The Learning App

JEE Advanced Previous Year Questions with Solutions on Kinematics

Question 1) Bird is flying in north-east direction with or $v=4 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}$ with respect to the wind and the wind blowing from north to south with speed $1 \mathrm{~m} / \mathrm{s}$. Find the magnitude of the displacement of the bird in 3 sec .
(a) 5 m
(b) 15 m
(c) 10 m
(d) 20 m

Answer: (b) 15 m
Solution:

The velocity of bird w.r.t. wind, $\vec{v}_{\text {bw }}=\left(4 \sqrt{ } 2 \cos 45^{\circ} \hat{\imath}+4 \sqrt{ } 2 \sin 45^{\circ} \hat{j}\right) \mathrm{m} / \mathrm{s}$
Now velocity of wind w.r.t ground is,
$\vec{v}_{w g}=-1 \hat{\jmath} \mathrm{~m} / \mathrm{s}$
From relative motion relation, the velocity of bird w.r.t. ground
$\Rightarrow \vec{v}_{b g}=\vec{v}_{b w}+\vec{v}_{w g}$
$\vec{v}_{b g}=4 \hat{\imath}+4 \hat{\jmath}-1 \hat{\jmath}=4 \hat{\imath}+3 \hat{\jmath}$
$\left|\vec{v}_{b g}\right|=\sqrt{ }(3)$
$2+(4)$
$2=5 \mathrm{~m} / \mathrm{s}$
Then displacement of bird in 3 sec ,
$\Rightarrow d=\left|\vec{v}_{b g}\right| \times t$
or, $d=5 \times 3=15 \mathrm{~m} / \mathrm{s}$

Question 2) Four planks are arranged in a lift going upwards with an acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ as shown in the figure. Find the normal reaction applied by the lift on 10 kg block: ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

a. 500
b. 700
c. 672
d. 800

Solution: (b) $\mathbf{7 0 0}$

$\mathrm{N}-70 \mathrm{~g}=70 \times 0.2$
$N=70(g+0.2)$
$N=700$
Question 3) A projectile is thrown from a point O on the ground at an angle 45° from the vertical and with a speed of $5 \sqrt{ } \mathbf{~ m} / \mathrm{s}$. The projectile at the highest point of its trajectory splits into two equal parts. One part falls vertically down to the ground, 0.5 s after the splitting. The other part, t seconds after the splitting, falls to the ground at a distance x meters from the point 0 . The acceleration due to gravity $g=10 \mathrm{~m} / \mathrm{s}^{2}$. The value of t is \qquad .

Answer: 0.5

Solution:

$H=u^{2} \sin ^{2} \theta / 2 g$

$$
=\frac{50}{2 \times 10} \times \frac{1}{2}=\frac{5}{4}
$$

$t=\sqrt{\frac{2 H}{g}}=\sqrt{\frac{2 \times 5}{4 \times 10}}=(1 / 2) s=0.5 \mathrm{~s}$

Question 4) A projectile is thrown from a point O on the ground at an angle 45° from the vertical and with a speed of $5 \sqrt{ } \mathbf{~} \mathrm{~m} / \mathrm{s}$. The projectile at the highest point of its trajectory splits into two equal parts. One part falls vertically down to the ground, 0.5 s after the splitting. The other part, t seconds after the splitting, falls to the ground at a distance x meters from the point 0 . The acceleration due to gravity $g=10 \mathrm{~m} / \mathrm{s}^{2}$. The value of \mathbf{x} is \qquad _.

Answer: 7.5

Solution:

$X=3 R / 2$ as $X_{c m}=R$
$R=u^{2} \sin ^{2} \theta / g$
$=50 / 10=5$
$\Rightarrow X=3 R / 2=15 / 2=7.5 \mathrm{~m}$
Question 5) A particle of mass $M=0.2 \mathrm{~kg}$ is initially at rest in the $x y$-plane at a point ($x=-1, y=$ $-h$), where $I=10 \mathrm{~m}$ and $\mathrm{h}=1 \mathrm{~m}$. The particle is accelerated at time $\mathrm{t}=0$ with a constant acceleration $a=10 \mathrm{~m} / \mathrm{s}^{2}$ along the positive \mathbf{x}-direction. Its angular momentum and torque with respect to the origin, in SI units, are represented by \vec{L} and $\vec{\tau}$, respectively. $\hat{i}, \hat{j}, \hat{k}$, and are unit vectors along the positive \mathbf{x}, \mathbf{y} and \mathbf{z}-directions respectively. If $\hat{k}=\hat{i} \times \hat{j}$ then which of the following statement(s) is(are) correct?
(A) The particle arrives at the point $(x=I, y=-h)$ at time $t=2 s$
(B) $\vec{\tau}=2 \hat{k}$ when the particle passes through the point $(\mathrm{x}=\mathrm{I}, \mathrm{y}=-\mathrm{h})$
(C) $\vec{L}=4 \hat{k}$ when the particle passes through the point $(\mathrm{x}=\mathrm{I}, \mathrm{y}=-\mathrm{h})$
(D) $\vec{\tau}=\hat{k}$ when the particle passes through the point $(\mathrm{x}=0, \mathrm{y}=-\mathrm{h})$

Answer: (A,B,C)
Solution:

$t=\sqrt{\frac{2 \times 20}{10}}=2 \mathrm{~s}$
$\vec{\tau}=(0.2 \times 10 \times 1) \hat{k}=2 \hat{k}$
$\vec{L}=(0.2 \times(10 \times 2) \times 1) \hat{k}=4 \hat{k}$

Question 6) One end of a horizontal uniform beam of weight W and length L is hinged on a vertical wall at point O and its other end is supported by a light inextensible rope. The other end of the rope is fixed at point Q, at a height L above the hinge at point O. A block of weight αW is attached at the point P of the beam, as shown in the figure (not to scale). The rope can sustain a maximum tension of ($2 \sqrt{ } 2$) W Which of the following statement(s) is(are) correct?

(A) The vertical compenent of reaction force at O does not depend on α
(B) The horizontal component of reaction force at O is equal to W for $\alpha=0.5$
(C) The tension in the rope is 2 W for $\alpha=0.5$
(D) The rope breaks if $\alpha>1.5$

Answer: (A,B.D)

Solution:

$W \times(L / 2)+\alpha W \times L=T \times(1 / \sqrt{ } 2) \times L$
$\Rightarrow T=\sqrt{2}\left(\frac{1}{2}+\alpha\right) W$
$T \times \frac{1}{\sqrt{2}}+F_{v}=W+\alpha W$
$\frac{W}{2}+\alpha W+F_{v}=W+\alpha W$
$F_{v}=W / 2$
At $\alpha=1 / 2, \quad T=\sqrt{2}\left(\frac{1}{2}+\frac{1}{2}\right) W^{=\sqrt{ } 2 \mathrm{~W}}$
$F_{H}($ at $\alpha=1 / 2)=\sqrt{ } 2 W \times 1 / 2=W$
At $\alpha=1.5, T=\sqrt{ } 2 \times(1 / 2+3 / 2) \mathrm{W}=2 \sqrt{ } 2 \mathrm{~W}$
Question 7) Airplanes A and B are flying with constant velocity in the same vertical plane at angles 30° and 60° with respect to the horizontal respectively as shown in the figure. The speed
of A is $100 \sqrt{ } 3 \mathrm{~m} / \mathrm{s}$. At time $t=0 \mathrm{~s}$, an observer in A finds B at a distance of 500 m . This observer sees B moving with a constant velocity perpendicular to the line of motion of A. If at $t=t_{0}$, A just escapes being hit by B, t_{0} in seconds is

Answer: 5 s
Solution:

$\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}} \cos 300$
$\Rightarrow 100 \sqrt{ } 3=v_{B} \times(\sqrt{ } 3 / 2)$
$\Rightarrow \mathrm{v}_{\mathrm{B}}=200 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}_{0}=\mathrm{d} / \mathrm{v}_{\mathrm{B}} \sin 30^{\circ}$
$=500 /(200 \times 1 / 2)$
$=5 \mathrm{~s}$
Question 8) A bus is moving with a constant velocity v_{1} along a horizontal road. A man standing inside the bus throws a ball upward with velocity v_{0} and catches the ball. The magnitude of displacement of the ball with respect to the ground is
(A) $v_{0}{ }^{2} / g$
(B) Zero
(C) $2 \mathrm{v}_{0} \mathrm{v}_{1} / \mathrm{g}$
(D) $v_{0} v_{1} / g$

Answer: (C) $\mathbf{2} \mathbf{v}_{0} \mathbf{v}_{1} / \mathbf{g}$

Solution:

$\mathrm{T}=2 \mathrm{v}_{0} / \mathrm{g}$
$X=2 v_{0} v_{1} / g$
Question 9) A particle starts sliding down a frictionless inclined plane. If Sn is the distance travelled by it from time $t=(n-1)$ sec to $t=n \sec$, then the ratio S_{n} / S_{n+1} is
(A) $(2 n-1) /(2 n+1)$
(B) $(2 n+1) / 2 n$
(C) $2 n /(2 n+1)$
(D) $(2 n+1) /(2 n-1)$

Answer: (A) (2n-1)/(2n+1)

Solution:

$S_{n}=u+(a / 2)(2 n-1)$
$S_{n}=(g \sin \theta / 2)(2 n-1)$
$S_{n+1}=(g \sin \theta / 2)(2 n+1)$
So, $S_{n}=(2 n-1) /(2 n+1)$
Question 10) A particle moving in a straight line covers half the distance with speed of $3 \mathrm{~m} / \mathrm{s}$. The other half of the distance is covered in two equal time intervals with speed of $4.5 \mathrm{~m} / \mathrm{s}$ and $7.5 \mathrm{~m} / \mathrm{s}$ respectively. The average speed of the particle during this motion is
(A) $4.0 \mathrm{~m} / \mathrm{s}$
(B) $5.0 \mathrm{~m} / \mathrm{s}$
(C) $5.5 \mathrm{~m} / \mathrm{s}$
(D) $4.8 \mathrm{~m} / \mathrm{s}$

Answer: 1) 4 m/s

Solution:

Let the total distance covered by the particle be S . Given that, the particle covers $\mathrm{S} / 2$ with a speed of $3 \mathrm{~m} / \mathrm{s}$.

The time taken to cover this distance is, $\left(t_{1} / 2\right) / 3$
$t_{1}=S / 6$
Let the time taken to complete the other half distance be $2 \mathrm{t}_{2}$. We have,
$\left(\mathrm{t}_{2} \times 4.5\right)+\left(\mathrm{t}_{2} \times 7.5\right)=\mathrm{S} / 2$
$12 \mathrm{t}_{2}=\mathrm{S} / 2$
$\mathrm{t}_{2}=\mathrm{S} / 24$
The average speed VA = total distance/total time
$=S /\left(t_{1}+t_{2}\right)$
$=\mathrm{S} /\{(\mathrm{S} / 6)+(\mathrm{S} / 24)\}$
$V_{A}=4 \mathrm{~m} / \mathrm{s}$

