

JEE Main Previous Year Solved Questions on Fluid Mechanics

Q1: A solid sphere of radius R acquires a terminal velocity v_1 when falling (due to gravity) through a viscous fluid having a coefficient of viscosity η . The sphere is broken into 27 identical spheres. If each of these acquires a terminal velocity v_2 , when falling through the same fluid, the ratio (v_1/v_2) equals

- (a) 9
- (b) 1/27
- (c) 1/9
- (d) 27

Solution

 $27 \text{ x } (4/3)\pi r^3 = (4/3)\pi R^3$

Or r = R/3

Terminal velocity, $v \propto r^3$

Therefore, $(v_1/v_2) = (R^2/r^2)$

 $v_1/v_2 = [R/(R/3)]^2 = 9$

 $(v_1/v_2) = 9$

Answer: (a) 9

Q2: Spherical balls of radius R are falling in a viscous fluid of viscosity with a velocity v. The retarding viscous force acting on the spherical ball is

- (a) directly proportional to R but inversely proportional to v
- (b) directly proportional to both radius R and velocity v
- (c) inversely proportional to both radius R and velocity v
- (d) inversely proportional to R but directly proportional to velocity \boldsymbol{v}

Solution

Retarding viscous force = $6\pi\eta Rv$

obviously option (b) holds goods

Answer: (b) directly proportional to both radius R and velocity v

Q3: A long cylindrical vessel is half-filled with a liquid. When the vessel is rotated about its own vertical axis, the liquid rises up near the wall. If the radius of the vessel is 5 cm and its rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm, will be

- (a) 0.4
- (b) 2.0
- (c) 0.1
- (d) 1.2

Solution

The linear speed of the liquid at the sides is $r\omega$. So, the difference in height is given as follows

$$2gh = \omega^2 r^2$$

$$h = \omega^2 r^2 / 2g$$

here
$$\omega = 2\pi f$$

Therefore,
$$h = [(2 \times 2\pi)^2 (5 \times 10^{-2})^2]/(2\times 10) = 2cm$$

Answer: (b) 2.0

Q4: Water is flowing continuously from a tap having an internal diameter 8×10^{-3} m. The water velocity as it leaves the tap is $0.4~\rm ms^{-1}$. The diameter of the water stream at a distance 2×10^{-1} m below the tap is close to

- (a) 5.0×10^{-3} m
- (b) $7.5 \times 10^{-3} \text{ m}$
- (c) 9.6×10^{-3} m
- (d) 3.6×10^{-3} m

Solution

Here,
$$d_1 = 8 \times 10^{-3} \text{ m}$$

$$v_1 = 0.4 \text{ m s}^{-1}, h = 0.2 \text{ m}$$

According to equation of motion,

$$v_2 = \sqrt{v_1^2 + 2gh} = \sqrt{(0.4)^2 + 2 + 10 \times 0.2}$$

$$= 2 \text{ m s}^{-1}$$

According to equation of continuity $a_1v_1 = a_2v_2$

According to equation of continuity $a_1v_1 = a_2v_2$

$$(\pi D_1^2/4) v_1 = (\pi D_2^2/4) v_2$$

$$D_2^2 = (v_1/v_2)D_1^2$$

$$D_2 = [\sqrt{(v_1/v_2)}]D_1$$

=
$$[\sqrt{(0.4/2)}]$$
x 8 × 10⁻³ m

$$D_2 = 3.6 \times 10^{-3} \text{ m}$$

Answer: (d) 3.6×10^{-3} m

Q5: A 20 cm long capillary tube is dipped in water. The water rises up to 8 cm. If the entire arrangement is put in a freely falling elevator the length of the water column in the capillary tube will be

- (a) 4 cm
- (b) 20 cm
- (c) 8 cm
- (d) 10 cm

Solution

In a freely falling elevator, g = 0 Water will rise to the full length i.e., 20 cm to tube

Answer: (b) 20 cm

Q6: A spherical solid ball of volume V is made of a material of density ρ_1 . It is falling through a liquid of density ρ_2 ($\rho_2 < 1$). Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed v, i.e., $F_{viscous} = -kv^2$ (k > 0). The terminal speed of the ball is

(a) $Vg(\rho_1 - \rho_2)$

(b)
$$\sqrt{\frac{Vg(\rho_1-\rho_2)}{k}}$$

- (c) $Vg\rho_1/k$
- (d) $\sqrt{\frac{Vg\rho_1}{k}}$

Solution

The forces acting on the solid ball when it is falling through a liquid is "mg" downwards, thrust by Archimedes principle upwards and the force due to the force of friction also acting upwards. The viscous force rapidly increases with velocity, attaining a maximum when the ball reaches the terminal velocity.

Then the acceleration is zero

mg - $V\rho_2 g$ - kv_t^2 = ma where V is volume,

v_t is the terminal velocity

When the ball is moving with terminal velocity, a = 0

Therefore $V\rho_1g - V\rho_2g - kv_t^2 = 0$

$$v_t$$
= $\sqrt{rac{Vg(
ho_1-
ho_2)}{k}}$

Answer: (b)
$$\sqrt{\frac{Vg(\rho_1-\rho_2)}{k}}$$

Q7: Water flows into a large tank with a flat bottom at the rate of 10⁻⁴ m³s⁻¹. Water is also leaking out of a hole of area 1 cm² at its button. If the height of the water in the tank remains steady, then this height is

- (a) 5 cm
- (b) 7 cm
- (c) 4 cm

(d) 9 cm

Solution

Since the height of the water column is constant

Water inflow rate (Q_{in}) = Water outflow rate (Q_{out})

$$Q_{in} = 10^{-4} \text{ m}^3 \text{s}^{-1}$$

$$Q_{out} = 10^{-4} \text{ x } \sqrt{(2gh)}$$

$$10^{-4} = 10^{-4} \text{ x } \sqrt{20 \text{ xh}}$$

$$h = (1/20) m = 5 cm$$

Answer: (a) 5 cm

Q8: A submarine experiences a pressure of 5.05×10^6 Pa at depth of d_1 in a sea. When it goes further to a depth of d_2 , it experiences a pressure of 8.08×10^6 Pa. Then d_1 - d_2 is approximately (density of water = 10^3 ms⁻² and acceleration due to gravity = 10 ms⁻²)

- (a) 300 m
- (b) 400 m
- (c) 600 m
- (d) 500 m

Solution

$$P_1 = P_0 + \rho g d_1$$

$$P_2 = P_0 + \rho g d_2$$

$$\Delta P = P_2 - P_1 = \rho g \Delta d$$

$$(8.08 \times 10^6 - 5.05 \times 10^6) = 10^3 \times 10 \times \Delta d$$

$$3.03 \times 10^6 = 10^3 \times 10 \times \Delta d$$

$$\Delta d = 303 \text{ m} \approx 300 \text{ m}$$

Answer: (a) 300 m

Q9: Water from a pipe is coming at a rate of 100 litres per minute. If the radius of the pipe is 5 cm, the Reynolds number for the flow is of the order (density of water = 1000 kg/m^3 , coefficient of viscosity of water = 1 mPa s)

 $(a)10^3$

- (b) 10^4
- $(c)10^2$
- (d) 10^6

Solution

Reynolds number = $\rho vd/\eta$

Volume flow rate = $v \times \pi r^2$

$$v = (100 \times 10^{-3}/60) \times (1/\pi \times 25 \times 10^{-4})$$

$$v = (2/3\pi) \text{ m/s}$$

Reynolds number = $\{(10^3 \text{ x } 2 \text{ x } 10 \text{ x } 10^{-2})/(10^{-3} \text{ x } 3\pi)\}$

$$\simeq 2 \times 10^4$$

Order of 104

Answer: (b) 10⁴

Q10: The top of a water tank is open to the air and its water level is maintained. It is giving out 0.74 m³ water per minute through a circular opening of 2 cm radius in its wall. The depth of the centre of the opening from the level of water in the tank is close to

- (a) 6.0 m
- (b) 4.8 m
- (c)9.6 m
- (d) 2.9 m

Solution

Here, volumetric flow rate = $(0.74/60) = \pi r^2 v = (\pi \times 4 \times 10^{-4}) \times \sqrt{2gh}$

$$\Rightarrow \sqrt{2gh} = [(74 \times 100)/240\pi)]$$

$$\Rightarrow \sqrt{2}gh = 740/24\pi$$

$$2gh = (740/24\pi)^2$$

$$h = [(740 \text{ x } 740)/24 \text{ x } 24 \text{ x } 10)] \text{ (since } \pi^2 = 10)$$

$$h\approx 4.8\ m$$

Answer: (b) 4.8 m

