# **MATHEMATICS**

# **SECTION - A**

**Multiple Choice Questions:** This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

## Choose the correct answer :

- 1. Let *R* be a relation from the set {1, 2, 3, ...., 60} to itself such that  $R = \{(a, b) : b = pq, where p, q \ge 3$ are prime numbers}. Then, the number of elements in *R* is :
  - (A) 600
  - (B) 660
  - (C) 540
  - (D) 720

# Answer (B)

**Sol.** *b* can take its values as 9, 15, 21, 33, 39, 51, 57, 25, 35, 55, 49

b can take these 11 values

and a can take any of 60 values

So, number of elements in  $R = 60 \times 11$ 

- 2. If z = 2 + 3i, then  $z^5 + (\overline{z})^5$  is equal to : (A) 244 (B) 224
  - (C) 245 (D) 265

# Answer (A)

**Sol.** *z* = (2 + 3*i*)

$$\Rightarrow z^{5} = (2+3i)((2+3i)^{2})^{2}$$

$$= (2+3i)(-5+12i)^{2}$$

$$= (2+3i)(-119-120i)$$

$$= -238 - 240i - 357i + 360$$

$$= 122 - 597i$$

$$\overline{z}^{5} = 122 + 597i$$

$$z^{5} + \overline{z}^{5} = 244$$

- 3. Let A and B be two  $3 \times 3$  non-zero real matrices such that AB is a zero matrix. Then
  - (A) the system of linear equations AX = 0 has a unique solution
  - (B) the system of linear equations AX = 0 has infinitely many solutions
  - (C) B is an invertible matrix
  - (D) adj(A) is an invertible matrix

## Answer (B)

Sol. AB is zero matrix

$$\Rightarrow |A| = |B| = 0$$

So neither A nor B is invertible

- If |A| = 0
- $\Rightarrow$  |adj A| = 0 so adj A is not invertible
- AX = 0 is homogeneous system and |A| = 0

So, it is having infinitely many solutions

| 4.         | If $\frac{1}{(20-a)(40-a)} + \frac{1}{(40-a)(60-a)} + \dots +$                                                                                       |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | $\frac{1}{(180-a)(200-a)} = \frac{1}{256}$ , then the maximum                                                                                        |  |  |  |  |  |  |  |
|            | value of <i>a</i> is :                                                                                                                               |  |  |  |  |  |  |  |
|            | (A) 198 (B) 202                                                                                                                                      |  |  |  |  |  |  |  |
|            | (C) 212 (D) 218                                                                                                                                      |  |  |  |  |  |  |  |
| Answer (C) |                                                                                                                                                      |  |  |  |  |  |  |  |
| Sol.       | <b>101.</b> $\frac{1}{20} \left( \frac{1}{20-a} - \frac{1}{40-a} + \frac{1}{40-a} - \frac{1}{60-a} + \dots \right)$                                  |  |  |  |  |  |  |  |
|            | $+\frac{1}{180-a}-\frac{1}{200-a}=\frac{1}{256}$                                                                                                     |  |  |  |  |  |  |  |
|            | $\Rightarrow \frac{1}{20} \left( \frac{1}{20-a} - \frac{1}{200-a} \right) = \frac{1}{256}$                                                           |  |  |  |  |  |  |  |
|            | $\Rightarrow \frac{1}{20} \left( \frac{180}{(20-a)(200-a)} \right) = \frac{1}{256}$                                                                  |  |  |  |  |  |  |  |
|            | $\Rightarrow$ (20 - a)(200 - a) = 9.256                                                                                                              |  |  |  |  |  |  |  |
|            | OR <i>a</i> <sup>2</sup> – 220 <i>a</i> + 1696 = 0                                                                                                   |  |  |  |  |  |  |  |
|            | $\Rightarrow a = 212, 8$                                                                                                                             |  |  |  |  |  |  |  |
| 5.         | If $\lim_{x\to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}$ , where $\alpha$ , $\beta$ , $\gamma \in \mathbf{R}$ , |  |  |  |  |  |  |  |
|            | then which of the following is <b>NOT</b> correct?                                                                                                   |  |  |  |  |  |  |  |
|            | (A) $\alpha^2 + \beta^2 + \gamma^2 = 6$ (B) $\alpha\beta + \beta\gamma + \gamma\alpha + 1 = 0$                                                       |  |  |  |  |  |  |  |
|            | (C) $\alpha\beta^2 + \beta\gamma^2 + \gamma\alpha^2 + 3 = 0$ (D) $\alpha^2 - \beta^2 + \gamma^2 = 4$                                                 |  |  |  |  |  |  |  |
| Answer (C) |                                                                                                                                                      |  |  |  |  |  |  |  |



**Sol.**  $\lim_{x \to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}$  $\Rightarrow \alpha + \beta = 0$  (to make indeterminant form) ...(i) Now,  $\lim_{x \to 0} \frac{\alpha e^x - \beta e^{-x} + \gamma \cos x}{3x^2} = \frac{2}{3}$  (Using L-H Rule)  $\Rightarrow \alpha - \beta + \gamma = 0$  (to make indeterminant form) ...(ii) Now.  $\lim_{x \to 0} \frac{\alpha e^x + \beta e^{-x} - \gamma \sin x}{6x} = \frac{2}{3}$  (Using L-H Rule)  $\Rightarrow \frac{\alpha - \beta - \gamma}{6} = \frac{2}{3}$  $\Rightarrow \alpha - \beta - \gamma = 4$ ...(iii)  $\Rightarrow \gamma = -2$ and (i) + (ii)  $2\alpha = -\gamma$  $\Rightarrow \alpha = 1 \text{ and } \beta = -1$ and  $\alpha\beta^2 + \beta\gamma^2 + \gamma\alpha^2 + 3 = 1 - 4 - 2 + 3 = -2$ The integral  $\int_{0}^{\frac{1}{2}} \frac{1}{3+2\sin x + \cos x} dx$  is equal to 6. (B)  $\tan^{-1}(2) - \frac{\pi}{4}$ (A) tan-1(2) (C)  $\frac{1}{2} \tan^{-1}(2) - \frac{\pi}{8}$  (D)  $\frac{1}{2}$ Answer (B) **Sol.**  $I = \int_{0}^{\pi/2} \frac{1}{3 + 2\sin x + \cos x} dx$  $= \int_{0}^{\pi/2} \frac{(1 + \tan^2 x/2)dx}{3(1 + \tan^2 x/2) + 2(2\tan x/2) + (1 - \tan^2 x/2)}$ Let  $\tan x/2 = t \implies \sec^2 x/2dx = 2dt$  $I = \int_{0}^{1} \frac{2dt}{4+2t^2+4t}$  $=\int_{0}^{1} \frac{dt}{t^{2}+2t+2} = \int_{0}^{1} \frac{dt}{(t+1)^{2}+1}$  $= \tan^{-1}(t+1)\Big|_{0}^{1} = \tan^{-1}2 - \frac{\pi}{4}$ 

7. Let the solution curve y = y(x) of the differential equation  $(1+e^{2x})\left(\frac{dy}{dx}+y\right)=1$  pass through the point  $\left(0, \frac{\pi}{2}\right)$ . Then,  $\lim_{x \to \infty} e^x y(x)$  is equal to (A)  $\frac{\pi}{4}$ (B)  $\frac{3\pi}{4}$ (D)  $\frac{3\pi}{2}$ (C)  $\frac{\pi}{2}$ Answer (B) **Sol.** D.E.  $(1 + e^{2x})\left(\frac{dy}{dx} + y\right) = 1$  $\Rightarrow \frac{dy}{dx} + y = \frac{1}{1 + e^{2x}}$  $I.F. = e^{\int 1.dx} = e^x$ .: Solution  $e^{x}y(x) = \int \frac{e^{x}}{1+e^{2x}} dx$  $\Rightarrow e^{x}y(x) = \tan^{-1}(e^{x}) + C$  $\therefore$  It passes through  $\left(0,\frac{\pi}{2}\right)$ ,  $C = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$  $\lim_{x\to\infty} e^x y(x) = \lim_{x\to\infty} \tan^{-1}(e^x) + \frac{\pi}{4}$  $=\frac{3\pi}{4}$ 8. Let a line L pass through the point intersection of the lines bx + 10y - 8 = 0 and 2x - 3y = 0,  $b \in \mathbf{R} - \left\{\frac{4}{3}\right\}$ . If the line *L* also passes through the point (1, 1) and touches the circle  $17(x^2 + y^2) = 16$ , then the eccentricity of the ellipse  $\frac{x^2}{5} + \frac{y^2}{5} = 1$  is (B)  $\sqrt{\frac{3}{5}}$ (A)  $\frac{2}{\sqrt{5}}$ (D)  $\sqrt{\frac{2}{5}}$ (C)  $\frac{1}{\sqrt{5}}$ Answer (B) **Sol.**  $L_1$ : bx + 10y - 8 = 0,  $L_2$ : 2x - 3y = 0then L:  $(bx + 10y - 8) + \lambda(2x - 3y) = 0$  $\therefore$  It passes through (1, 1)  $\therefore b + 2 - \lambda = 0 \Rightarrow \lambda = b + 2$ 



and touches the circle  $x^2 + y^2 = \frac{16}{17}$  $\left|\frac{8^2}{(2\lambda+b)^2+(10-3\lambda)^2}\right| = \frac{16}{17}$  $\Rightarrow 4\lambda^2 + b^2 + 4b\lambda + 100 + 9\lambda^2 - 60\lambda = 68$  $\Rightarrow 13(b+2)^2 + b^2 + 4b(b+2) - 60(b+2) + 32 = 0$  $\Rightarrow 18b^2 = 36 \therefore b^2 = 2$  $\therefore$  Eccentricity of ellipse :  $\frac{x^2}{5} + \frac{y^2}{b^2} = 1$  is  $\therefore e = \sqrt{1-\frac{2}{5}} = \sqrt{\frac{3}{5}}$ 

If the foot of the perpendicular from the point 9. A(-1, 4, 3) on the plane P: 2x + my + nz = 4, is  $\left(-2,\frac{7}{2},\frac{3}{2}\right)$ , then the distance of the point A from

the plane P, measured parallel to a line with direction ratios 3, -1, -4, is equal to

(B) √26 (A) 1

(C) 
$$2\sqrt{2}$$
 (D)  $\sqrt{14}$ 

## Answer (B)

**Sol.** 
$$\left(-2, \frac{7}{2}, \frac{3}{2}\right)$$
 satisfies the plane  $P: 2x + my + nz = 4$   
 $-4 + \frac{7m}{2} + \frac{3n}{2} = 4 \implies 7m + 3n = 16$  (i)  
Line joining  $A(-1, 4, 3)$  and  $\left(-2, \frac{7}{2}, \frac{3}{2}\right)$  is perpendicular to  $P: 2x + my + nz = 4$   
 $\frac{1}{2} = \frac{\frac{3}{2}}{2} \implies m = 1 \& n = 3$ 

$$\frac{1}{2} = \frac{2}{m} = \frac{2}{n} \implies m = 1 \& n =$$

Plane P: 2x + y + 3z = 4

Distance of P from A(-1, 4, 3) parallel to the line

$$\frac{x+1}{3} = \frac{y-4}{-1} = \frac{z-3}{-4} : L$$

for point of intersection of P&L

 $2(3r-1) + (-r+4) + 3(-4r+3) = 4 \implies r = 1$ Point of intersection : (2, 3, -1) Required distance =  $\sqrt{3^2 + 1^2 + 4^2}$  $=\sqrt{26}$ 

JEE (Main)-2022 : Phase-2 (29-07-2022)-Morning

10. Let  $\vec{a} = 3\hat{i} + \hat{j}$  and  $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ . Let  $\vec{c}$  be a vector satisfying  $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} + \lambda \vec{c}$ . If  $\vec{b}$  and  $\vec{c}$  are nonparallel, then the value of  $\lambda$  is (A) -5 (B) 5 (C) 1 (D) -1 Answer (A) **Sol.**  $\vec{a} = 3\hat{i} + \hat{j} & \vec{b} = \hat{i} + 2\hat{j} + \hat{k}$  $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \vec{b} + \lambda \vec{c}$ If  $\vec{b} \& \vec{c}$  are non-parallel

then  $\vec{a} \cdot \vec{c} = 1 \& \vec{a} \cdot \vec{b} = -\lambda$ 

but  $\vec{a} \cdot \vec{b} = 5 \Rightarrow \lambda = -5$ 

11. The angle of elevation of the top of a tower from a point A due north of it is  $\alpha$  and from a point B at a

distance of 9 units due west of A is  $\cos^{-1}\left(\frac{3}{\sqrt{13}}\right)$ . If

the distance of the point B from the tower is 15 units, then  $\cot \alpha$  is equal to :

(A) 
$$\frac{6}{5}$$
 (B)  $\frac{9}{5}$   
(C)  $\frac{4}{3}$  (D)  $\frac{7}{3}$   
Answer (A)  
Sol. *M*

Tower  
h  
N  

$$15$$
  
 $\theta = \cos^{-1}\left(\frac{3}{\sqrt{13}}\right) B$   
 $NA = \sqrt{15^2 - 9^2} = 12$   
 $\frac{h}{15} = \tan \theta = \frac{2}{3}$   
 $h = 10$  units

$$\cot \alpha = \frac{12}{10} = \frac{6}{5}$$

A

12. The statement  $(p \land q) \Rightarrow (p \land r)$  is equivalent to :

$$q \Rightarrow (p \land r)$$
 (B)  $p \Rightarrow (p \land r)$ 

(C) 
$$(p \land r) \Rightarrow (p \land q)$$
 (D)  $(p \land q) \Rightarrow r$ 

R

Answer (D)

(A)

Sol. A

|    |                                                                     |   | А            | Б   |                   |                   |                   |                   |                   |
|----|---------------------------------------------------------------------|---|--------------|-----|-------------------|-------------------|-------------------|-------------------|-------------------|
| р  | q                                                                   | r | $p \wedge q$ | p∧r | $A \rightarrow B$ | $q \rightarrow B$ | $p \rightarrow B$ | $B \rightarrow A$ | $A \rightarrow r$ |
| т  | Т                                                                   | Т | т            | Т   | т                 | т                 | т                 | Т                 | т                 |
| т  | F                                                                   | Т | F            | т   | т                 | т                 | т                 | F                 | т                 |
| F  | т                                                                   | Т | F            | F   | т                 | F                 | т                 | т                 | т                 |
| F  | F                                                                   | Т | F            | F   | т                 | т                 | т                 | т                 | т                 |
| т  | т                                                                   | F | т            | F   | F                 | F                 | F                 | т                 | F                 |
| т  | F                                                                   | F | F            | F   | т                 | т                 | F                 | т                 | т                 |
| F  | т                                                                   | F | F            | F   | т                 | F                 | т                 | т                 | т                 |
| F  | F                                                                   | F | F            | F   | т                 | Т                 | Т                 | Т                 | т                 |
| (n | $(n, n) \rightarrow (n, n)$ is equivalent to $(n, n) \rightarrow r$ |   |              |     |                   |                   |                   |                   |                   |

 $(p \land q) \Rightarrow (p \land r)$  is equivalent to  $(p \land q) \Rightarrow r$ 

- 13. Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1, 1). If the line *AP* intersects the line *BC* at the point  $Q(k_1, k_2)$ , then  $k_1 + k_2$  is equal to :
  - (A) 2

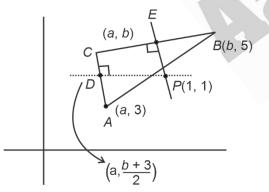
(C) 
$$\frac{2}{7}$$

(D) 4

(B)  $\frac{4}{7}$ 

Answer (B)

Sol.



Let D be mid-point of AC, then

$$\frac{b+3}{2} = 1 \Longrightarrow b = -1$$

Let E be mid-point of BC,

$$\frac{5-b}{b-a} \cdot \frac{\frac{(3+b)}{2}}{\frac{a+b}{2}-1} = -1$$

On Putting b = -1, we get a = 5 or -3

But a = 5 is rejected as ab > 0 A(-3, 3), B(-1, 5), C(-3, -1), P(1, 1)Line  $BC \Rightarrow y = 3x + 8$ Line  $AP \Rightarrow y = \frac{3-x}{2}$ 

Point of intersection  $\left(\frac{-13}{7}, \frac{17}{7}\right)$ 

- 14. Let  $\hat{a}$  and  $\hat{b}$  be two unit vectors such that the angle between them is  $\frac{\pi}{4}$ . If  $\theta$  is the angle between the vectors  $(\hat{a} + \hat{b})$  and  $(\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b}))$ , then the value of 164 cos<sup>2</sup> $\theta$  is equal to :
  - (A)  $90 + 27\sqrt{2}$
  - (B)  $45 + 18\sqrt{2}$
  - (C)  $90 + 3\sqrt{2}$
  - (D)  $54 + 90\sqrt{2}$

Answer (A)

Sol. 
$$\hat{a} \cdot \hat{b} = \frac{1}{\sqrt{2}}$$
 and  $|\ddot{a} \times \vec{b}| = \frac{1}{\sqrt{2}}$   
 $\frac{(\hat{a} + \hat{b}) \cdot (\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b}))}{|\hat{a} + \hat{b}||\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b})|} = \cos\theta$   
 $\Rightarrow \cos\theta = \frac{1 + 3\hat{a}\hat{b} + 2}{|\hat{a} + \hat{b}||\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b})|}$   
 $|\hat{a} + \hat{b}|^2 = 2 + \sqrt{2}$   
 $|\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b})|^2 = 1 + 4 + 4|\hat{a} \times \hat{b}|^2 + 4\hat{a}\hat{b}$   
 $= 5 + 4 \cdot \frac{1}{2} + \frac{4}{\sqrt{2}} = 7 + 2\sqrt{2}$   
So,  $\cos^2\theta = \frac{\left(3 + \frac{3}{\sqrt{2}}\right)^2}{(2 + \sqrt{2})(7 + 2\sqrt{2})} = \frac{9\sqrt{2}(5\sqrt{2} + 3)}{164}$   
 $\Rightarrow 164\cos^2\theta = 90 + 27\sqrt{2}$   
15. If  $f(\alpha) = \int_{1}^{\alpha} \frac{\log_{10} t}{1 + t} dt$ ,  $\alpha > 0$ , then  $f(e^3) + f(e^{-3})$  is equal to :  
(A) 9 (B)  $\frac{9}{2}$   
(C)  $\frac{9}{\log_{\theta}(10)}$  (D)  $\frac{9}{2\log_{\theta}(10)}$ 



Sol. 
$$f(\alpha) = \int_{1}^{\alpha} \frac{\log_{10} t}{1+t} dt \qquad \dots(i)$$

$$f\left(\frac{1}{\alpha}\right) = \int_{1}^{\frac{1}{\alpha}} \frac{\log_{10} t}{1+t} dt$$
Substituting  $t \rightarrow \frac{1}{p}$ 

$$f\left(\frac{1}{\alpha}\right) = \int_{1}^{\alpha} \frac{\log_{10}\left(\frac{1}{p}\right)}{1+\frac{1}{p}} \left(\frac{-1}{p^{2}}\right) dp$$

$$= \int_{1}^{\alpha} \frac{\log_{10} p}{p(p+1)} dp = \int_{1}^{\alpha} \left(\frac{\log_{10} t}{t} - \frac{\log_{10} t}{t+1}\right) dt$$

$$\dots(ii)$$
By (i) + (ii)
$$f(\alpha) + f\left(\frac{1}{\alpha}\right) = \int_{1}^{\alpha} \frac{\log_{10} t}{t} dt = \int_{1}^{\alpha} \frac{\ln t}{t} \cdot \log_{10} e dt$$

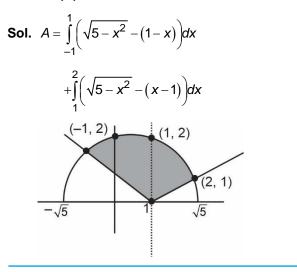
$$= \frac{(\ln \alpha)^{2}}{2\log_{e} 10}$$

$$\alpha = e^{3} \Rightarrow f\left(e^{3}\right) + f\left(e^{-3}\right) = \frac{9}{2\log_{e} 10}$$

16. The area of the region  $\{(x, y); |x-1| \le y \le \sqrt{5-x^2}\}$  is equal to

(A)  $\frac{5}{2}\sin^{-1}\left(\frac{3}{5}\right) - \frac{1}{2}$  (B)  $\frac{5\pi}{4} - \frac{3}{2}$ (C)  $\frac{3\pi}{4} + \frac{3}{2}$  (D)  $\frac{5\pi}{4} - \frac{1}{2}$ 

Answer (D)



JEE (Main)-2022 : Phase-2 (29-07-2022)-Morning

$$A = 2\left(\frac{x}{2}\sqrt{5-x^{2}} + \frac{5}{2}\sin^{-1}\frac{x}{\sqrt{5}}\right) - 2x\Big|_{0}^{1}$$
$$+ \frac{x}{2}\sqrt{5-x^{2}} + \frac{5}{2}\sin^{-1}\frac{x}{\sqrt{5}} - \frac{x^{2}}{2} + x\Big|_{1}^{2}$$
$$= \left(\frac{5\pi}{4} - \frac{1}{2}\right) \text{ sq. units}$$

17. Let the focal chord of the parabola  $P: y^2 = 4x$  along the line L: y = mx + c, m > 0 meet the parabola at the points *M* and *N*. Let the line *L* be a tangent to the hyperbola  $H: x^2 - y^2 = 4$ . If *O* is the vertex of *P* and *F* is the focus of *H* on the positive *x*-axis, then the area of the quadrilateral *OMFN* is

| (A) 2√6 | (B) 2√14 |
|---------|----------|
|---------|----------|

(C) 
$$4\sqrt{6}$$
 (D)  $4\sqrt{14}$ 

Answer (B)

Sol. 
$$H: \frac{x^2}{4} - \frac{y^2}{4} = 1$$

Focus (ae, 0)

$$F(2\sqrt{2}, 0)$$

y = mx + c passes through (1, 0) 0 = m + C ...(i)

L is tangent to hyperbola

$$C = \pm \sqrt{4m^2 - 4}$$
$$-m = \pm \sqrt{4m^2 - 4}$$
$$m^2 = 4m^2 - 4$$
$$m = \frac{2}{\sqrt{3}}$$
$$C = \frac{-2}{\sqrt{3}}$$
$$T : y = \frac{2}{\sqrt{3}}x - \frac{2}{\sqrt{3}}$$
$$P : y^2 = 4x$$

- 20 -

$$y^{2} = 4\left(\frac{\sqrt{3}y + 2}{2}\right)$$

$$y^{2} - 2\sqrt{3}y - 4 = 0$$
Area
$$\frac{1}{2}\begin{vmatrix} 0 & 0 \\ x_{1} & y_{1} \\ 2\sqrt{2} & 0 \\ x_{2} & y_{2} \\ 0 & 0 \end{vmatrix}$$

$$= \left|\frac{1}{2}\left(-2\sqrt{2}y_{1} + 2\sqrt{2}y_{2}\right)\right|$$

$$= \sqrt{2}\left|y_{2} - y_{1}\right| = \sqrt{2}\sqrt{\left(y_{1} + y_{2}\right)^{2} - 4y_{1}y_{2}}$$

$$= \sqrt{56}$$

$$= 2\sqrt{14}$$
18. The number of points, where the f:  $\mathbb{R} \to \mathbb{R}$ ,
f(x) =  $|x - 1|\cos|x - 2|\sin|x - 1| + (x - 3)|x$ 
4|, is **NOT** differentiable, is
(A) 1 (B) 2
(C) 3 (D) 4
  
**Answer (B)**
  
**Sol.** f:  $\mathbb{R} \to \mathbb{R}$ .
f(x) =  $|x - 1|\cos|x - 2|\sin|x - 1| + (x - 3)|x^{2} - 4|x^{2}$ 

$$= |x - 1|\cos|x - 2|\sin|x - 1| + (x - 3)|x^{2} - 4|x^{2}$$

Sharp edges at x = 1 and x = 4

- $\therefore$  Non-differentiable at x = 1 and x = 4
- 19. Let  $S = \{1, 2, 3, ..., 2022\}$ . Then the probability, that a randomly chosen number *n* from the set *S* such that HCF (*n*, 2022) = 1, is

(A) 
$$\frac{128}{1011}$$
 (B)  $\frac{166}{1011}$   
(C)  $\frac{127}{337}$  (D)  $\frac{112}{337}$ 

Answer (D)

**Sol.** S = {1, 2, 3, ..... 2022}

HCF (*n*, 2022) = 1

 $\Rightarrow$  *n* and 2022 have no common factor

Total elements = 2022  $2022 = 2 \times 3 \times 337$ *M* : numbers divisible by 2.  $\{2, 4, 6, \dots, 2022\}$  n(M) = 1011N: numbers divisible by 3.  $\{3, 6, 9, \dots, 2022\}$  n(N) = 674L : numbers divisible by 6. {6, 12, 18, ...., 2022} n(L) = 337 $n(M \cup N) = n(M) + n(N) - n(L)$ = 1011 + 674 - 337 = 1348 0 = Number divisible by 337 but not in  $M \cup N$ {337, 1685} Number divisible by 2, 3 or 337 = 1348 + 2 = 13502022-1350 Required probability = 2022 672 2022 112 337 20. Let  $f(x) = 3^{(x^2-2)^3+4}, x \in \mathbb{R}$ . Then which of the following statements are true? P: x = 0 is a point of local minima of f Q:  $x = \sqrt{2}$  is a point of inflection of f

- *R* : *f*' is increasing for  $x > \sqrt{2}$
- (A) Only P and Q (B) Only P and R
- (C) Only Q and R (D) All P, Q and R

Answer (D)

function

 $x^2 - 5x +$ 

-5x+4|

Sol. 
$$f(x) = 3^{(x^2-2)^3+4}, x \in R$$
  
 $f(x) = 81.3^{(x^2-2)^3}$   
 $f'(x) = 81.3^{(x^2-2)^3} \ln 2.3(x^2-2)2x$   
 $= (486 \ln 2) \left(3^{(x^2-2)^3}(x^2-2)x\right)$   
 $\frac{+}{-\sqrt{2}} \frac{-}{0} \frac{+}{\sqrt{2}}$ 



x = 0 is the local minima.

$$f''(x) = (486 \ln 2) \begin{pmatrix} 3^{(x^2-2)^3} \cdot (x^2-2) \\ (5x^2-2+6x^2 \ln 3(x^2-2)) \end{pmatrix}$$
  
$$f'''(x) = 0 \qquad x = \sqrt{2}$$
  
$$f''(\sqrt{2^+}) > 0$$
  
$$f''(\sqrt{2^-}) < 0$$
  
$$\Rightarrow \quad x = \sqrt{2} \text{ is point of inflection}$$
  
$$f''(x) > 0 \ \forall \ x > \sqrt{2}$$

 $\Rightarrow$  f(x) is increasing for  $x > \sqrt{2}$ 

#### **SECTION - B**

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

Let  $S = \{\theta \in (0, 2\pi) : 7 \cos^2\theta - 3 \sin^2\theta - 2 \cos^22\theta =$ 1. 2}. Then, the sum of roots of all the equations  $x^2 - 2$  (tan<sup>2</sup> $\theta$  + cot<sup>2</sup> $\theta$ ) x + 6 sin<sup>2</sup> $\theta$  = 0,  $\theta \in S$ , is

#### Answer (16)

**Sol.**  $7 \cos^2\theta - 3 \sin^2\theta - 2 \cos^22\theta = 2$ 

$$\Rightarrow 4\left(\frac{1+\cos 2\theta}{2}\right) + 3\cos 2\theta - 2\cos^2 2\theta = 2$$
$$\Rightarrow 2 + 5\cos^2\theta - 2\cos^2 2\theta = 2$$

 $\Rightarrow \cos 2\theta = 0 \text{ or } \frac{5}{2} \text{ (rejected)}$ 

$$\Rightarrow \cos 2\theta = 0 = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \Rightarrow \tan^2 \theta = 1$$

 $\therefore$  Sum of roots = 2 (tan<sup>2</sup> $\theta$  + cot<sup>2</sup> $\theta$ ) = 2 × 2 = 4

But as  $\tan\theta = \pm 1$  for  $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$  in the interval (0,

- ... Four equations will be formed Hence sum of roots of all the equations  $= 4 \times 4 = 16.$
- 2. Let the mean and the variance of 20 observations  $x_1, x_2, \ldots, x_{20}$  be 15 and 9, respectively. For  $a \in \mathbf{R}$ , if the mean of  $(x_1 + \alpha)^2$ ,  $(x_2 + \alpha)^2$ ,..., $(x_{20} + \alpha)^2$  is 178, then the square of the maximum value of  $\alpha$  is equal to

Answer (4)  
Sol. Given 
$$\sum_{i=1}^{20} x_i = 15 \implies \sum_{i=1}^{20} x_i^2 = 300 \dots (1)$$
  
and  $\sum_{i=1}^{20} x_i^2 - (\overline{x})^2 = 9 \implies \sum_{i=1}^{20} x_i^2 = 4680 \dots (2)$   
Mean  $= \frac{(x_i + \alpha)^2 + (x_2 + \alpha)^2 + \dots + (x_{20} + \alpha)^2}{20}$   
 $= 178$   
 $\Rightarrow \frac{\sum_{i=1}^{20} x_i^2 + 2\alpha \sum_{i=1}^{20} x_i + 20\alpha^2}{20} = 178$   
 $\Rightarrow 4680 + 600\alpha + 20\alpha^2 = 3560$   
 $\Rightarrow \alpha^2 + 30\alpha + 56 = 0$   
 $\Rightarrow \alpha^2 + 28\alpha + 2\alpha + 56 = 0$   
 $\Rightarrow (\alpha + 28)(\alpha + 2) = 0$   
 $\alpha_{\text{max}} = -2 \implies \alpha_{\text{max}}^2 = 4$ .  
3. Let a line with direction ratios  $a, -4a, -7$  be perpendicular to the lines with direction ratios  $3, -1, 2b$  and  $b, a, -2$ . If the point of intersection of the line  $\frac{x+1}{a^2+b^2} = \frac{y-2}{a^2-b^2} = \frac{z}{1}$  and the plane  $x - y + z$   
 $= 0$  is  $(\alpha, \beta, \gamma)$ , then  $\alpha + \beta + \gamma$  is equal to \_\_\_\_\_.  
Answer (10)  
Sol. Given  $a.3 + (-4a)(-1) + (-7) 2b = 0 \dots (1)$   
 $and ab - 4a^2 + 14 = 0 \dots (2)$   
 $\Rightarrow a^2 = 4$  and  $b^2 = 1$   
 $\therefore$  Line  $L = \frac{x+1}{5} = \frac{y-2}{3} = \frac{z}{1} = \lambda$  (say)  
 $\Rightarrow$  General point on line is  $(5\lambda - 1, 3\lambda + 2, \lambda)$ 

for finding point of intersection with x - y + z = 0we get  $(5\lambda - 1) - (3\lambda + 2) + (\lambda) = 0$  $\Rightarrow 3\lambda - 3 = 0 \Rightarrow \lambda = 1$  $\therefore$  Point at intersection (4, 5, 1)  $\therefore \alpha + \beta + \gamma = 4 + 5 + 1 = 10$ 

1

4. Let 
$$a_1, a_2, a_3,...$$
 be an A.P. If  $\sum_{r=1}^{\infty} \frac{a_r}{2^r} = 4$ , then  $4a_2$  is equal to

Sol. Given

$$S = \frac{a_{1}}{2} + \frac{a_{2}}{2^{2}} + \frac{a_{3}}{2^{3}} + \frac{a_{4}}{2^{4}} + \dots \infty$$

$$\frac{\frac{1}{2}S = \frac{a_{1}}{2^{2}} + \frac{a_{2}}{2^{3}} + \dots \infty$$

$$\frac{S}{2} = \frac{a_{1}}{2} + \frac{(a_{2} + a_{1})}{2^{2}} + \frac{(a_{3} + a_{2})}{2^{3}} + \dots \infty$$

$$\Rightarrow \frac{S}{2} = \frac{a_{1}}{2} + \frac{d}{2}$$

$$\Rightarrow a_{1} + d = a_{2} = 4 \Rightarrow 4a_{2} = 16$$

5. Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion

of 
$$\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$$
, in the increasing powers of  $\frac{1}{\sqrt[4]{3}}$  be

 $\sqrt[4]{6}$ : 1. If the sixth term from the beginning is  $\frac{\alpha}{\sqrt[4]{3}}$ 

then  $\alpha$  is equal to \_\_\_\_\_

Answer (84)

**Sol.** Fifth term from beginning  $= {}^{n}C_{4}\left(2^{\frac{1}{4}}\right)$ 

Fifth term from end =  $(n - 5 + 1)^{\text{th}}$  term from begin

$$= {}^{n}C_{n-4} \left(2^{\frac{1}{4}}\right)^{3} \left(3^{\frac{-1}{4}}\right)^{n-1}$$

34

Given  $\frac{{}^{n}C_{4}2^{\frac{n-4}{4}} \cdot 3^{-1}}{{}^{n}C_{n-3}2^{\frac{4}{4}} \cdot 3^{-\left(\frac{n-4}{4}\right)}} = 6^{\frac{1}{4}}$  $\Rightarrow 6^{\frac{n-8}{4}} = 6^{\frac{1}{4}}$  $\Rightarrow \frac{n-8}{4} = \frac{1}{4} \Rightarrow n = 9$  $T_{6} = T_{5+1} = {}^{9}C_{5}\left(2^{\frac{1}{4}}\right)^{4}\left(3^{\frac{-1}{4}}\right)^{5}$  $= \frac{{}^{9}C_{5} \cdot 2}{3^{\frac{1}{4}} \cdot 3} = \frac{84}{3^{\frac{1}{4}}} = \frac{\alpha}{3^{\frac{1}{4}}}$  $\Rightarrow \alpha = 84.$ 

 The number of matrices of order 3 x 3, whose entries are either 0 or 1 and the sum of all the entries is a prime number, is \_\_\_\_\_.

## Answer (282)

**Sol.** In a  $3 \times 3$  order matrix there are 9 entries.

These nine entries are zero or one.

The sum of positive prime entries are 2, 3, 5 or 7.

Total possible matrices  $= \frac{9!}{2! \cdot 7!} + \frac{9!}{3! \cdot 6!} + \frac{9!}{5! \cdot 4!} + \frac{9!}{7! \cdot 2!}$ = 36 + 84 + 126 + 36

7. Let p and p + 2 be prime numbers and let

$$\Delta = \begin{vmatrix} p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)! \end{vmatrix}$$

Then the sum of the maximum values of  $\alpha$  and  $\beta$ , such that  $p^{\alpha}$  and  $(p + 2)^{\beta}$  divide  $\Delta$ , is \_\_\_\_\_.

# Answer (04)

Sol. 
$$\Delta = \begin{vmatrix} p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)! \end{vmatrix}$$
$$= p! \cdot (p+1)! \cdot (p+2)! \begin{vmatrix} 1 & p+1 & (p+1)(p+2) \\ 1 & (p+2) & (p+2)(p+3) \\ 1 & (p+3) & (p+3)(p+4) \end{vmatrix}$$
$$= p! \cdot (p+1)! \cdot (p+2)! \begin{vmatrix} 1 & p+1 & p^2 + 3p+2 \\ 0 & 1 & 2p+4 \\ 0 & 1 & 2p+6 \end{vmatrix}$$
$$= 2(p!) \cdot ((p+1)!) \cdot ((p+2)!) \cdot$$
$$= 2(p+1) \cdot (p!)^2 \cdot ((p+2)!) \cdot$$
$$= 2(p+1)^2 \cdot (p!)^3 \cdot ((p+2)!) \cdot$$
$$\therefore \text{ Maximum value of } \alpha \text{ is } 3 \text{ and } \beta \text{ is } 1.$$
$$\therefore \alpha + \beta = 4$$
  
8. If  $\frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \frac{1}{4 \times 5 \times 6} + \dots,$ 
$$+ \frac{1}{100 \times 101 \times 102} = \frac{k}{101}$$
then 34 k is equal to \_\_\_\_\_\_.  
Answer (286)

Sol. 
$$S = \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \frac{1}{4 \times 5 \times 6}$$
  
 $+ \dots + \frac{1}{100 \times 101 \times 102}$   
 $= \frac{1}{(3-1) \cdot 1} \left[ \frac{1}{2 \times 3} - \frac{1}{101 \times 102} \right]$   
 $= \frac{1}{2} \left( \frac{1}{6} - \frac{1}{101 \times 102} \right)$   
 $= \frac{143}{102 \times 101} = \frac{k}{101}$ 

- ∴ 34*k* = 286
- 9. Let  $S = \{4, 6, 9\}$  and  $T = \{9, 10, 11, ..., 1000\}$ . If  $A = \{a_1 + a_2 + ... + a_k : k \in \mathbb{N}, a_1, a_2, a_3, ..., a_k \in S\}$ , then the sum of all the elements in the set T A is equal to \_\_\_\_\_\_.

## Answer (11.00)

**Sol.** Here S = {4, 6, 9}

And *T* = {9, 10, 11, ...., 1000}.

We have to find all numbers in the form of

4x + 6y + 9z, where x, y,  $z \in \{0, 1, 2, \dots\}$ .

If *a* and *b* are coprime number then the least number from which all the number more than or equal to it can be express as ax + by where  $x, y \in$ {0, 1, 2, ....} is  $(a - 1) \cdot (b - 1)$ .

Then for 6y + 9z = 3(2y + 3z)

All the number from  $(2 - 1) \cdot (3 - 1) = 2$  and above can be express as 2x + 3z (say *t*).

Now 4x + 6y + 9z = 4x + 3(t + 2)

= 4x + 3t + 6

again by same rule 4x + 3t, all the number from (4 - 1)(3 - 1) = 6 and above can be express from 4x + 3t.

#### JEE (Main)-2022 : Phase-2 (29-07-2022)-Morning

Then 4x + 6y + 9z express all the numbers from 12 and above.

again 9 and 10 can be express in form 4x + 6y + 9z.

Then set *A* = {9, 10, 12, 13, ..., 1000}.

Then 
$$T - A = \{11\}$$

Only one element 11 is there.

Sum of elements of T - A = 11

10. Let the mirror image of a circle  $c_1 : x^2 + y^2 - 2x - 6y$ +  $\alpha = 0$  in line y = x + 1 be  $c_2 : 5x^2 + 5y^2 + 10gx + 10fy + 38 = 0$ . If *r* is the radius of circle  $c_2$ , then  $\alpha + 6r^2$  is equal to \_\_\_\_\_.

## Answer (12)

**Sol.**  $c_1$ :  $x^2 + y^2 - 2x - 6y + \alpha = 0$ 

Then centre = (1, 3) and radius  $(r) = \sqrt{10 - \alpha}$ Image of (1, 3) w.r.t. line x - y + 1 = 0 is (2, 2)  $c_2: 5x^2 + 5y^2 + 10gx + 10fy + 38 = 0$ 

or  $x^2 + y^2 + 2gx + 2fy + \frac{38}{5} = 0$ 

Then 
$$(-g, -f) = (2, 2)$$

$$g = f = -2 \qquad \dots (i)$$

Radius of 
$$c_2 = r = \sqrt{4 + 4 - \frac{38}{5}} = \sqrt{10 - \alpha}$$

$$\Rightarrow \frac{2}{5} = 10 - \alpha$$

$$\therefore \quad \alpha = \frac{48}{5} \text{ and } r = \sqrt{\frac{2}{5}}$$

$$\alpha + 6r^2 = \frac{48}{5} + \frac{12}{5} = 12$$