Question 1: Let $[t]$ denote the greatest integer $\leq t$ and $\lim _{x \rightarrow 0} x[4 / x]=A$. Then the function, $f(x)=\left[x^{2}\right] \sin \pi x$ is discontinuous, when x is equal to
(a) $\sqrt{ }(\mathrm{A}+1)$
(b) $\sqrt{ }(\mathrm{A}+5)$
(c) $\sqrt{ }(\mathrm{A}+21)$
(d) $\sqrt{ } \mathrm{A}$

Answer: a
Solution:
$\lim _{x \rightarrow 0} x[4 / x]=A$
$\lim _{x \rightarrow 0} x[4 / x-\{4 / x\}]=A$
$\Rightarrow \lim _{x \rightarrow 0} 4-x\{4 / x\}=A$
$=>4-0=\mathrm{A}$
As, $f(x)=\left[x^{2}\right] \sin (\pi x)$ will be discontinuous at non-integers
And when $\mathrm{x}=\sqrt{ }(\mathrm{A}+1)$
$\Rightarrow x=\sqrt{ } 5$, which is not an integer.
Hence $f(x)$ is discontinuous when x is equal to $\sqrt{ }(A+1)$.
Hence option a is the answer.
Question 2: Let f be a twice differentiable function such that $g^{\prime}(x)=-f(x)$ and $f^{\prime}(x)=g(x), h(x)=\{f(x)\}^{2}+$ $\{g(x)\}^{2}$. If $h(5)=11$, then $h(10)$ is equal to
(a) 22
(b) 11
(c) 0
(d) 20

Answer: b

Solution:

Given $g^{\prime}(x)=-f(x)$ and $f^{\prime}(x)=g(x)$
$\mathrm{h}(\mathrm{x})=\{\mathrm{f}(\mathrm{x})\}^{2}+\{\mathrm{g}(\mathrm{x})\}^{2}$
Differentiate w.r.t x
$h^{\prime}(x)=2 f(x) f^{\prime}(x)+2 g(x) g^{\prime}(x)$
$=2 f(x) g(x)+2 g(x)(-f(x))$
$=0$
So $\mathrm{h}(\mathrm{x})$ is a constant.
$h(5)=11$
So $h(10)=11$
Hence option (b) is the answer.
Question 3: A differentiable function $f(x)$ is defined for all $x>0$, and satisfies $f\left(x^{3}\right)=4 x^{4}$, for all $x>0$. The value of $f^{\prime}(8)$ is
(a) $16 / 3$
(b) $32 / 3$
(c) $16 \sqrt{ } 2 / 3$
(d) $32 \sqrt{ } 2 / 3$

Answer: b

Solution:
$f\left(x^{3}\right)=4 x^{4}$
Differentiate w.r.t.x
$f^{\prime}\left(x^{3}\right) 3 x^{2}=16 x^{3}$
$f^{\prime}\left(x^{3}\right)=16 x / 3$
To find $f^{\prime}(8)$ put $x=2$
$\mathrm{f}^{\prime}\left(2^{3}\right)=16 \times 2 / 3$
$=32 / 3$

Hence option (b) is the answer.
Question 4: Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be two non constant differentiable functions. If f ' $(x)=\left(e^{(f(x)-g(x))}\right)$ $g^{\prime}(x)$ for all $x \in R$, and $f(1)=g(2)=1$, then which of the following statement (s) is (are) true?
(a) $\mathrm{f}(2)<1-\log _{\mathrm{e}} 2$
(b) $\mathrm{f}(2)>1-\log _{\mathrm{e}} 2$
(c) $g(1)>1-\log _{\mathrm{e}} 2$
(d) $g(1)<1-\log _{e} 2$

Answer: b, c
Solution:
Given $f^{\prime}(x)=\left(e^{f(f(x)-g(x))}\right) g^{\prime}(x)$
$=>e^{-f(x)} f^{\prime}(x)=e^{-g(x)} g^{\prime}(x)$
Integrating both sides, we get
$-e^{-f(x)}=-e^{-g(x)}+c$
$=>-e^{-f(x)}+e^{-g(x)}=c$
$=>-e^{-f(1)}+e^{-g(1)}=-e^{-f(2)}+e^{-g(2)}$
So $-e^{-1}+e^{-g(1)}=-e^{-f(2)}+e^{-1}($ Since $f(1)=g(2)=1)$
$e^{-f(2)}+e^{-g(1)}=2 / e$
$=>\mathrm{e}^{-\mathrm{f}(2)}<2 / \mathrm{e}^{\text {and }} \mathrm{e}^{-\mathrm{g}(1)}<2 / \mathrm{e}$
$=>-\mathrm{f}(2)<\ln 2-1$ and $-\mathrm{g}(1)<\ln 2-1$
$=>f(2)>1-\ln 2$ and $g(1)>1-\ln 2$
Question 5: Let $a, b \in R$ and $f: R \rightarrow R$ be defined by $f(x)=a \cos \left(\left|x^{3}-x\right|\right)+b|x| \sin \left(\left|x^{3}+x\right|\right)$. Then f is
(a) differentiable at $\mathrm{x}=0$ if $\mathrm{a}=0$ and $\mathrm{b}=1$
(b) differentiable at $\mathrm{x}=1$ if $\mathrm{a}=1$ and $\mathrm{b}=0$
(c) not differentiable at $\mathrm{x}=0$ if $\mathrm{a}=1$ and $\mathrm{b}=0$
(d) not differentiable at $\mathrm{x}=1$ if $\mathrm{a}=1$ and $\mathrm{b}=1$

Answer: a, b

Solution:

$f(x)=a \cos \left(\left|x^{3}-x\right|\right)+b|x| \sin \left(\left|x^{3}+x\right|\right)$
If $\mathrm{a}=0, \mathrm{~b}=1$
$=>f(x)=|x| \sin \left(\left|x^{3}+x\right|\right)$
$=\mathrm{x} \sin \left(\mathrm{x}^{3}+\mathrm{x}\right)$, which is differentiable everywhere.
If $\mathrm{a}=1, \mathrm{~b}=0$
$=>f(x)=\cos \left(\left|x^{3}-x\right|\right)$
$=\cos \left(x^{3}-\mathrm{x}\right)$, which is differentiable everywhere.
When $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{f}(\mathrm{x})=\mathrm{a} \cos \left(\left|\mathrm{x}^{3}-\mathrm{x}\right|\right)+\mathrm{b}|\mathrm{x}| \sin \left(\left|\mathrm{x}^{3}+\mathrm{x}\right|\right)$, which is differentiable at $\mathrm{x}=1$.
Question 6: The derivative of $\left.\tan ^{-1}\left(\sqrt{ }\left(1+x^{2}\right)-1\right) / x\right)$ with respect to $\tan ^{-1}\left(2 x \sqrt{ }\left(1-x^{2}\right) /\left(1-2 x^{2}\right)\right)$ at $x=1 / 2$ is
(a) $2 \sqrt{ } 3 / 5$
(b) $\sqrt{3} / 12$
(c) $2 \sqrt{ } 3 / 3$
(d) $\sqrt{ } 3 / 10$

Answer: d

Solution:

Let $\mathbf{u}=\tan ^{-1}\left(\left(\sqrt{ }\left(1+\mathrm{x}^{2}\right)-1\right) / \mathrm{x}\right)$
Put $\mathrm{x}=\tan \theta$
$\Rightarrow \theta=\tan ^{-1} \mathrm{x}$
So $u=\tan ^{-1}(\sec \theta-1) / \tan \theta$

$$
\begin{aligned}
& B \text { The Learning App } \\
& =\tan ^{-1} \tan (\theta / 2) \\
& =\theta / 2 \\
& =1 / 2 \tan ^{-1} x \\
& \text { du } / \mathrm{dx}=1^{1 / 2}\left(1 /\left(1+x^{2}\right)\right) \\
& \text { Let } \mathrm{v}=\tan ^{-1}\left(2 \mathrm{x} \sqrt{ }\left(1-x^{2}\right) /\left(1-2 x^{2}\right)\right) \\
& \text { Put } \mathrm{x}=\sin \varphi \\
& \varphi=\sin ^{-1} \mathrm{x} \\
& \mathrm{v}=\tan ^{-1}(2 \sin \varphi \cos \varphi / \cos 2 \varphi) \\
& =\tan ^{-1} \tan 2 \varphi \\
& =2 \varphi \\
& =2 \sin ^{-1} \mathrm{x} \\
& \mathrm{dv} / \mathrm{dx}=2 / \sqrt{ }\left(1-x^{2}\right) \\
& \mathrm{du} / \mathrm{dv}=(\mathrm{du} / \mathrm{dx}) /(\mathrm{dv} / \mathrm{dx}) \\
& =\sqrt{ }\left(1-\mathrm{x}^{2}\right) / 4\left(1+\mathrm{x}^{2}\right) \\
& \mathrm{du} / \mathrm{dv} \text { at } \mathrm{x}=1 / 2=\sqrt{ } 3 / 10
\end{aligned}
$$

Hence option d is the answer.
Question 7: If $(a+\sqrt{ } 2 b \cos x)(a-\sqrt{2} b \cos y)=a^{2}-b^{2}$, where $a>b>0$, then $d x / d y$ at $(\pi / 4, \pi / 4)$ is
(a) $(a-2 b) /(a+2 b)$
(b) $(a-b) /(a+b)$
(c) $(a+b) /(a-b)$
(d) $(2 a+b) /(2 a-b)$

Answer: c

Solution:
$(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^{2}-b^{2}$

Differentiating both sides
$-\sqrt{2} b \sin x(a-\sqrt{2} b \cos y)+(a+\sqrt{2} b \cos x) \sqrt{ } 2 b \sin y(d y / d x)=0$
$d y / d x=(\sqrt{ } 2 b \sin x)(a-\sqrt{ } 2 b \cos y) /(a+\sqrt{ } 2 b \cos x) \sqrt{ } 2 b \sin y$
So dy/dx at $(\pi / 4, \pi / 4)=(\mathrm{a}-\mathrm{b}) /(\mathrm{a}+\mathrm{b})$
Therefore $d x / d y=(a+b) /(a-b)$.
Hence option c is the answer.
Question 8: Let $f:[0,2] \rightarrow R$ be a function which is continuous on $[0,2]$ and its differentiable on $(0,2)$ with $\mathrm{f}(0)=1$. Let $\mathrm{F}(\mathrm{x})=$

$$
\int_{0}^{x^{2}} f(\sqrt{t}) d t
$$

for $x \in[0,2]$. If $F(x)=f^{\prime}(x)$ for all x belongs to $(0,2)$, then $F(2)$ equals
(a) $\mathrm{e}^{2}-1$
(b) $\mathrm{e}^{4}-1$
(c) e-1
(d) e^{4}

Answer: b

Solution:

$F(x)=$

$$
\int_{0}^{x^{2}} f(\sqrt{t}) d t
$$

$F^{\prime}(x)=f(x) 2 x$
$\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})$ for all x belongs to $(0,2)$
$\Rightarrow \mathrm{f}(\mathrm{x}) 2 \mathrm{x}=\mathrm{f}^{\prime}(\mathrm{x})$
$=>\mathrm{f}^{\prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=2 \mathrm{x}$

On integrating w.r.t.x, we get
$\ln f(x)=x^{2}+c$

$$
f(x)=
$$

$$
e^{x^{2}+c}
$$

$$
=
$$

$e^{x^{2}} \cdot e^{c}$
Since $f(0)=1$
$=>e^{c}=1$
$=>f(x)=$
$e^{x^{2}}$
Hence $F(x)=$

$$
\begin{aligned}
& \int_{0}^{x^{2}} e^{x} d x \\
& = \\
& e^{x^{2}}-1
\end{aligned}
$$

$F(2)=e^{4}-1$
Hence option b is the answer.
Question 9: If y is a function of x and $\log (x+y)-2 x y=0$, then the value of $y^{\prime}(0)$ is equal to
(a) 1
(b) -1
(c) 2
(d) 0

Answer: a

Solution:

$\log (x+y)-2 x y=0$

When $\mathrm{x}=0, \mathrm{y}=1$

Differentiating w.r.t.x
$[1 /(x+y)](1+d y / d x)-2 y-2 x d y / d x=0$
$=>\mathrm{dy} / \mathrm{dx}=([1 /(\mathrm{x}+\mathrm{y})]-2 \mathrm{y}) /(2 \mathrm{x}-1 /(\mathrm{x}+\mathrm{y}))$
$y^{\prime}(0)=(1-2) /(0-1)$
$=1$

Hence option a is the answer.

Question 10: If $y=(\sin x)^{\tan x}$, then $d y / d x$ is equal to
(a) $(\sin x)^{\tan x}\left(1+\sec ^{2} x \log \sin x\right)$
(b) $\tan x(\sin x)^{\tan x-1} \cos x$
(c) $(\sin x)^{\tan x} \sec ^{2} x \log \sin x$
(d) $\tan x(\sin x)^{\tan x-1}$

Answer: a

Solution:

Given $y=(\sin x)^{\tan x}$
$\log y=\tan x \log \sin x$

Differentiate w.r.t.x
$(1 / y) d y / d x=\sec ^{2} x \log \sin x+\tan x .(1 / \sin x) \cos x$
$d y / d x=(\sin x)^{\tan x}\left[1+\sec ^{2} x \log \sin x\right]$

Hence option a is the answer.

BYJU'S
The Learning App

