JEE Main Previous Year Solved Questions on Fluid Mechanics

Q1: A solid sphere of radius R acquires a terminal velocity v_{1} when falling (due to gravity) through a viscous fluid having a coefficient of viscosity η. The sphere is broken into 27 identical spheres. If each of these acquires a terminal velocity v_{2}, when falling through the same fluid, the ratio ($\mathrm{v}_{1} / \mathrm{v}_{2}$) equals
(a) 9
(b) $1 / 27$
(c) $1 / 9$
(d) 27

Solution
$27 \times(4 / 3) \pi r^{3}=(4 / 3) \pi R^{3}$
Or $\mathrm{r}=\mathrm{R} / 3$
Terminal velocity, $\mathrm{v} \propto \mathrm{r}^{3}$
Therefore, $\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)=\left(\mathrm{R}^{2} / \mathrm{r}^{2}\right)$
$\mathrm{v}_{1} / \mathrm{V}_{2}=[\mathrm{R} /(\mathrm{R} / 3)]^{2}=9$
$\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)=9$
Answer: (a) 9
Q2: Spherical balls of radius R are falling in a viscous fluid of viscosity with a velocity v. The retarding viscous force acting on the spherical ball is
(a) directly proportional to R but inversely proportional to v
(b) directly proportional to both radius R and velocity v
(c) inversely proportional to both radius R and velocity v
(d) inversely proportional to R but directly proportional to velocity v

Solution

Retarding viscous force $=6 \pi \eta \mathrm{Rv}$
obviously option (b) holds goods
Answer: (b) directly proportional to both radius R and velocity v

Q3: A long cylindrical vessel is half-filled with a liquid. When the vessel is rotated about its own vertical axis, the liquid rises up near the wall. If the radius of the vessel is 5 cm and its rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm , will be
(a) 0.4
(b) 2.0
(c) 0.1
(d) 1.2

Solution

The linear speed of the liquid at the sides is $r \omega$. So, the difference in height is given as follows
$2 \mathrm{gh}=\omega^{2} \mathrm{r}^{2}$
$\mathrm{h}=\omega^{2} \mathrm{r}^{2} / 2 \mathrm{~g}$
here $\omega=2 \pi f$
Therefore, $\mathrm{h}=\left[(2 \times 2 \pi)^{2}\left(5 \times 10^{-2}\right)^{2}\right] /(2 \times 10)=2 \mathrm{~cm}$
Answer: (b) 2.0
Q4: Water is flowing continuously from a tap having an internal diameter $8 \times 10^{-3} \mathrm{~m}$. The water velocity as it leaves the tap is $0.4 \mathrm{~ms}^{-1}$. The diameter of the water stream at a distance $2 \times 10^{-1} \mathbf{~ m}$ below the tap is close to
(a) $5.0 \times 10^{-3} \mathrm{~m}$
(b) $7.5 \times 10^{-3} \mathrm{~m}$
(c) $9.6 \times 10^{-3} \mathrm{~m}$
(d) $3.6 \times 10^{-3} \mathrm{~m}$

Solution

Here, $\mathrm{d}_{1}=8 \times 10^{-3} \mathrm{~m}$
$\mathrm{v}_{1}=0.4 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{~h}=0.2 \mathrm{~m}$
According to equation of motion,

$$
\begin{aligned}
& v_{2}=\sqrt{v_{1}^{2}+2 g h}=\sqrt{(0.4)^{2}+2+10 \times 0.2} \\
= & 2 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

According to equation of continuity $\mathrm{a}_{1} \mathrm{v}_{1}=\mathrm{a}_{2} \mathrm{v}_{2}$
According to equation of continuity $\mathrm{a}_{1} \mathrm{v}_{1}=\mathrm{a}_{2} \mathrm{v}_{2}$
$\left(\pi \mathrm{D}_{1}^{2} / 4\right) \mathrm{v}_{1}=\left(\pi \mathrm{D}_{2}^{2} / 4\right) \mathrm{v}_{2}$
$D_{2}{ }^{2}=\left(v_{1} / v_{2}\right) D_{1}{ }^{2}$
$D_{2}=\left[\sqrt{ }\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)\right] \mathrm{D}_{1}$
$=[\sqrt{ }(0.4 / 2)] \mathrm{x} 8 \times 10^{-3} \mathrm{~m}$
$\mathrm{D}_{2}=3.6 \times 10^{-3} \mathrm{~m}$
Answer: (d) $3.6 \times 10^{-3} \mathbf{m}$
Q5: A 20 cm long capillary tube is dipped in water. The water rises up to $\mathbf{8 c m}$. If the entire arrangement is put in a freely falling elevator the length of the water column in the capillary tube will be
(a) 4 cm
(b) 20 cm
(c) 8 cm
(d) 10 cm

Solution

In a freely falling elevator, $\mathrm{g}=0$ Water will rise to the full length i.e., 20 cm to tube
Answer: (b) 20 cm
Q6: A spherical solid ball of volume V is made of a material of density ρ_{1}. It is falling through a liquid of density $\rho_{2}\left(\rho_{2}<1\right)$. Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed v, i.e., $F_{\text {viscous }}=-k v^{2}(k>0)$. The terminal speed of the ball is
(a) $\operatorname{Vg}\left(\rho_{1}-\rho_{2}\right)$
(b)
$\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}$
(c) $\mathrm{Vg} \mathrm{\rho}_{1} / \mathrm{k}$
(d)
$\sqrt{\frac{V g \rho_{1}}{k}}$
Solution

The forces acting on the solid ball when it is falling through a liquid is "mg" downwards, thrust by Archimedes principle upwards and the force due to the force of friction also acting upwards. The viscous force rapidly increases with velocity, attaining a maximum when the ball reaches the terminal velocity.

Then the acceleration is zero
$\mathrm{mg}-\mathrm{V} \rho_{2} \mathrm{~g}-\mathrm{kv}_{\mathrm{t}}^{2}=\mathrm{ma}$ where V is volume,
v_{t} is the terminal velocity
When the ball is moving with terminal velocity, $\mathrm{a}=0$
Therefore $\mathrm{V} \rho_{1} \mathrm{~g}-\mathrm{V} \rho_{2} \mathrm{~g}-\mathrm{kv} \mathrm{v}_{\mathrm{t}}^{2}=0$
$\mathrm{v}_{\mathrm{t}}=\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}$

Answer: (b)

$$
\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}
$$

Q7: Water flows into a large tank with a flat bottom at the rate of $10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Water is also leaking out of a hole of area $\mathbf{1 \mathbf { c m } ^ { 2 }}$ at its button. If the height of the water in the tank remains steady, then this height is
(a) 5 cm
(b) 7 cm
(c) 4 cm
(d) 9 cm

Solution

Since the height of the water column is constant
Water inflow rate $\left(\mathrm{Q}_{\text {in }}\right)=$ Water outflow rate $\left(\mathrm{Q}_{\text {out }}\right)$
$\mathrm{Q}_{\mathrm{in}}=10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
$\mathrm{Q}_{\text {out }}=10^{-4} \mathrm{x} \sqrt{ }(2 \mathrm{gh})$
$10^{-4}=10^{-4} \mathrm{x} \sqrt{ } 20 \mathrm{xh}$
$\mathrm{h}=(1 / 20) \mathrm{m}=5 \mathrm{~cm}$
Answer: (a) 5 cm
Q8: A submarine experiences a pressure of $5.05 \times 10^{6} \mathrm{~Pa}$ at depth of d_{1} in a sea. When it goes further to a depth of d_{2}, it experiences a pressure of $8.08 \times 10^{6} \mathrm{~Pa}$. Then $d_{1}-d_{2}$ is approximately (density of water $=10^{3}$ $\mathbf{m s}^{-2}$ and acceleration due to gravity $=10 \mathbf{~ m s}^{-2}$)
(a) 300 m
(b) 400 m
(c) 600 m
(d) 500 m

Solution

$P_{1}=P_{0}+\rho \mathrm{gd}_{1}$
$\mathrm{P}_{2}=\mathrm{P}_{0}+\mathrm{pgd}_{2}$
$\Delta \mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}=\rho \mathrm{g} \Delta \mathrm{d}$
$\left(8.08 \times 10^{6}-5.05 \times 10^{6}\right)=10^{3} \times 10 \times \Delta d$
$3.03 \times 10^{6}=10^{3} \times 10 \times \Delta \mathrm{d}$
$\Delta \mathrm{d}=303 \mathrm{~m} \approx 300 \mathrm{~m}$
Answer: (a) $\mathbf{3 0 0} \mathbf{m}$
Q9: Water from a pipe is coming at a rate of 100 litres per minute. If the radius of the pipe is $\mathbf{5} \mathbf{~ c m}$, the Reynolds number for the flow is of the order (density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$, coefficient of viscosity of water $=1 \mathrm{mPas}$)
(a) 10^{3}
(b) 10^{4}
(c) 10^{2}
(d) 10^{6}

Solution

Reynolds number $=\rho v d / \eta$
Volume flow rate $=\mathrm{vx} \pi \mathrm{r}^{2}$
$\mathrm{v}=\left(100 \times 10^{-3} / 60\right) \times\left(1 / \pi \times 25 \times 10^{-4}\right)$
$\mathrm{v}=(2 / 3 \pi) \mathrm{m} / \mathrm{s}$
Reynolds number $=\left\{\left(10^{3} \times 2 \times 10 \times 10^{-2}\right) /\left(10^{-3} \times 3 \pi\right)\right\}$
$\simeq 2 \times 10^{4}$
Order of 10^{4}
Answer : (b) $1 \mathbf{1 0}^{4}$
Q10: The top of a water tank is open to the air and its water level is maintained. It is giving out $0.74 \mathbf{m}^{\mathbf{3}}$ water per minute through a circular opening of 2 cm radius in its wall. The depth of the centre of the opening from the level of water in the tank is close to
(a) 6.0 m
(b) 4.8 m
(c) 9.6 m
(d) 2.9 m

Solution

Here, volumetric flow rate $=(0.74 / 60)=\pi r^{2} v=\left(\pi \times 4 \times 10^{-4}\right) \times \sqrt{ } 2 \mathrm{gh}$
$\Rightarrow \sqrt{ } 2 \mathrm{gh}=[(74 \times 100) / 240 \pi)]$
$\Rightarrow \sqrt{ } 2 \mathrm{gh}=740 / 24 \pi$
$2 \mathrm{gh}=(740 / 24 \pi)^{2}$
$\mathrm{h}=[(740 \times 740) / 24 \times 24 \times 10)]\left(\right.$ since $\left.\pi^{2}=10\right)$
$\mathrm{h} \approx 4.8 \mathrm{~m}$
Answer: (b) 4.8 m

BYJU'S
The Learning App

