Question 1) A heavy nucleus \mathbf{N}, at rest, undergoes fission $\mathbf{N} \rightarrow \mathbf{P}+\mathbf{Q}$, where P and \mathbf{Q} are two lighter nuclei. Let $\delta=M_{N}-M_{P}-M_{Q}$, where M_{P}, M_{Q} and M_{N} are the masses of P, Q and N, respectively. E_{P} and E_{Q} are the kinetic energies of P and Q, respectively. The speeds of P and Q are V_{P} and V_{Q}, respectively. If c is the speed of light, which of the following statement(s) is(are) correct?
(A) $E_{P}+E_{Q}=c^{2} \delta$
(B)
$E_{p}=\left(\frac{M_{p}}{M_{p}+M_{Q}}\right) c^{2} \delta$
(C)
$\frac{V_{P}}{V_{Q}}=\frac{M_{Q}}{M_{P}}$
(D) The magnitude of momentum for P as well as Q is
$c \sqrt{2 \mu \delta}$
, where
$\mu=\frac{M_{P} M_{Q}}{M_{p}+M_{Q}}$

Answer: (A,C,D)

Solution:

The magnitude of momentum for P as well as Q is $\mathrm{c} \sqrt{ } 2 \mu \delta$, where $\mu=\mathrm{M}_{\mathrm{P}} \mathrm{M}_{\mathrm{Q}} /(\mathrm{MP}+\mathrm{MQ})$
Given:
$\mathrm{N} \rightarrow \mathrm{P}+\mathrm{Q}$
Energy released in this fission will be,
$\left(\mathrm{M}_{\mathrm{N}}-\mathrm{M}_{\mathrm{P}}-\mathrm{M}_{\mathrm{Q}}\right) \mathrm{c}^{2}=\delta \mathrm{c}^{2}$
This will be distributed kinetic energy of P and Q.
$\mathrm{E}_{\mathrm{P}}+\mathrm{E}_{\mathrm{Q}}=\delta \mathrm{c}^{2}-----(1)$
By conservation of momentum,
$\mathrm{M}_{\mathrm{P}} \mathrm{V}_{\mathrm{P}}=\mathrm{M}_{\mathrm{Q}} \mathrm{V}_{\mathrm{Q}}$
So, $\mathrm{v}_{\mathrm{P}} / \mathrm{v}_{\mathrm{Q}}=\mathrm{M}_{\mathrm{Q}} / \mathrm{M}_{\mathrm{P}} \ldots$ (2)
Kinetic energy be written as $\mathrm{KE}=\mathrm{p}^{2} / 2 \mathrm{M}$
So equation (1), became,
$\Rightarrow \mathrm{p}^{2} / 2 \mathrm{MP}+\mathrm{p}^{2} / 2 \mathrm{MQ}=\delta \mathrm{c}^{2}$
$\Rightarrow \mathrm{p}^{2} / 2=\mathrm{M}_{\mathrm{P}} \mathrm{M}_{\mathrm{Q}} /\left(\mathrm{M}_{\mathrm{p}}+\mathrm{M}_{\mathrm{Q}}\right) \delta \mathrm{c}^{2}$
$\therefore \mathrm{E}_{\mathrm{P}}=\mathrm{p}^{2} / 2 \mathrm{M}_{\mathrm{P}}=\mathrm{M}_{\mathrm{Q}} /\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{Q}}\right) \delta \mathrm{c}^{2}$
Similarly, $\mathrm{E}_{\mathrm{Q}}=\mathrm{M}_{\mathrm{P}} /\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{Q}}\right) \delta \mathrm{c}^{2}$
From eq. (3), momentum of P or Q will be,
$\mathrm{p}=\sqrt{ } 2 \mathrm{M}_{\mathrm{P}} \mathrm{M}_{\mathrm{Q}} /\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{Q}}\right) \delta \mathrm{c}^{2}=\mathrm{c} \sqrt{ } 2 \mu \delta$
Where, $\mu=\mathrm{M}_{\mathrm{P}} \mathrm{M}_{\mathrm{Q}} /\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{Q}}\right)$
Hence, (A), (C) and (D) are the correct options
Question 2) A heavy nucleus Q of half-life 20 minutes undergoes alpha-decay with a probability of $\mathbf{6 0 \%}$ and beta-decay with a probability of $\mathbf{4 0 \%}$. Initially, the number of Q nuclei is $\mathbf{1 0 0 0}$. The number of alpha-decays of Q in the first one hour is
(A) 50
(B) 75
(C) 350
(D) 525

Answer: (D) 525

Solution:

$\mathrm{t}_{1 / 2}=20 \mathrm{~min}$
In 60 min , no. of half-life $=3$
$=1000-1000(1 / 2)^{3}=875$
The number of alpha-decays of Q in the first one hour $=875 \times 0.6=525$
Question 3) Which of the following statement(s) is(are) correct about the spectrum of a hydrogen atom?
(A) The ratio of the longest wavelength to the shortest wavelength in the Balmer series is $9 / 5$
(B) There is an overlap between the wavelength ranges of the Balmer and Paschen series
(C) The wavelengths of the Lyman series are given by $\left(1+1 / \mathrm{m}^{2}\right) \lambda_{0}$ where λ_{0} is the shortest wavelength of Lyman series and m is an integer
(D) The wavelength ranges of Lyman and Balmer series do not overlap

Answer (A, D)

Solution:

For Balmer series :

$$
\frac{1}{\lambda}=R\left[\frac{1}{2^{2}}-\frac{1}{n^{2}}\right]
$$

$$
n=3,4,5--
$$

$\frac{1}{\lambda_{\max }}=R\left[\frac{1}{4}-\frac{1}{9}\right]$
$\frac{1}{\lambda_{\min }}=R\left[\frac{1}{4}\right]$
$\frac{\lambda_{\max }}{\lambda_{\operatorname{man}}}=\frac{9}{5}$
For Layman Series

$$
\begin{aligned}
& \frac{1}{\lambda}=R\left(1-\frac{1}{n^{2}}\right) \\
& n=2,3,4-- \\
& 1 / \lambda_{\min }=\mathrm{R} \\
& \Rightarrow \lambda=\lambda_{0} n^{2} /\left(n^{2}-1\right)
\end{aligned}
$$

Question 4) For an element decaying through simultaneous reaction, the half-life for the respective decaying path is $1400 s$ and $700 s$. Find the time taken when the number of atoms becomes $\mathbf{N}_{0} / 3$ in the element sample. (N_{0} is the initial number of atoms in sample)
(A) $(1400 / 5)$ In 3
(B) $(1400 / 3)$ In 3
(C) $(1400 / 3) \ln 2$
(D) $(700 / 3) \ln 2$

Solution: (b) (1400/3) In 3
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{\mathrm{t} \tau}$
$\mathrm{N}_{0} / 3=\mathrm{N}_{0} \mathrm{e}^{\mathrm{t} \tau}$
Taking natural log on both sides,

$$
\begin{aligned}
& \ln \left(\frac{1}{3}\right)=\left(\frac{-t}{\tau}\right) \ln e \\
& -\ln 3=\left(\frac{-t}{\frac{1400}{3}}\right) \times 1
\end{aligned}
$$

Therefore, $\mathrm{t}=(1400 / 3) \ln 3$

Question 5) The ratio of the mass densities of nuclei ${ }^{40} \mathrm{Ca}$ and ${ }^{16} \mathrm{O}$ is close to
(A) 1
(B) 0.1
(C) 5
(D) 2

Answer: (a) 1

Solution:

Nuclear density is independent of atomic number. The mass density of all nuclei is the same. So the ratio is 1 .
Question 6) For the uranium nucleus how does its mass vary with volume?
(A) $m \propto V$
(B) $m \propto 1 / V$
(C) $\mathrm{m} \propto \sqrt{ } \mathrm{V}$
(D) $m \propto V^{2}$

Answer: (A) m $\propto \mathbf{V}$

Solution:

We know that the radius of the nucleus
$\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}$
where A is the mass number
$\mathrm{R}^{3}=\mathrm{R}_{0}{ }^{3} \mathrm{~A}$
Volume, $V=(4 / 3) \pi R^{3}$
$=(4 / 3) \pi \mathrm{R}_{0}{ }^{3} \mathrm{~A}$
Therefore, mass \propto volume
Question 7) Find the Binding energy per nucleon for ${ }^{120} \mathbf{5 0} \mathbf{S n}$. Mass of proton $\mathbf{m}_{\mathrm{p}}=\mathbf{1 . 0 0 7 8 3} \mathbf{U}$, mass of neutron $m_{n}=1.00867 \mathrm{U}$ and mass of tin nucleus $\mathrm{m}_{\mathrm{Sn}}=119.902199 \mathrm{U}$. (take $\mathbf{1 U}=931 \mathrm{MeV}$)
(A) 7.5 MeV
(B) 9.0 MeV
(C) 8.0 MeV
(D) 8.5 MeV

Answer: (D) 8.5 MeV

Solution:

Mass defect, $\Delta \mathrm{m}=\left(50 \mathrm{~m}_{\mathrm{p}}+70 \mathrm{~m}_{\mathrm{n}}\right)-\mathrm{m}_{\text {sn }}$
$=(50 \times 1.00783+70 \times 1.00867)-(119.902199)$
$=(50.3915+70.6069)-(119.902199)$
$=(120.9984)-(119.902199)$
$=1.096201$
Binding energy $=(\Delta \mathrm{m}) \mathrm{c}^{2}$
$=(\Delta \mathrm{m}) \times 931=1.096201 \times 931=1020.56$
Binding energy/Nucleon $=1020.56 / 120=8.5 \mathrm{MeV}$
Question 8) Imagine that a reactor converts all given mass into energy and that it operates at a power level of 10^{9} watt. The mass of the fuel consumed per hour in the reactor will be (velocity of light, $c=3 \times 10^{8} \mathbf{~ m} / \mathrm{s}$).
(A) 0.96 gm
(B) 0.8 gm
(C) $4 \times 10^{-2} \mathrm{gm}$
(D) $6.6 \times 10^{-5} \mathrm{gm}$

Answer: (C) $\mathbf{4 \times 1 0} \mathbf{0}^{-\mathbf{2}} \mathrm{gm}$

Solution:

Energy converted in one hour $=\mathrm{pxt}$
$=10^{9} \times 3600$
$=36 \times 10^{11} \mathrm{~J}$
$\mathrm{M}=\mathrm{E} / \mathrm{c}^{2}$
$=36 \times 10^{11} /\left(3 \times 10^{8}\right)^{2}$
$=4 \times 10^{-5} \mathrm{~kg}$

$$
=4 \times 10^{-2} \mathrm{gm}
$$

Question 9) Fast neutrons can easily be slowed down by

(A) the use of lead shielding
(B) passing them through water
(C) elastic collisions with heavy nuclei
(D) applying a strong electric field

Answer: (B) passing them through water

Solutions:

Fast neutrons can easily be slowed down by passing them through the water. In nuclear reactors, heavy water is used as a moderator.

Question 10) During a nuclear fusion reaction

(A) a heavy nucleus breaks into two fragments by itself
(B) a light nucleus bombarded by thermal neutrons breaks up
(C) a heavy nucleus bombarded by thermal neutrons breaks up
(D) two light nuclei combine to give a heavier nucleus and possibly other products.

Answer: (D) two light nuclei combine to give a heavier nucleus and possibly other products.

Solution:

In a nuclear fusion reaction, two light nuclei combine to give a heavier nucleus and possibly other products and a huge amount of energy.

