

ISC SEMESTER 2 EXAMINATION SPECIMEN QUESTION PAPER CHEMISTRY PAPER 1 (THEORY)

	CHEMISTRY PAPER 1 (THEORY)	
	Maximum Marks: 35	
	Time allowed: One and a half hour	
	Candidates are allowed an additional 10 minutes for only reading the paper.	
	They must NOT start writing during this time.	
	All questions are compulsory	
7	The intended marks for questions or parts of questions are given in brackets. []	
All w	vorking, including rough work, should be done on the same sheet as, and adjacen the rest of the answer.	ıt to
Ba	alanced equations must be given wherever possible and diagrams where they are helpful.	е
	When solving numerical problems, all essential working must be shown.	
	In working out problems, use the following data:	
Gas	s constant $R = 1.987$ cal deg^{-1} $mol^{-1} = 8.314$ JK^{-1} $mol^{-1} = 0.0821$ dm^3 atm $K^{-1}mol^{-1}$	l^{-1}
	1 l atm = 1 dm ³ atm = 101.3 J. 1 Faraday = 96500 coulombs.	
	Avogadro's number = $6.023 \cdot 10^{23}$.	
Fill	SECTION A -7 MARKS stion 1 in the blanks by choosing the appropriate word(s) from those given in the exets:	
	, four, sec ⁻¹ , diamagnetic, acetaldehyde, mol ⁻¹ L sec ⁻¹ , paramagnetic, formaldehyde, one, ethanol)	
(i)	When the concentration of a reactant of first order reaction is doubled, the rate of reaction becomes times. The unit of rate constant (k) for the first order reaction is	[1]
(ii)	The transition metals show character because of the presence of unpaired electrons while Cu ⁺ is because its electronic configuration is [Ar]3d ¹⁰ .	[1]
(iii)	Calcium formate on distillation gives but the distillation of calcium formate and calcium acetate gives	[1]

Question 2

Select and write the correct alternative from the choices given below.

(i)	The type	e of hybridization involved in Octahedral complexes is:	[1]					
	(a)	sp^3						
	(b)	dsp^2						
	(c)	$\mathrm{sp}^3\mathrm{d}$						
	(d)	d^2sp^3						
(ii)		le of a symmetrical alkene on ozonolysis gives two moles of an aldehyde a molecular mass of 44 amu. The alkene is:	[1]					
	(a)	ethene						
	(b)	propene						
	(c)	1-butene						
	(d)	2-butene						
(iii)	Primary	amine when warmed with chloroform and alc. KOH yields:	[1]					
	(a)	cyanides						
	(b)	isocyanides						
	(c)	benzene diazonium chloride						
	(d)	secondary amines						
(iv)	peptizat		[1]					
	Reason : It is caused by addition of common ions.							
	(a)	Both assertion and reason are true and reason is the correct explanation of assertion.						
	(b)	Both assertion and reason are true but reason is not the correct explanation for assertion.						
	(c)	Assertion is true but reason is false.						
	(d)	Assertion is false but reason is true.						

SECTION B – 16 MARKS

Question 3			
Name the type of isomerism shown by each of the following pairs of compounds:			
(i)	$[CoCl_2(NH_3)_4]Cl.H_2O \ and \ [CoCl(H_2O)(NH_3)_4]Cl_2$		
(ii)	$[Cr(NH_3)_5Br]SO_4$ and $[Cr(NH_3)_5SO_4]Br$		
Ques	Question 4		
(i)	Write chemical equations to illustrate each of the following name reactions:		
	(a) Rosenmund's reduction		
	(b) Clemmensen's reduction		
	OR		
(ii)	How will you bring about the following conversions? (Give equation).		
	(a) Acetic acid to acetone		
	(b) Formaldehyde to urotropine		
Ques	Question 5		
What	is a zwitter ion? Represent the zwitter ion of glycine.		
Question 6			
(i)	Arrange the following in the increasing order of their basic strength: $C_2H_5NH_2$, $C_6H_5NH_2$, $(C_2H_5)_2NH$.		
(ii)	What are the products formed when benzene diazonium chloride reacts with phenol in weak alkaline medium? (Give equation).		
Ques	tion 7	[2]	
Give	reasons for the following:		
(i)	Diabetic patients are advised to take artificial sweeteners instead of natural sweeteners.		
(ii)	The use of aspartame is limited to cold foods and drinks.		

[2] **Question 8** The rate of reaction becomes four times when the temperature changes from 293K to 313K. Calculate the energy of activation (E_a) of the reaction assuming that it does not change with temperature. ($R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$) **Question 9** [2] Give balanced equation for each of the following: (i) Ethylamine and nitrous acid (ii) Aniline and acetyl chloride **Question 10** [2] Give one chemical test for each to distinguish between the following pairs of compound: (i) Acetaldehyde and benzaldehyde (ii) Acetone and acetic acid **SECTION C – 12 MARKS Question 11** [3] **Answer the following:** (i) (a) Define molecularity of a reaction. Give one difference between the order of reaction and its molecularity. The rate constant (k) of a first order reaction is $4.5 \times 10^{-2} \text{ sec}^{-1}$. What will be the time required for the initial concentration of 0.4 M of the reactant to be reduced to 0.2 M? OR (ii) **Answer the following:** For a first order reaction, show that the time required for the completion of 99% reaction is twice the time required for the completion of 90% of the reaction. (b) For a reaction, rate = $k[A]^{1}[B]^{1.5}[C]^{0}$. What is the overall order of reaction?

Question 12			[3]
(i)	What is the basic difference between the <i>electronic configuration of transition</i> and inner transition elements?		
(ii)	Why are Zn ²⁺ ions colourless while Ni ²⁺ ions are green in colour?		
Quest	ion 13		[3]
(i) Write the formula of each of the		the formula of each of the following compounds:	
	(a)	Potassium trioxalatoaluminate (III)	
	(b)	Triammine triaquachromium (III) chloride	
(ii)	For the complex ion $[Co(NH_3)_6]^{3+}$, state the oxidation state of central metal atom and the coordination number of the complex ion.		
Quest	ion 14		[3]
Give r	eason	for each of the following:	
(i)	For ferric hydroxide sol. the coagulating power of phosphate ion is more than chloride ion.		
(ii)	Lyophilic colloidal solutions are more stable than lyophobic colloidal solutions.		
(iii)	Gelat	in is added to ice cream.	