(s)$$
$$K' = \frac{1}{(K)^{\frac{1}{2}}} = \frac{1}{(2 \times 10^{15})^{\frac{1}{2}}}$$

 $x\simeq 2$

 The amount of charge in F(Faraday) required to obtain one mole of iron from Fe₃O₄ is _____. (Nearest integer)

Answer (3)

Sol. For Fe₃O_{4,}

$$x = \frac{+8}{3}$$

where x is oxidation state of Fe.

$$Fe_3O_4 + 8H^+ + 8e^- \longrightarrow 3Fe + 4H_2O$$

Charge required = $\frac{8}{3} \times F = \frac{8F}{3} \simeq 3F$

 For a reaction A → 2B + C the half lives are 100 s and 50 s when the concentration of reactant A is 0.5 and 1.0 mol L⁻¹ respectively. The order of the reaction is _____. (Nearest integer)

Answer (2)

Sol.
$$t_{\frac{1}{2}} \propto \frac{1}{(a_0)^{n-1}}$$

 $t_{\frac{1}{2}} = 100 \text{ sec}$ $a_0 = 0.5$
 $t_{\frac{1}{2}} = 50 \text{ sec}$ $a_0 = 1$
 $\frac{100}{50} = \left(\frac{1}{0.5}\right)^{n-1}$
 $(2) = (2)^{n-1}$
 $n - 1 = 1$
 $n = 2$

 The difference between spin only magnetic moment value of [Co(H₂O)₆]Cl₂ and [Cr(H₂O)₆]Cl₃ is

Answer (0)

Sol. Co
$$\rightarrow$$
 4s² 3d⁷

H₂O is weak field ligand.

$$Co^{+2} \rightarrow 3d^{7}$$

$$n = 3$$
 $\mu_1 = \sqrt{n(n+2)}$

$$=\sqrt{15}$$
 B.M.

 $Cr \rightarrow 4s^1 3d^5$

$$\mathrm{Co^{\scriptscriptstyle +3}} \to 3d^{\!3}$$

n = 3
$$\mu_2 = \sqrt{15}$$
 B.M.

 $\mu_1 - \mu_2 = 0$

10. In the presence of sunlight, benzene reacts with CI_2 to give product X. The number of hydrogens in X is

Answer (6)

Total number of hydrogens are 6.

JEE (Main)-2022 : Phase-2 (26-07-2022)-Morning