Question 1: If $\alpha=\cos ^{-1}(3 / 5), \beta=\tan ^{-1}(1 / 3)$, where $0<\alpha, \beta<\pi / 2$, then $\alpha-\beta$ is
(a) $\tan ^{-1}(9 / 5 \sqrt{ } 10)$
(b) $\cos ^{-1}(9 / 5 \sqrt{ } 10)$
(c) $\tan ^{-1}(9 / 14)$
(d) $\sin ^{-1}(9 / 5 \sqrt{ } 10)$

Solution:

Given $\alpha=\cos ^{-1}(3 / 5)$
$\cos \alpha=3 / 5$
$\sin \alpha=4 / 5$
$\tan \alpha=4 / 3$

Also $\beta=\tan ^{-1}(1 / 3)$

So $\tan \beta=1 / 3$
$\tan (\alpha-\beta)=(\tan \alpha-\tan \beta) /(1+\tan \alpha \tan \beta)$
$=(4 / 3-1 / 3) /(1+4 / 9)$
$=1 /(13 / 9)$
$=9 / 13$

So $(\alpha-\beta)=\tan ^{-1}(9 / 13)$
$=\sin ^{-1}(9 / 5 \sqrt{ } 10)$

Hence option d is the answer.

Question 2: The principal value of $\tan ^{-1}(\cot 43 \pi / 4)$ is
(a) $-3 \pi / 4$
(b) $3 \pi / 4$
(c) $-\pi / 4$
(d) $\pi / 4$

Solution:

$\tan ^{-1}(\cot 43 \pi / 4)=\tan ^{-1}[\cot (10 \pi+3 \pi / 4)]$
$=\tan ^{-1}[\cot 3 \pi / 4]($ since $\cot (2 n \pi+x=\cot x)]$
$=\tan ^{-1}(\tan (\pi / 2-3 \pi / 4))$
$=(\pi / 2-3 \pi / 4))$
$=(2 \pi-3 \pi) / 4$
$=-\pi / 4$
Hence option c is the answer.
Question 3: If $\alpha=3 \sin ^{-1}(6 / 11)$ and $\beta=3 \cos ^{-1}(4 / 9)$, where the inverse trigonometric functions take only the principal values, then the correct option(s) is (are)
(a) $\cos \beta>0$
(b) $\sin \beta<0$
(c) $\cos (\alpha+\beta)>0$
(d) $\cos \alpha<0$

Solution:

$\alpha=3 \sin ^{-1}(6 / 11)>3 \sin ^{-1} 1 / 2>\pi / 2$
$=>\alpha>\pi / 2$

So $\cos \alpha<0$
$\beta=3 \cos ^{-1}(4 / 9)>3 \cos ^{-1}(1 / 2)>\pi$
$=>\beta>\pi$
So $\cos \beta<0$ and $\sin \beta<0$
Now $\alpha+\beta>3 \pi / 2$
$\cos (\alpha+\beta)>0$

Hence option b, c and d are correct.
Question 4: The principal value of $\sin ^{-1}(\sin 2 \pi / 3)$ is
(a) $-2 \pi / 3$
(b) $2 \pi / 3$
(c) $4 \pi / 3$
(d) none of these

Solution:

The principal value of $\sin ^{-1}(\sin 2 \pi / 3)=\sin ^{-1}(\sin \pi-\pi / 3)$
$=\sin ^{-1} \sin \pi / 3$
$=\pi / 3$

Hence option d is the answer.
Question 5: A possible value of $\tan \left(1 / 4 \sin ^{-1} \sqrt{63} / 8\right)$ is:
(a) $1 /(2 \sqrt{ } 2)$
(b) $1 / \sqrt{ } 7$
(c) $\sqrt{7-1}$
(d) $2 \sqrt{ } 2-1$

Solution:
We have to find $\tan \left(1 / 4 \sin ^{-1} \sqrt{63 / 8}\right)$.
Let $\sin ^{-1}(\sqrt{63 / 8})=\theta$
$\sin \theta=\sqrt{ } 63 / 8$
$\cos \theta=1 / 8$
$2 \cos ^{2}(\theta / 2)-1=1 / 8$
$=>\cos ^{2} \theta / 2=9 / 16$
$\cos \theta / 2=3 / 4$
$=>\left(1-\tan ^{2} \theta / 4\right) /\left(1+\tan ^{2} \theta / 4\right)=3 / 4$
$\tan \theta / 4=1 / \sqrt{ } 7$

Hence option b is the answer.

Question 6: If S is the sum of the first 10 terms of the series $\tan ^{-1}(1 / 3)+\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)+\tan ^{-1}(1 / 21)+$ \ldots..., then $\tan S$ is equal to
(a) $5 / 6$
(b) $5 / 11$
(c) $-6 / 5$
(d) $10 / 11$

Solution:

$S=\tan ^{-1}(1 / 3)+\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)+\ldots$ upto 10 terms
$=\tan ^{-1}(2-1) /(1+2.1)+\tan ^{-1}(3-2) /(1+3.2)+\tan ^{-1}(4-3) /(1+3.4)+\ldots .+\tan ^{-1}(11-10) /(1+11.10)$
$=\left(\tan ^{-1} 2-\tan ^{-1} 1\right)+\left(\tan ^{-1} 3-\tan ^{-1} 2\right)+\left(\tan ^{-1} 4-\tan ^{-1} 3\right)+\ldots .+\left(\tan ^{-1} 11-\tan ^{-1} 10\right)$
$=\left(\tan ^{-1} 11-\tan ^{-1} 1\right)$
$=\tan ^{-1}(5 / 6)$
$\tan S=5 / 6$

Hence option a is the answer.
Question 7: The value of $\sin ^{-1}(12 / 13)-\sin ^{-1}(3 / 5)$ is equal to
(a) $\pi-\sin ^{-1}(63 / 65)$
(b) $\pi / 2-\sin ^{-1}(56 / 65)$
(c) $\pi / 2-\cos ^{-1}(56 / 65)$
(d) $\pi-\cos ^{-1}(33 / 65)$

Solution:
$\sin ^{-1}(12 / 13)-\sin ^{-1}(3 / 5)$

Since $\sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{ }\left(1-y^{2}\right)-y \sqrt{ }\left(1-x^{2}\right)\right)$
$=\sin ^{-1}(33 / 65)$
$=\cos ^{-1}(56 / 65)$
$=\pi / 2-\sin ^{-1}(56 / 65)$
Hence option b is the answer.
Question 8: Considering only the principal values of inverse functions, the set $A=\left\{x \geq 0: \boldsymbol{\operatorname { t a n }}^{-1}(\mathbf{2 x})+\tan ^{-1}(\mathbf{3 x})\right.$ $=\pi / 4\}$
(a) contains two elements
(b) contains more than two elements
(c) is a singleton set
(d) is an empty set

Solution:

Consider $\tan ^{-1}(2 \mathrm{x})+\tan ^{-1}(3 \mathrm{x})=\pi / 4$
$\Rightarrow \tan ^{-1}\left(5 \mathrm{x} /\left(1-6 \mathrm{x}^{2}\right)\right)=\pi / 4$
$=>5 \mathrm{x} /\left(1-6 \mathrm{x}^{2}\right)=1$
$\Rightarrow 5 \mathrm{x}=1-6 \mathrm{x}^{2}$
$=>6 x^{2}+5 x-1=0$
$=>(6 x-1)(x+1)=0$
$\Rightarrow \mathrm{x}=1 / 6$ (since $\mathrm{x} \geq 0, \mathrm{x}=-1$ is rejected)
So A is a singleton set.
Hence option c is the answer.
Question 9: The value of $\tan ^{-1}\left[\left(\sqrt{ }\left(1+x^{2}\right)+\sqrt{ }\left(1-x^{2}\right)\right) /\left(\sqrt{ }\left(1+x^{2}\right)-\sqrt{ }\left(1-x^{2}\right)\right)\right],|x|<1 / 2, x \neq 0$, is equal to
(a) $\pi / 4+1 / 2 \cos ^{-1} x^{2}$

The Learning App
(b) $\pi / 4+\cos ^{-1} x^{2}$
(c) $\pi / 4-1 / 2 \cos ^{-1} x^{2}$
(d) $\pi / 4-\cos ^{-1} x^{2}$

Solution:

Let $\mathrm{x}^{2}=\cos 2 \theta$
$\Rightarrow \theta=1 / 2 \cos ^{-1} x^{2}$
$\Rightarrow \tan ^{-1}\left[\left(\sqrt{ }\left(1+x^{2}\right)+\sqrt{ }\left(1-x^{2}\right)\right) /\left(\sqrt{ }\left(1+x^{2}\right)-\sqrt{ }\left(1-x^{2}\right)\right)\right]=[\sqrt{ }(1+\cos 2 \theta)+\sqrt{ }(1-\cos 2 \theta)] /[\sqrt{ }(1+\cos 2 \theta)-\sqrt{ }(1-\cos 2 \theta)]$
$=\tan ^{-1}(1+\tan \theta) /(1-\tan \theta)$
$=\tan ^{-1}(\tan (\pi / 4+\theta))$
$=\pi / 4+\theta$
$=\pi / 4+1 / 2 \cos ^{-1} x^{2}$
Hence option a is the answer.
Question 10: If $f(x)=2 \tan ^{-1} x+\sin ^{-1}\left(2 x /\left(1+x^{2}\right)\right), x>1$, then $f(5)$ is equal to
(a) $\tan ^{-1} 65 / 156$
(b) $\pi / 2$
(c) π
(d) $4 \tan ^{-1}(5)$

Solution:

Given $\mathrm{f}(\mathrm{x})=2 \tan ^{-1} \mathrm{x}+\sin ^{-1}\left(2 \mathrm{x} /\left(1+\mathrm{x}^{2}\right)\right)$
When $\mathrm{x}>1, \sin ^{-1}\left(2 \mathrm{x} /\left(1+\mathrm{x}^{2}\right)\right)=\pi-2 \tan ^{-1} \mathrm{x}$
So $\mathrm{f}(\mathrm{x})=2 \tan ^{-1} \mathrm{x}+\pi-2 \tan ^{-1} \mathrm{x}$
$=\pi$
$f(5)=\pi$
Hence option c is the answer.

BYJU'S
The Learning App

