Question 1) The inductance of two LR circuits are placed next to each other, as shown in the figure. The value of the self-inductance of the inductors, resistance, mutual-inductance and applied voltages are specified in the given circuit. After both the switches are closed simultaneously the total work done by the batteries against the induced EMF in the inductors by the time the currents reach their steady-state values is \qquad mJ.

The Learning App

Answer: 55 mJ
Solution:
Given,
Mutual Inductance, $M=5 \mathrm{mH}$
$\mathrm{L}_{1}=10 \mathrm{mH}$
$\mathrm{V}_{1}=5 \mathrm{~V}$
$\mathrm{L}_{2}=20 \mathrm{mH}$
$\mathrm{V}_{2}=20 \mathrm{~V}$
$\mathrm{I}_{1}=\mathrm{V}_{1} / \mathrm{R}_{1}=5 / 5=1 \mathrm{~A}$
$\mathrm{I}_{2}=\mathrm{V}_{2} / \mathrm{R}_{2}=20 / 10=2 \mathrm{~A}$
After both the switches are closed simultaneously, the total work done by the batteries against the induced EMF $=$ Increase in the magnetic energy

Therefore, $\mathrm{W}=\Delta \mathrm{U}=(1 / 2) \mathrm{L}_{1} \mathrm{I}_{1}{ }^{2}+(1 / 2) \mathrm{L}_{2} \mathrm{I}_{2}{ }^{2}+\mathrm{MI}_{1} \mathrm{I}_{2}$
$=(1 / 2)\left(10 \times 10^{-3}\right) 1^{2}+(1 / 2)\left(20 \times 10^{-3}\right)\left(2^{2}\right)+\left(5 \times 10^{-3}\right) \times 1 \times 2$
$=(5+40+10) \times 10^{-3}$
$=55 \mathrm{~mJ}$
Question 2) A $\mathbf{2 0}$ Henry inductor coil is connected to a $\mathbf{1 0} \mathbf{~ o h m}$ resistance in series as shown in the figure. The time at which rate of dissipation of energy (Joule's heat) across the resistance is equal to the rate at which magnetic energy is stored in the inductor, is
(A) $2 / \ln 2$
(B) $(1 / 2) \ln 2$
(C) $2 \ln 2$
(D) $\ln 2$

Answer: (C) $2 \ln 2$
Solution:
$\mathrm{i}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-t / \tau}\right)$
$\mathrm{di} / \mathrm{dt}=\left(\mathrm{i}_{0} / \tau\right) \mathrm{e}^{-\mathrm{t} / \tau}$
$\mathrm{di} / \mathrm{dt}=[\mathrm{E} /(10 \times 2)] \mathrm{e}^{-\mathrm{t} / 2}------(1)[$ since $\tau=\mathrm{L} / \mathrm{R}=20 / 10=2]$
$[\mathrm{L}(\mathrm{di} / \mathrm{dt}) \mathrm{i}]=\mathrm{i}^{2} \mathrm{R}$
$\Rightarrow \mathrm{L}(\mathrm{di} / \mathrm{dt})=\mathrm{i} \mathrm{R}$
From equation (1) and (2) we get
$\mathrm{L}[\mathrm{E} /(10 \times 2)] \mathrm{e}^{-\mathrm{t} / 2}=\mathrm{iR}$
$(\mathrm{L} / \mathrm{R})[\mathrm{E} /(20)] \mathrm{e}^{-\mathrm{t} / 2}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-t / \tau}\right)[$ since $\tau=\mathrm{L} / \mathrm{R}=20 / 10=2]$
$[\mathrm{E} / 10] \mathrm{e}^{-\mathrm{t} / 2}=[\mathrm{E} / 10)\left(1-\mathrm{e}^{-t / \tau}\right)$
$\mathrm{e}^{-t / 2}=1 / 2$
$\mathrm{t} / 2=\ln 2$
Question 3) In the figure shown, a circuit contains two identical resistors with resistance $\mathbf{R}=\mathbf{5} \mathbf{~ o h m}$ and inductance with $L=2 \mathbf{m H}$. An ideal battery of 15 V is connected in the circuit. What will be the current through the battery long after the switch is closed?

(A) 5.5 A
(B) 7.5 A
(C) 3 A
(D) 6 A

Answer: (D) 6 A

Solution:

For a long time after the switch is closed, the inductor will be idle so the equivalent diagram will be

$\mathrm{I}=\varepsilon /[(\mathrm{R} \times \mathrm{R}) /(\mathrm{R}+\mathrm{R})]$
$=2 \varepsilon / \mathrm{R}$
$=(2 \times 15) / 5$
$=6 \mathrm{~A}$
Question 4)An AC voltage source of variable angular frequency and fixed amplitude V_{0} is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When ω is increased
(A) the bulb glows dimmer
(B) the bulb glows brighter
(C) total impedance of the circuit is unchanged
(D) total impedance of the circuit increases

Answer: (B) the bulb glows brighter

Solution:

Impedance

$$
Z=\sqrt{\frac{1}{(\omega C)^{2}}+R^{2}}
$$

As ω increases, Z decreases
Hence, the bulb will glow brighter
Question 5) A series R-C combination is connected to an AC voltage of angular frequency $\boldsymbol{\omega}=\mathbf{5 0 0}$ radian $/ \mathrm{s}$. If the impedance of the $R-C$ circuit is $\mathbf{R} \sqrt{ } \mathbf{1 . 2 5}$ the time constant (in millisecond) of the circuit is?
(A) 1
(B) 2
(C) 3
(D) 4

Answer: (D) 4
Solution:
Given, $\omega=500$ radian $/ \mathrm{s}$
The capacitance of the capacitor is C
$X_{c}=1 / \omega C=1 / 500 C$
Impedance of the circuit, $\mathrm{Z}=\mathrm{R} \sqrt{ } 1.25$
Using $\mathrm{Z}^{2}=\mathrm{R}^{2}+\mathrm{X}_{\mathrm{c}}{ }^{2}$
$1.25 \mathrm{R}^{2}=\mathrm{R}^{2}+1 /(500)^{2} \mathrm{C}^{2}$
$0.25 \mathrm{R}^{2}=1 /\left(0.25 \times 10^{6}\right) \mathrm{C}^{2}$
$\mathrm{R}^{2} \mathrm{C}^{2}=10^{-6} /(0.25)^{2}$
$\Rightarrow \mathrm{RC}=10^{-3} / 0.25$
$=0.004 \mathrm{~s}$
$=4 \mathrm{~ms}$
Question 6) In the given circuit, the AC source has $\omega=100 \mathrm{rad} / \mathrm{s}$. Considering the inductor and capacitor to be ideal, the correct choice (s) is(are)

(A) The current through the circuit, I is 0.3 A .
(B) The current through the circuit, is $0.3 \sqrt{ } 2 \mathrm{~A}$
(C) The voltage across 100Ω resistor $10 \sqrt{ } 2 \mathrm{~V}$
(D) The voltage across 50Ω resistor 10 V

Answer: (A) and (C)

Solution:

In the upper branch the net impedance, $(C=100 \mu \mathrm{~F}, \mathrm{R}=100 \Omega)$
Therefore, the net impedance will be

$$
\begin{aligned}
& \quad Z_{1}=\sqrt{\frac{1}{(\omega C)^{2}}+R^{2}} \\
& \quad Z_{1}=\sqrt{\frac{1}{\left(100 \times 100 \times 10^{-6}\right)^{2}}+100^{2}} \\
& =100 \sqrt{ } 2
\end{aligned}
$$

Current $\mathrm{I}_{1}=\mathrm{V} / \mathrm{Z}_{1}=20 /(100 \sqrt{ } 2)$
$\cos \Phi_{1}=\mathrm{R} /(100 \sqrt{ } 2)$
$=100 /(100 \sqrt{ } 2)$
$=1 / \sqrt{ } 2$

$$
\Rightarrow \Phi_{1}=45^{0}
$$

In the lower branch the net impedance $(\mathrm{L}=0.5 \mathrm{H}, \mathrm{R}=50 \Omega)$
Therefore, the net impedance will be

$$
\begin{aligned}
& \quad Z_{2}=\sqrt{(\omega L)^{2}+R^{2}} \\
& Z_{2}=\sqrt{(0.5 \times 100)^{2}+100^{2}} \\
& =50 \sqrt{ } 2
\end{aligned}
$$

Current, $\mathrm{I}_{2}=\mathrm{V} / \mathrm{Z}_{2}$
$=20 /(50 \sqrt{ } 2)$
$\cos \Phi_{1}=\mathrm{R} /(50 \sqrt{ } 2)$
$=50 /(50 \sqrt{ } 2)$
$=1 / \sqrt{ } 2$
$\Rightarrow \Phi_{1}=45^{0}$
Thus the total current I is given by the summation of I_{1} and I_{2} which differ by 90° in phase and hence

$$
I=\sqrt{I_{1}^{2}+I_{2}^{2}}
$$

$=(1 / \sqrt{ } 10) \mathrm{A} \approx 0.3 \mathrm{~A}$
Voltage across $100 \Omega=\mathrm{I}_{1} \mathrm{R}_{1}=[20 /(100 \sqrt{ } 2)] \times 100=10 \sqrt{ } 2 \mathrm{~V}$
Voltage across $50 \Omega=\mathrm{I}_{2} \mathrm{R}_{2}=[20 /(50 \sqrt{ } 2)] \times 50=10 \sqrt{ } 2 \mathrm{~V}$
Question 7) An alternating voltage $v(t)=\mathbf{2 2 0} \sin 100 \pi t$ volt is applied to a purely resistive load of 50Ω. The time taken for the current to rise from half of the peak value to the peak value is
(A) 5 ms
(B) 2.2 ms
(C) 7.2 ms
(D) 3.3 ms

Answer: (D) 3.3 ms
Solution:

Given,
$\mathrm{V}(\mathrm{t})=220 \sin 100 \pi \mathrm{t}$
$I(t)=(220 / 50) \sin 100 \pi t$
Phase to be covered $\theta=60^{\circ}=\pi / 3$
Time taken, $\mathrm{t}=\theta / \omega$
$=(\pi / 3) / 100 \pi$
$=(1 / 300) \mathrm{sec}$
$=3.3 \mathrm{~ms}$
Question 8) A sinusoidal voltage $\mathrm{V}(\mathrm{t})=\mathbf{1 0 0} \sin (500 t)$ is applied across a pure inductance of $\mathrm{L}=\mathbf{0 . 0 2} \mathrm{H}$. The current through the coil is
(A) $10 \cos (500 t)$
(B) $-10 \cos (500 \mathrm{t})$
(C) $10 \sin (500 \mathrm{t})$
(D) $-10 \sin (500 t)$

Answer: (B) -10 $\cos (500$ t)

Solution:

In a pure inductive circuit current always lags behind the emf by $\pi / 2$
If $v(t)=v_{0} \sin \omega t$
Then, $\mathrm{I}(\mathrm{t})=\mathrm{I}_{0} \sin (\omega \mathrm{t}-\pi / 2)$
Given, $\mathrm{V}(\mathrm{t})=100 \sin (500 \mathrm{t})$
And $\mathrm{I}_{0}=\mathrm{E}_{0} / \omega \mathrm{L}$
$=100 /(500 \times 0.02)=10 \sin (500 t-\pi / 2)$
$\mathrm{I}_{0}=-10 \cos (500 \mathrm{t})$
Question 9) An AC circuit has $R=100 \Omega, C=2 \mu \mathrm{~F}$ and $\mathrm{L}=80 \mathrm{mH}$, connected in series. The quality factor of the circuit is
(A) 2
(B) 0.5
(C) 20
(D) 400

Answer: (A) 2

Solution:

Quality factor

$$
\begin{aligned}
& Q=\frac{1}{R} \sqrt{\frac{L}{C}} \\
& Q=\frac{1}{100} \sqrt{\frac{80 \times 10^{-3}}{2 \times 10^{-6}}} \\
& Q=\frac{1}{100} \sqrt{40 \times 10^{3}} \\
& =200 / 100=2
\end{aligned}
$$

Question 10) When the rms voltage V_{L}, V_{C} and V_{R} are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an $A C$ source, it is found that the ratio $V_{L}: V_{C}: V_{R}=1: 2: 3$. If the rms voltage of the $A C$ sources is 100 V , The V_{R} is close to
(A) 50 V
(B) 70 V
(C) 90 V
(D) 100 V

Answer: (C) 90 V

Solution:

Given,
$\mathrm{V}_{\mathrm{L}:} \mathrm{V}_{\mathrm{C}}: \mathrm{V}_{\mathrm{R}}=1: 2: 3$
$\mathrm{V}=100 \mathrm{~V}$
$\Rightarrow \mathrm{V}_{\mathrm{R}}=3 \mathrm{~K}, \mathrm{~V}_{\mathrm{L}}=\mathrm{K}, \mathrm{V}_{\mathrm{C}}=2 \mathrm{~K}$
We know,

$$
\begin{aligned}
& V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}} \\
& 100=\sqrt{9 K^{2}+K^{2}} \\
& 100=\sqrt{ } 10 \mathrm{~K} \\
& \mathrm{~K}=100 / \sqrt{ } 10 \\
& \mathrm{~V}_{\mathrm{R}}=3 \mathrm{~K}=(3 \times 100) / \sqrt{ } 10 \\
& =94.86 \text { volts }
\end{aligned}
$$

So, V_{R} is close to 90 V

