CHEMISTRY PAPER 1
 (THEORY)

```
Maximum Marks: 70
Time Allowed: Three hours
(Candidates are allowed additional 15 minutes for only reading the paper.
They must NOT start writing during this time).
```

This paper is divided into four sections $-A, B, C$ and D. Answer all questions.
Section A consists of one question having sub-parts of one mark each.
Section B consists of ten questions of two marks each.
Section C consists of seven questions of three marks each, and
Section D consists of three questions of five marks each.
Internal choices have been provided in one question each in Section B, Section C and Section D.
All working, including rough work, should be done on the same sheet as, and adjacent to the rest of the answer.
The intended marks for questions or parts of questions are given in brackets []. Balanced equations must be given wherever possible and diagrams where they are helpful.
When solving numerical problems, all essential working must be shown.
In working out problems, use the following data:
Gas constant $R=1.987 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

$$
=0.0821 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

$1 \mathrm{l} \mathrm{atm}=1 \mathrm{dm}^{3} \mathrm{~atm}=101 \cdot 3 \mathrm{~J} .1$ Faraday $=96500$ coulombs.
Avogadro's number $=6.023 \times 10^{23}$.

SECTION A - 14 MARKS

Question 1

(A) Fill in the blanks by choosing the appropriate word(s) from those given in the brackets:
[two, Williamson's synthesis, three, anisole, toluene, Friedel-Crafts alkylation, iodoform, sec^{-1}, $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{sec}^{-1}$, Lewis base, acetone, Lewis acid, chloroform, formaldehyde]
(i) Sodium phenoxide reacts with methyl chloride to give \qquad . The reaction is known as \qquad .
(ii) When the concentration of a reactant of first order reaction is tripled, the rate of reaction becomes \qquad times. The unit of rate constant (k) for the first order reaction is \qquad .
(iii) In coordination complexes, the central metal atom or ion behaves as
\qquad and the ligands behave as \qquad .
(iv) Calcium acetate on dry distillation gives \qquad which gives \qquad on heating with iodine and alkali.
(B) Select and write the correct alternative from the choices given below:
(i) An alkyl isocyanide on complete reduction gives :
(a) Primary amine.
(b) Secondary amine.
(c) Tertiary amine.
(d) Carboxylic acid.
(ii) For a spontaneous reaction E^{o} cell and $\Delta \mathrm{G}^{\mathrm{o}}$ will be respectively:
(a) -ve and -ve
(b) -ve and +ve
(c) +ve and -ve
(d) +ve and +ve.
(iii) Which of the following pairs of transition elements have exceptional electronic configuration?
(a) Sc and Cu
(b) Fe and Ni
(c) Cr and Cu
(d) Mn and Zn
(iv) For a first order reaction, when 100 g of the reactant is taken, 75 g of the reactant reacts in 8 minutes. If 200 g of the same reactant is taken, in how much time 150 g of the reactant will react?
(a) 8 minutes
(b) 16 minutes
(c) 20 minutes
(d) 24 minutes.
(C) Match the following:
(i) Phenol
(ii) Ethylenediamine
(iii) Colligative property
(iv) Amino acid
(D)
(b) Zwitter ion
(c) Neutral FeCl_{3} solution
(d) Bidentate ligand.
(i) Assertion: Specific conductance of all electrolytes decreases on dilution. Reason: On dilution, number of ions per unit volume decreases.
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reason is not the correct explanation for assertion.
(c) Assertion is true but reason is false.
(d) Assertion is false but reason is true.
(ii) Assertion: Nitration of chlorobenzene leads to the formation of m-nitro chlorobenzene.
Reason: Nitro $\left(-\mathrm{NO}_{2}\right)$ group is a m-directing group.
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reason is not the correct explanation for assertion.
(c) Assertion is true but reason is false.
(d) Assertion is false but reason is true.

SECTION B - 20 MARKS

Question 2

The osmotic pressure of 20 g haemoglobin in 500 ml of solution is 0.016 atm at $25^{\circ} \mathrm{C}$. Calculate the molecular mass of haemoglobin.

Question 3

Give reason for the following:
(i) Transition metals form large number of complex compounds.
(ii) Transition elements show variable oxidation states.

Question 4

Identify compounds $[\mathrm{A}]$ and $[\mathrm{B}]$ in the following reactions.
(i)

(ii)

Question 5
State reasons for the following:
(i) Ethylamine is soluble in water whereas aniline is not soluble in water.
(ii) Aliphatic amines are stronger bases than aromatic amines.

Question 6

Calculate the standard free energy change $\left(\Delta \mathrm{G}^{0}\right)$ for the following chemical reaction:
(i) $\mathrm{Cd}_{(\mathrm{s})}+2 \mathrm{Ag}^{+} \longrightarrow \mathrm{Cd}^{2+}+2 \mathrm{Ag}_{(\mathrm{s})}$
(ii) $\mathrm{E}^{0} \mathrm{Cd}^{2+} / \mathrm{Cd}=-0 \cdot 40 \mathrm{~V}, \quad \mathrm{E}^{0} \mathrm{Ag}^{+} / \mathrm{Ag}=+0 \cdot 80 \mathrm{~V}$

Question 7

Complete and balance the following chemical equations:
(i) $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{FeSO}_{4} \longrightarrow$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad
(ii) \qquad $+$ \qquad $+$ \qquad
\qquad

Question 8

(i) How will the following be obtained? (Give chemical equation)
(a) Picric acid from phenol
(b) Ethanol from formaldehyde

OR

(ii) Write the chemical equations for the dehydration of ethanol with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $140^{\circ} \mathrm{C}$ and $170^{\circ} \mathrm{C}$.

Question 9

A solution of urea in water has boiling point $100 \cdot 128^{\circ} \mathrm{C}$. Calculate the freezing point of the same solution. Molal constants for water are $\mathrm{K}_{\mathrm{b}}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ and $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ respectively.

Question 10

Give one chemical test for each to distinguish between the following pair of compounds.
(i) Formaldehyde and acetic acid
(ii) Acetaldehyde and acetone

Question 11

Why are Zn, Cd and Hg not regarded as transition elements?

SECTION C - 21 MARKS

Question 12

The rate constant for a first order reaction becomes six times when the temperature is increased from 350 K to 410 K . Calculate activation energy (Ea) for the reaction.

Question 13

An organic compound ' A ' on treatment with aq. KCN produces compound ' B '. Compound ' B ' on reduction with $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ gives compound ' C ' with molecular formula $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$. Compound ' C ' reacts with NaNO_{2} and HCl to form compound 'D'. Compound 'D' on treatment with acetic acid in presence of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces a sweet smelling compound ' E '.
(i) Identify the compounds ' A ' to ' E '.
(ii) Name the reaction for the formation of compound ' E ' from compound ' D '.

Question 14

(i) Name the four bases present in DNA. Which one of these is not present in RNA?
(ii) Deficiency of which vitamin causes the following diseases.
(a) Scurvy
(b) Night blindness

Question 15

An aqueous solution containing $12 \cdot 48 \mathrm{~g}$ of barium chloride in 1000 g of water boils at 373.0832 K . Calculate the degree of dissociation (α) of barium chloride.
K_{b} for $\mathrm{H}_{2} \mathrm{O}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, molecular mass of $\mathrm{BaCl}_{2}=208.34 \mathrm{~g} \mathrm{~mol}^{-1}$

Question 16

Write the chemical equation for the following named organic reactions.
(i) Haloform reaction
(ii) Reimer - Tiemann reaction
(iii) Kolbe - Schmidt reaction or Kolbe reaction

Question 17

(i) Identify the compounds A, B and C in the following reactions:

OR

(ii) How will the following be converted? (Give chemical equations)
(a) Benzenediazonium chloride to Benzene
(b) Ethylamine to ethyl alcohol
(c) Methylamine to methyl isocyanide

Question 18

Suppose 50 bacteria are placed in a flask containing nutrients, so that they can multiply. A study at $35^{\circ} \mathrm{C}$ gave the following results:

Time (in minutes)	0	15	30	45	60
Number of bacteria	100	200	400	800	1600

Answer the following questions:
(i) This multiplication of bacteria follows:
(a) Zero order reaction
(b) First order reaction
(c) Second order reaction
(d) Third order reaction
(ii) The rate constant for the reaction is:
(a) $0.0462 \mathrm{~min}^{-1}$
(b) $0.462 \mathrm{~min}^{-1}$
(c) $4.62 \mathrm{~min}^{-1}$
(d) $46 \cdot 2 \mathrm{~min}^{-1}$
(iii) The half life period $\left(\mathrm{t}_{1 / 2}\right)$ of the reaction is:
(a) 1500 minutes
(b) 150 minutes
(c) 15 minutes
(d) 1.5 minutes

SECTION D - 15 MARKS

Question 19

(i) Starting with methyl magnesium bromide, how will the following compounds be synthesised?
(a) Acetaldehyde
(b) Acetone
(c) Acetic acid
(ii) Explain the following:
(a) Chloroacetic acid is stronger acid than acetic acid.
(b) Formic acid reduces Tollen's reagent but acetic acid does not.

Question 20

(i) Name the type of isomerism shown by the following pairs of coordination compounds.
(a) $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$
(c) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{SCN})\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NCS})\right] \mathrm{Cl}_{2}$
(ii) Consider the complex ion $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ and answer the following questions: (atomic number of $\mathrm{Co}=27$)
(a) Type of hybridisation of central metal atom
(b) Magnetic nature
(c) Geometry of the complex ion
(d) Low spin complex or high spin complex

Question 21

(i) A 0.06 molar $\mathrm{CH}_{3} \mathrm{COOH}$ solution offers a resistance of 55 ohms to a conductivity cell at $25^{\circ} \mathrm{C}$. If the cell constant is $0.45 \mathrm{~cm}^{-1}$ and the molar conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ at infinite dilution is $398.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Calculate:
(a) Specific conductance
(b) Molar conductance
(c) Degree of dissociation
(ii) Calculate the number of coulombs of charge required to deposit 24.35 g of aluminium from a solution containing Al^{3+} ions.
(Atomic weight of $\mathrm{Al}=27$)

OR

(i) Write the Nernst equation for the cell reaction given below and calculate the emf of the cell at 298 K .
$2 \mathrm{Cr}_{(\mathrm{s})}+3 \mathrm{Fe}^{2+}{ }_{(0.1 \mathrm{M})} \longrightarrow 2 \mathrm{Cr}^{3+}{ }_{(0.01 \mathrm{M})}+3 \mathrm{Fe}_{(\mathrm{s})}$
Given $\mathrm{E}^{\mathrm{o}}\left(\mathrm{Cr}^{3+} / \mathrm{Cr}\right)=-0.74 \mathrm{~V}, \mathrm{E}^{0}\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)=-0.44 \mathrm{~V}$
(ii) Calculate the molar conductance at infinite dilution $\left(\Lambda^{\infty}{ }_{\mathrm{m}}\right)$ for $\mathrm{NH}_{4} \mathrm{OH}$. Given that $\Lambda^{\infty}{ }_{\mathrm{m}} \quad$ for $\mathrm{Ba}(\mathrm{OH})_{2}, \quad \mathrm{BaCl}_{2}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ are $457 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, $240 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $129 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively.

