

JEE Main Maths Conic Section Previous Year Questions With Solutions

Question 1: The equation of $2x^2 + 3y^2 - 8x - 18y + 35 = k$ represents a ______.

Solution:

Given equation, $2x^2 + 3y^2 - 8x - 18y + 35 - k = 0$

Compare with $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$, we get

$$a = 2$$
, $b = 3$, $h = 0$, $g = -4$, $f = -9$, $c = 35 - k$

$$\Delta$$
 = abc + 2fgh - af² - bg² - ch² = 6 (35 - k) + 0 - 162 - 48 - 0

$$\Delta = 210 - 6k - 210 = -6k$$
;

$$\Delta = 0$$
, if $k = 0$

So, that given equation is a point if k = 0.

Question 2: The locus of the midpoint of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with the directrix _____.

Solution:

Let midpoint be (h, k) and moving point be (at2, 2at).

Let focus is (a, 0).

So h =
$$[at^2 + a]/2$$
, k = $[2at + 0]/2$

$$=> t = k/a$$

So
$$2h = a(k/a)^2 + a$$

$$= (k^2/a) + a$$

$$=> k^2 = 2ah - a^2$$

$$=> k^2 = 2a(h - a/2)$$

Replace (h, k) by (x, y)

$$y^2 = 2a(x - a/2)$$

Directrix is (x - a/2) = -a/2

$$=> x = 0$$

So x = 0 is the directrix.

Question 3: On the parabola $y = x^2$, the point least distance from the straight line y = 2x - 4 is

Solution:

Given, parabola $y = x^2$ (i)

Straight line y = 2x - 4(ii)

From (i) and (ii),

$$x^2 - 2x + 4 = 0$$

Let
$$f(x) = x^2 - 2x + 4$$
,

$$f'(x) = 2x - 2$$
.

For least distance, f'(x) = 0

$$\Rightarrow$$
 2x - 2 = 0

x = 1

From $y = x^2$, y = 1

So, the point least distant from the line is (1, 1).

Question 4: The line x - 1 = 0 is the directrix of the parabola, $y^2 - kx + 8 = 0$. Then, one of the values of k is _____.

Solution:

The parabola is $y^2 = 4 * [k / 4] (x - [8 / k]).$

Putting y = Y, x - (8/k) = X, the equation is $Y^2 = 4 * [k/4] * X$

The directrix is X + (k/4) = 0, i.e. x - (8/k) + (k/4) = 0.

But x - 1 = 0 is the directrix.

So,
$$[8/k] - (k/4) = 1$$

$$\Rightarrow$$
 k = -8, 4

Question 5: The centre of the circle passing through the point (0, 1) and touching the curve $y = x^2$ at (2, 4) is _____.

Solution:

Tangent to the parabola $y = x^2$ at (2, 4) is [1 / 2] (y + 4) = x * 2 or

$$4x - y - 4 = 0$$

It is also a tangent to the circle so that the centre lies on the normal through (2, 4) whose equation is $x + 4y = \lambda$, where $2 + 16 = \lambda$.

Therefore, x + 4y = 18 is the normal on which lies (h, k).

$$h + 4k = 18 \dots (i)$$

Again, distance of centre (h, k) from (2, 4) and (0, 1) on the circle are equal.

Hence,
$$(h-2)^2 + (k-4)^2 = h^2 + (k-1)^2$$

So,
$$4h + 6k = 19$$
(ii)

Solving (i) and (ii), we get the centre = (-16 / 5, 53 / 10)

Question 6: Find the equation of the axis of the given hyperbola $x^2/3 - y^2/2 = 1$ which is equally inclined to the axes.

Solution:

$$x^2/3 - y^2/2 = 1$$

Equation of tangent is equally inclined to the axis i.e., $\tan \theta = 1 = m$.

Equation of tangent $y = mx + \sqrt{(a^2m^2 - b^2)}$

Given equation is $[x^2/3] - [y^2/2] = 1$ is an equation of hyperbola which is of form $[x^2/a^2] - [y^2/b^2] = 1$.

Now, on comparing $a^2 = 3$, $b^2 = 2$

$$y = 1 * x + \sqrt{(3-2)}$$

$$y = x + 1$$

Question 7: If $4x^2 + py^2 = 45$ and $x^2 - 4y^2 = 5$ cut orthogonally, then the value of p is _____.

Solution:

Slope of 1st curve $(dy / dx)_1 = -4x / py$

Slope of 2^{nd} curve $(dy / dx)_{II} = x / 4y$

For orthogonal intersection (-4x / py) (x / 4y) = -1

$$\chi^2 = p y^2$$

On solving equations of given curves x = 3, y = 1

$$p(1) = (3)^2 = 9$$

$$p = 9$$

Question 8: If the foci of the ellipse $(x^2 / 16) + (y^2 / b^2) = 1$ and the hyperbola $(x^2 / 144) - (y^2 / 81) = 1 / 25$ coincide, then the value of b^2 is _____.

Solution:

Hyperbola is $(x^2 / 144) - (y^2 / 81) = 1 / 25$

$$a = \sqrt{(144/25)}$$
; $b = \sqrt{(81/25)}$

$$e_1 = \sqrt{(1 + b^2/a^2)}$$

$$=\sqrt{(1+81/144)}$$

$$= 5/4$$

Therefore, foci = $(ae_1, 0) = ([12/5] * [5/4], 0) = (3, 0)$

Therefore, focus of ellipse = (4e, 0) i.e. (3, 0)

$$=> e = 3/4$$

use formula $e^2 = 1 - (b^2/a^2)$

Hence
$$b^2 = 16 (1 - [9 / 16]) = 7$$

Question 9: Let E be the ellipse $x^2 / 9 + y^2 / 4 = 1$ and C be the circle $x^2 + y^2 = 9$. Let P and Q be the points (1, 2) and (2, 1), respectively. Then

A) Q lies inside C but outside E

- B) Q lies outside both C and E
- C) P lies inside both C and E
- D) P lies inside C but outside E

Solution:

The given ellipse is $[x^2/9] + [y^2/4] = 1$. The value of the expression $[x^2/9] + [y^2/4] - 1$ is positive for x = 1, y = 2 and negative for x = 2, y = 1. Therefore, P lies outside E and Q lies inside E. The value of the expression $x^2 + y^2 - 9$ is negative for both the points P and Q. Therefore, P and Q both lie inside C. Hence, P lies inside C but outside E.

Hence option d is the answer.

Question 10: The equation of the director circle of the hyperbola $[x^2 / 16] - [y^2 / 4] = 1$ is given by

Solution:

Equation of the director circle of hyperbola is $x^2 + y^2 = a^2 - b^2$. Here $a^2 = 16$, $b^2 = 4$

Therefore, $x^2 + y^2 = 12$ is the required director circle.

Question 11: If m_1 and m_2 are the slopes of the tangents to the hyperbola $x^2 / 25 - y^2 / 16 = 1$ which pass through the point (6, 2), then find the relation between the sum and product of the slopes.

Solution:

The line through (6, 2) is y - 2 = m(x - 6)

$$y = mx + 2 - 6m$$

Now from condition of tangency, $(2 - 6m)^2 = 25m^2 - 16$

$$36m^2 + 4 - 24m - 25m^2 + 16 = 0$$

$$11m^2 - 24m + 20 = 0$$

Obviously its roots are m_1 and m_2 , therefore $m_1 + m_2 = 24 / 11$ and $m_1 m_2 = 20 / 11$.

Question 12: The eccentricity of the curve represented by the equation $x^2 + 2y^2 - 2x + 3y + 2 = 0$ is

Solution:

Equation $x^2 + 2y^2 - 2x + 3y + 2 = 0$ can be written as $(x - 1)^2 / 2 + (y + 3 / 4)^2 = 1 / 16$

 $[(x-1)^2]/(1/8) + [(y+3/4)^2]/(1/16) = 1$, which is an ellipse with $a^2 = 1/8$ and $b^2 = 1/16$

$$e = \sqrt{(1 - b^2/a^2)}$$

$$e^2 = 1 - 1/2$$

$$e = 1 / \sqrt{2}$$

Question 13: The foci of the ellipse 25 $(x + 1)^2 + 9 (y + 2)^2 = 225$ are at ______.

Solution:

$$[25(x + 1)^2/225] + [9(y + 2)^2/225] = 1$$

Here,
$$a = \sqrt{225 / 25} = 15 / 5 = 3$$

$$b = \sqrt{225/9} = 15 / 3 = 5$$

Major axis of the ellipse lies along the y-axis.

$$b^2 = a^2(1 - e^2)$$

$$e = \sqrt{1 - 9/25} = 4/5$$

Focus =
$$(-1, -2 \pm [15 / 3] * [4 / 5])$$

$$= (-1, -2 \pm 4)$$

$$= (-1, 2); (-1, -6)$$

Question 14: The locus of a variable point whose distance from (2, 0) is 2/3 times its distance from the line x = -9 / 2, is _____.

Solution:

Let point P be (x_1, y_1) and Q(2, 0).

Given line \Rightarrow x = -9/2

$$=> 2x + 9 = 0$$

Let PM be distance from P to line 2x + 9 = 0.

So,
$$PQ = (2/3)PM$$

$$= (2/3)(x_1 + 9/2)$$

$$(x_1 + 2)^2 + y_1^2 = 4/9 (x_1 + 9 / 2)^2$$

$$9[x_1^2 + y_1^2 + 4x_1 + 4] = 4(x_1^2 + (81/4) + 9x_1)$$

$$5x_1^2 + 9y_1^2 = 45$$

$$(x_1^2/9) + (y_1^2/5) = 1$$

Locus of (x_1, y_1) is $(x^2/9) + (y^2/5) = 1$, which is the equation of an ellipse.

Question 15: The equation of the ellipse whose latus rectum is 8 and whose eccentricity is $1/\sqrt{2}$, referred to the principal axes of coordinates, is ______.

Solution:

Equation of ellipse = $(x^2/a^2) + (y^2/b^2) = 1$

Latus rectum = $2b^2/a = 8$

$$=> b^2 = 4a ..(i)$$

Given $e = 1/\sqrt{2}$

We know $e^2 = 1 - (b^2/a^2)$

$$1/2 = 1 - 4/a$$

Solving we get a = 8.

So
$$b^2 = 4a = 32$$

So
$$a^2 = 64$$
, $b^2 = 32$

Hence, the required equation of ellipse is $(x^2/64) + (y^2/32) = 1$.