Question 1: A circle S passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^{2}+y^{2}=16$ and x^{2} $+y^{2}=1$. Then
(a) radius of S is 8
(b) radius of S is 7
(c) centre of S is $(-7,1)$
(d) centre of S is $(-8,1)$

Solution:

Let the equation of the circles be
$x^{2}+y^{2}+2 g x+2 f y+c=0 . .(i)$
It passes through $(0,1)$
$=>1+2 \mathrm{f}+\mathrm{c}=0$

Since circle (i) is orthogonal to $(x-1)^{2}+y^{2}=16$
$=>x^{2}+y^{2}-2 x-15=0$
and $x^{2}+y^{2}-1=0$
$2 \mathrm{~g} \times(-1)+2 \mathrm{f} \times 0=\mathrm{c}-15$
$2 g+c-15=0$
$2 \mathrm{~g} \times 0+2 \mathrm{f} \times 0=\mathrm{c}-1$
$=>\mathrm{c}=1$

Solving (ii), (iii) and (iv)
$=>\mathrm{c}=1, \mathrm{~g}=7$ and $\mathrm{f}=-1$
The required circle is $x^{2}+y^{2}+14 x-2 y+1=0$, with centre $(-7,1)$ and radius $=7$.
Hence option b and c are correct.
Question 2: Let O be the centre of the circle $x^{2}+y^{2}=r^{2}$, where $r>\sqrt{5 / 2}$. Suppose $P Q$ is a chord of this circle and the equation of the line passing through P and Q is $2 x+4 y=5$. If the centre of the circumcircle of the triangle OPQ lies on the line $x+2 y=4$, then the value of r is
(a) 1
(b) 4
(c) 6
(d) 2

Solution:

S1: $x^{2}+y^{2}=r^{2}$ where $r>\sqrt{5} / 2$
$\mathrm{C}_{1}=(0,0)$
let $S_{2}: x^{2}+y^{2}+a x+b y=0$
$\mathrm{C}_{2}=(-\mathrm{a} / 2,-\mathrm{b} / 2)$
PQ: $S_{1}-S_{2}=0$
PQ: $a x+b y+r^{2}=0$
Given PQ: $2 \mathrm{x}+4 \mathrm{y}-5=0$ \qquad
comparing equation (1) and (2)
$(\mathrm{a} / 2)=(\mathrm{b} / 4)=\left(\mathrm{r}^{2} /-5\right)$.
Also, centre of S_{2} lies on $x+2 y=4$
$(-a / 2)-b=4$
From equation (3) and (4)

$$
r=2
$$

Hence option d is the answer.
Question 3: The circle passing through the point $(-1,0)$ and touching the y-axis at $(0,2)$ also passes through the point
(a) $(-3 / 2,0)$
(b) $(-5 / 2,2)$
(c) $(-3 / 2,5 / 2)$
(d) $(-4,0)$

Solution:

Equation of circle passing through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and touching the straight line L, is given by
$\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\lambda L=0$
The circle is passing through the point $(0,2)$
$=>(x-0)^{2}+(y-2)^{2}+\lambda L=0$
$=>x^{2}+(y-2)^{2}+\lambda x=0$
Circle passes through ($-1,0$).
$=>1+4-\lambda=0$
$=>\lambda=5$

Put $\lambda=5$ in (i)
$x^{2}+(y-2)^{2}+5 x=0$
$=>x^{2}+y^{2}-4 y+4+5 x=0$
$=>x^{2}+y^{2}+5 x-4 y+4=0$

Put $y=0$
$=>x=-4, x=-1$
Check the options.
Hence option d is the answer.
Question 4: The number of common tangents to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-6 x-8 y=24$ is
(a) 1
(b) 2
(c) 0
(d) 3

Solution:

Given circle $x^{2}+y^{2}=4$ with centre $C_{1}(0,0)$ and $R_{1}=2$
Also $x^{2}+y^{2}-6 x-8 y-24=0$ with centre $C_{2}(3,4)$ and $R_{2}=7$
Distance between centres $=\mathrm{C}_{1} \mathrm{C}_{2}=5=\mathrm{R}_{2}-\mathrm{R}_{1}$
So the circles touch internally and they can have just one common tangent at the point of contact.
Hence option a is the answer.

Question 5: The points of intersection of the line $4 x-3 y-10=0$ and the circle $x^{2}+y^{2}-2 x+4 y-20=0$ are
(a) $(4,2)$
(b) $(-2,-6)$
(c) $(2,2)$
(d) $(-2,-4)$

Solution:

Given equation of the line $4 x-3 y-10=0$
$=>x=(3 y+10) / 4 \ldots$ (i)
Equation of the circle $x^{2}+y^{2}-2 x+4 y-20=0$..(ii)
Put (i) in (ii)
$=>\left[(3 y+10)^{2} / 4^{2}\right]+y^{2}-2(3 y+10) / 4+4 y-20=0$
$=>y^{2}+4 y-12=0$
$=>y=2,-6$
Puty in (i)
$\Rightarrow x=4,-2$
So the points are $(4,2)$ and $(-2,-6)$.
Hence option a and b are correct.
Question 6: If the tangent at $(1,7)$ to the curve $x^{2}=y-6$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$, then the value of c is
(a) 185
(b) 85
(c) 195
(d) 95

Solution:

Given curve is $x^{2}=y-6$
Differentiate w.r.t.x
$2 x=d y / d x$
$(d y / d x)_{(1,7)}=2$
Equation of tangent at $(1,7)$ to $x^{2}=y-6$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
Here $m=2$
$(y-7)=2(x-1)$
$2 x-y+5=0$
The perpendicular from the centre $(-8,-6)$ to $2 x-y+5=0$ is equal to radius of circle.
So $|(-16+6+5) / \sqrt{ } 5|=\sqrt{ }(64+36-c)$
$=>5=100-c$
$=>\mathrm{c}=95$

Hence option d is the answer.
Question 7: The circle passing through the intersection of the circles, $x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}-4 x y=0$, having its centre on the line, $2 \mathrm{x}-3 \mathrm{y}+12=0$, also passes through the point
(a) $(-1,3)$
(b) $(-3,6)$
(c) $(-3,1)$
(d) $(1,-3)$

Solution:
Let the family of circles be $S_{1}+\lambda S_{2}=0$
$x^{2}+y^{2}-6 x+\lambda\left(x^{2}+y^{2}-4 y\right)=0$
$=>(1+\lambda) x^{2}+(1+\lambda) y^{2}-6 x-4 \lambda y=0$
Centre $(-g,-f)=(3 /(1+\lambda), 2 \lambda /(1+\lambda))$
Centre lies on $2 \mathrm{x}-3 \mathrm{y}+12=0$
Then $(6 /(\lambda+1))-(6 \lambda /(\lambda+1))+12=0$
$=>\lambda=-3$

Equation of circle (i)
$-2 x^{2}-2 y^{2}-6 x+12 y=0$
$\Rightarrow x^{2}+y^{2}+3 x-6 y=0$
Check options.
$(-3,6)$ satisfy equation (ii).
Hence option b is the answer.
Question 8: Let the tangents drawn from the origin to the circle, $x^{2}+y^{2}-8 x-4 y+16=0$ touch it at points A and B. Then ($A B)^{2}$ is equal to
(a) $52 / 5$
(b) $56 / 5$
(c) $64 / 5$
(d) $32 / 5$

Solution:
Length of tangent, $L=\sqrt{ } S_{1}=\sqrt{ } 16=4$
$R=\sqrt{ }(16+4-16)$
$=2$
Length of chord ofcontact $=2 L R / \sqrt{ }\left(L^{2}+R^{2}\right)$
$=16 / \sqrt{ } 20$
Square of length of chord of contact $=64 / 5$
Hence option c is the answer.
Question 9: The centre of the circle inscribed in the square formed by the lines $x^{2}-8 x+12=0$ and $y^{2}-14 y$ $+45=0$
(a) $(4,7)$
(b) $(7,4)$
(c) $(9,4)$
(d) $(4,9)$

Solution:

The centre is given by the intersection of the diagonals (the mid-point of a diagonal).
$x^{2}-8 x+12=0$
$=>(x-6)(x-2)=0$
$\Rightarrow x=6,2$
$y^{2}-14 y+45=0$
$=>(y-5)(y-9)=0$
$\Rightarrow \mathrm{y}=5,9$
So $\mathrm{A}(2,5), \mathrm{B}(2,9), \mathrm{C}(6,9), \mathrm{D}(6,5)$ form the square.
Therefore the centre of circle inscribed in square will be
$((2+6) / 2,(5+9) / 2)=(4,7)$
Hence option a is the answer.
Question 10: If the tangent at the point P on the circle is $x^{2}+y^{2}+6 x+6 y=2$ meets a straight line $5 x-2 y+6=0$ at a point Q on the y -axis, then the length of PQ is
(a) 4
(b) 5
(c) $2 \sqrt{ } 5$
(d) $3 \sqrt{ } 5$

Solution:

Given that the line $5 x-2 y+6=0$ is intersected by tangent at P to the circle $x^{2}+y^{2}+6 x+6 y-2=0$ on y ais at Q.
On y axis, $\mathrm{x}=0$
$\Rightarrow 2 y=6$
$=>y=3$
So Q is $(0,3)$
Tangent passes throught $(0,3)$.
$P Q=$ length of tangent to the circle from $(0,3)$
$=\sqrt{ }(0+9+0+18-2)$
$=5$
Hence option b is the answer.

