Question 1: A curve passes through the point $(1, \pi / 6)$. Let the slope of the curve at each point (x, y) be $y / x+$ $\sec (y / x), x>0$. Then the equation of the curve is
(a) $\sin (y / x)=\log x+1 / 2$
(b) $\operatorname{cosec}(\mathrm{y} / \mathrm{x})=\log \mathrm{x}+2$
(c) $\sec (2 y / x)=\log x+2$
(d) $\cos (2 y / x)=\log x+1 / 2$

Solution:
Given that $d y / d x=y / x+\sec (y / x)$
This is a homogeneous differential equation.
Let $\mathrm{y}=\mathrm{vx}$
$d y / d x=v+x(d v / d x)$
$\mathrm{v}+\mathrm{x}(\mathrm{dv} / \mathrm{dx})=\mathrm{v}+\sec \mathrm{v}$
$x(d v / d x)=\sec v$
$\mathrm{dv} / \sec \mathrm{v}=\mathrm{dx} / \mathrm{x}$
Integrating
$\int \mathrm{dv} / \mathrm{sec} \mathrm{v}=\int \mathrm{dx} / \mathrm{x}$
$\int \cos \mathrm{vdv}=\int \mathrm{dx} / \mathrm{x}$
$\sin \mathrm{v}=\log |\mathrm{x}|+\mathrm{C}$
$\sin (y / x)=\log |x|+C$
which passes through $(1, \pi / 6)$.
So $C=\sin (\pi / 6)=1 / 2$
$\sin (y / x)=\log x+1 / 2$ is the required equation.
Hence option a is the answer.
Question 2: Let $y(x)$ be a solution of the differential equation $\left(1+e^{x}\right) y^{\prime}+y^{x}=1$. If $y(0)=2$, then which of the following statements are true?
(a) $y(-4)=0$
(b) $y(-2)=0$
(c) $y(x)$ has critical point in the interval $(-1,0)$
(d) $y(x)$ has no critical point in the interval $(-1,0)$

Solution:

Given that $\left(1+\mathrm{e}^{\mathrm{x}}\right) \mathrm{y}^{\prime}+\mathrm{ye}^{\mathrm{x}}=1$
Divide by $1+\mathrm{e}^{\mathrm{x}}$
$\mathrm{dy} / \mathrm{dx}+\mathrm{ye}^{\mathrm{x}} /\left(1+\mathrm{e}^{\mathrm{x}}\right)=1 /\left(1+\mathrm{e}^{\mathrm{x}}\right)$
Integrating factor $=1+\mathrm{e}^{\mathrm{x}}$
Hence the solution is
$y\left(1+e^{x}\right)=\int d x+C$
$y\left(1+e^{x}\right)=x+C$
Given $y(0)=2$
$\Rightarrow \mathrm{x}=0, \mathrm{y}=2$
$2(1+1)=0+C$
$\Rightarrow \mathrm{C}=4$
$y\left(1+e^{x}\right)=x+4$
$y=(x+4) /\left(1+e^{x}\right)$
$y(-4)=0$
Also dy/dx $=\left[\left(1+e^{x}\right)-(x+4) e^{x}\right] /\left(1+e^{x}\right)^{2}$
For critical point $\mathrm{dy} / \mathrm{dx}=0$
$=>\left(1+\mathrm{e}^{\mathrm{x}}\right)-(\mathrm{x}+4) \mathrm{e}^{\mathrm{x}}=0$
Let $g(x)=\left(1+\mathrm{e}^{\mathrm{x}}\right)-(\mathrm{x}+4) \mathrm{e}^{\mathrm{x}}$
$g(-1)=1+(1 / e)-(-1+4) / e$
$=1+(1 / \mathrm{e})-3 / \mathrm{e}$
$=1-2 / \mathrm{e}>0$
$g(0)=(1+1)-4=-2<0$

So $\mathrm{y}(\mathrm{x})$ has critical point at $(-1,0)$.
Hence option a and c are correct.
Question 3: Consider the family of all circles whose centers lie on the straight line $y=x$. If this family of circles is represented by the differential equation $P y^{\prime \prime}+Q y^{\prime}+1=0$, where P, Q are functions of x, y and y^{\prime} (here $y^{\prime}=d y / d x$ and $y "=d^{2} y / d x^{2}$) then which of the following statements is (are) true?
(a) $P=y+x$
(b) $P=y-x$
(c) $P+Q=1-x+y+y^{\prime}+\left(y^{\prime}\right)^{2}$
(d) $P-Q=x+y-y^{\prime}-\left(y^{\prime}\right)^{2}$

Solution:
Let the equation of circle be $x^{2}+y^{2}+2 g x+2 g y+c=0$
Differentiating, we get
$2 x+2 y y^{\prime}+2 g+2 g y^{\prime}=0$
$=>x+y y^{\prime}+g+g y \prime=0$..(i)
Again differentiating
$1+\mathrm{yy}{ }^{\prime \prime}+\left(\mathrm{y}^{\prime}\right)^{2}+\mathrm{gy} \mathrm{\prime}=0$
$\Rightarrow \quad g=-\left(1+\left(y^{\prime}\right)^{2}+y y^{\prime \prime}\right) / y^{\prime \prime}$
Put g in (i) and solving we get
$(x-y) y^{\prime \prime}-y^{\prime}\left(1+y^{\prime}+\left(y^{\prime}\right)^{2}\right)=1$
$(y-x) y^{\prime \prime}+\left(1+y^{\prime}+\left(y^{\prime}\right)^{2}\right) y^{\prime}+1=0$
$=>$ Py" + Qy' $+1=0$
$\Rightarrow P=y-x, Q=1+y^{\prime}+\left(y^{\prime}\right)^{2}$
$P+Q=1-x+y+y^{\prime}+\left(y^{\prime}\right)^{2}$
Hence options b and c are correct.
Question 4: The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where c is a positive parameter, is of
(a) order 1, degree 3
(b) order 2, degree 2
(c) order 2, degree 1
(d) none of the above

Solution:

$y^{2}=2 c(x+\sqrt{c}) . .(i)$
Differentiating both sides
$2 y^{\prime}=2 c$
=> c = yy,
Putc in (i)
$y^{2}=2 y y^{\prime}\left(x+\sqrt{ }\left(y y^{\prime}\right)\right)$
$=>\left(y^{2}-2 x y y^{\prime}\right)=2\left(y^{\prime}\right)^{3 / 2}$
$\left(y^{2}-2 x y y^{\prime}\right)^{2}=2\left(y^{\prime}\right)^{3}$
So degree $=3$ and order $=1$
Hence option a is the answer.
Question 5: The order of the differential equation whose general solution is given by $y=\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)-$ $c_{4} e^{x+c 5}$ where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are arbitrary constants, is
(a) 5
(b) 4
(c) 3
(d) 2

Solution:

Given that the solution of differential equation is $y=\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)-c_{4} e^{x+c 5}$
$=\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right) \cos \left(\mathrm{x}+\mathrm{c}_{3}\right)-\mathrm{c}_{4} \mathrm{e}^{\mathrm{x}} \mathrm{e}^{\mathrm{cs}}$
$=\mathrm{A} \cos \left(\mathrm{x}+\mathrm{c}_{3}\right)-\mathrm{Be}^{\mathrm{x}}$
Where $c_{1}+c_{2}=A$ and $c_{4} e^{c 5}=B$
Hence the number of arbitrary constants in the solution is 3 .

The order of the differential equation is 3 .
Hence option c is the answer.
Question 6: If $x^{2}+y^{2}=1$, then
(a) $y y^{\prime \prime}-2\left(y^{\prime}\right)^{2}+1=0$
(b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$
(c) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}-1=0$
(d) $y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+1=0$

Solution:
Given $x^{2}+y^{2}=1$
Differentiating we get
$2 x+2 y y^{\prime}=0$
Again differentiating
$2+2\left(y^{\prime}\right)^{2}+2 y y^{\prime \prime}=0$
$=>1+\left(y^{\prime}\right)^{2}+y^{\prime \prime}=0$
Hence option b is the answer.
Question 7: The differential equation representing the family of ellipse having foci either on the x axis or on the y axis centre at the origin and passing through the point $(0,3)$ is
(a) $x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime}=0$
(b) $x+y^{\prime \prime}=0$
(c) $x y y^{\prime}+y^{2}-9=0$
(d) $x y y^{\prime}-y^{2}+9=0$

Solution:

General equation of ellipse is given by $x^{2} / a^{2}+y^{2} / b^{2}=1$..(i)
It passes through $(0,3)$
$=>0+9 / b^{2}=1$
$=>b^{2}=9$
so(i) becomes
$=>x^{2} / a^{2}+y^{2} / 9=1$
Differentiate w.r.t.x
$2 x / a^{2}+2 y y^{\prime} / 9=0$
$y y^{\prime} / 9=-x / a^{2}$
$y^{\prime}=-(x / y)\left(9 / a^{2}\right)$
$(y / x) y^{\prime}=-9 / a^{2}$
Again differentiate w.r.t.x
$(y / x) y^{\prime \prime}+\left[\left(x y^{\prime}-y\right) / x^{2}\right] y^{\prime}=0$
$=>x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime}=0$
Hence option a is the answer.
Question 8: Let $f: R \rightarrow R$ be a differential function with $f(0)=1$ and satisfying the equation $f(x+y)=f(x)$ $f^{\prime}(y)+f^{\prime}(x) f(y)$ for all x, y belongs to R. then the value of $\log _{e}(f(4))$ is

Solution:

$f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(y)$
Put $\mathrm{x}=0, \mathrm{y}=0$
$f(0)=1 . f^{\prime}(0)+f^{\prime}(0)$
$=>2 f^{\prime}(0)=f(0)$
$=>f^{\prime}(0)=f(0) / 2$
$=>f^{\prime}(0)=1 / 2$
$f(x+0)=f(x) f^{\prime}(0)+f^{\prime}(x) f(0)$
$f(x)=f(x) \times 1 / 2+f^{\prime}(x)$
$=>f^{\prime}(x)=f(x) / 2$
$\int \mathrm{f}^{\prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=1 / 2 \int \mathrm{dx}$
$\log _{\mathrm{e}} \mathrm{f}(\mathrm{x})=1 / 2 \mathrm{x}+\mathrm{c}$
$=>f(x)=c e^{x / 2}$

The Learning App
$=>f(x)=e^{x / 2}$
$\log _{\mathrm{e}} \mathrm{f}(\mathrm{x})=\mathrm{x} / 2$
$\log _{\mathrm{e}} \mathrm{f}(4)=4 / 2$
$=2$
Question 9: Let $y=y(x)$ be the solution of the differential equation $\cos x(d y / d x)+2 y \sin x=\sin 2 x, x$ belongs to $(0, \pi / 2)$. If $y(\pi / 3)=0$, then $y(\pi / 4)$ is equal to:
(a) $2-\sqrt{ } 2$
(b) $2+\sqrt{ } 2$
(c) $\sqrt{2}$-2
(d) $1 / \sqrt{2}-1$

Solution:
Given that $\cos x(d y / d x)+2 y \sin x=\sin 2 x$
Divide by $\cos \mathrm{x}$, we get
$(d y / d x)+2 y \tan x=2 \sin x$
I.F $=\mathrm{e}^{\sqrt{2} \tan \mathrm{xdx}}=\sec ^{2} \mathrm{x}$

The solution of differential equation is
y. I.F $=\int$ I.F $2 \sin x d x+c$
$\Rightarrow>\sec ^{2} \mathrm{x}=\int 2 \sin \mathrm{x} \sec ^{2} \mathrm{xdx}+\mathrm{c}$
$\Rightarrow y_{\sec ^{2}} \mathrm{x}=2 \sec \mathrm{x}+\mathrm{c}$
When $\mathrm{x}=\pi / 3, \mathrm{y}=0$, then $\mathrm{c}=-4$
From (i), $\mathrm{y} \mathrm{sec}^{2} \mathrm{x}=2 \sec \mathrm{x}-4$
$\Rightarrow y=(2 \sec x-4) / \sec ^{2} x$
$\Rightarrow \mathrm{y}(\pi / 4)=\sqrt{ } 2-2$
Hence option c is the answer.
Question 10: Let $f(x):(0, \infty) \rightarrow R$ be a differential function such that $f^{\prime}(x)=2-f(x) / x$ for all x belongs to $(0$, ∞) and $f(1) \neq 1$. Then
(a) $\lim _{x \rightarrow 0^{+}} f^{\prime}(1 / x)=1$
(b) $\lim _{x \rightarrow 0+} \mathrm{xf}^{\prime}(1 / \mathrm{x})=2$
(c) $\lim _{x \rightarrow 0+} x^{2} f^{\prime}(1 / x)=0$
(d) none of these

Solution:

Given $\mathrm{f}^{\prime}(\mathrm{x})=2-\mathrm{f}(\mathrm{x}) / \mathrm{x}$
$\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}(\mathrm{x}) / \mathrm{x}=2$
I.F $=e^{\log x}=x$

So $f(x) x=\int 2 x d x$
$=\mathrm{x}^{2}+\mathrm{c}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{c} / \mathrm{x}, \mathrm{c} \neq 0$ as $\mathrm{f}(\mathrm{x}) \neq 1$
Check the options
(a) $\lim _{x \rightarrow 0^{+}} f^{\prime}(1 / x)=\lim _{x \rightarrow 0^{+}}\left(1-c x^{2}\right)=1$
(b) $\lim _{x \rightarrow 0^{+}} \mathrm{xf}^{\prime}(1 / \mathrm{x})=\lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{x}(1 / \mathrm{x}+\mathrm{cx})=\lim _{\mathrm{x} \rightarrow 0^{+}}\left(1+\mathrm{cx}^{2}\right)=1$
(c) $\lim _{x \rightarrow 0^{+}} x^{2} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} x^{2}\left(1-c / x^{2}\right)$
$=\lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{X}^{2}-\mathrm{c}=-\mathrm{c}$
Hence option a is the answer.

