JEE Main Maths Conic Section Previous Year Questions With Solutions

Question 1: The equation of $2 x^{2}+3 y^{2}-8 x-18 y+35=k$ represents a \qquad .

Solution:

Given equation, $2 x^{2}+3 y^{2}-8 x-18 y+35-k=0$
Compare with $\mathrm{ax}^{2}+\mathrm{by}^{2}+2 \mathrm{~h} x \mathrm{y}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$, we get
$a=2, b=3, h=0, g=-4, f=-9, c=35-k$
$\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=6(35-k)+0-162-48-0$
$\Delta=210-6 k-210=-6 k ;$
$\Delta=0$, if $\mathrm{k}=0$
So, that given equation is a point if $\mathrm{k}=0$.
Question 2: The locus of the midpoint of the line segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with the directrix \qquad -

Solution:

Let midpoint be (h, k) and moving point be (at ${ }^{2}, 2 \mathrm{at}$).
Let focus is $(a, 0)$.
So $h=\left[a t^{2}+a\right] / 2, k=[2 a t+0] / 2$
$=>\mathrm{t}=\mathrm{k} / \mathrm{a}$
So $2 h=a(k / a)^{2}+a$
$=\left(k^{2} / a\right)+a$
$=>\mathrm{k}^{2}=2 a h-\mathrm{a}^{2}$
$=>k^{2}=2 a(h-a / 2)$
Replace (h, k) by (x, y)
$y^{2}=2 a(x-a / 2)$

Directrix is $(x-a / 2)=-a / 2$
=> $x=0$

So $x=0$ is the directrix.

Question 3: On the parabola $y=x^{2}$, the point least distance from the straight line $y=2 x-4$ is
\qquad .

Solution:

Given, parabola $y=x^{2}$
Straight line $y=2 x-4$
From (i) and (ii),
$x^{2}-2 x+4=0$
Let $f(x)=x^{2}-2 x+4$,
$f^{\prime}(x)=2 x-2$.
For least distance, $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 2 x-2=0$
$x=1$
From $y=x^{2}, y=1$
So, the point least distant from the line is $(1,1)$.
Question 4: The line $x-1=0$ is the directrix of the parabola, $y^{2}-k x+8=0$. Then, one of the values of k is \qquad .

Solution:

The parabola is $y^{2}=4$ * $[k / 4](x-[8 / k])$.
Putting $y=Y, x-(8 / k)=X$, the equation is $Y^{2}=4 *[k / 4] * X$
The directrix is $X+(k / 4)=0$, i.e. $x-(8 / k)+(k / 4)=0$.
But $x-1=0$ is the directrix.
So, $[8 / k]-(k / 4)=1$
$\Rightarrow \mathrm{k}=-8,4$
Question 5: The centre of the circle passing through the point $(0,1)$ and touching the curve $y=x^{2}$ at (2, 4) is \qquad _.

Solution:

Tangent to the parabola $y=x^{2}$ at $(2,4)$ is $[1 / 2](y+4)=x$ * 2 or
$4 x-y-4=0$
It is also a tangent to the circle so that the centre lies on the normal through $(2,4)$ whose equation is x $+4 y=\lambda$, where $2+16=\lambda$.

Therefore, $x+4 y=18$ is the normal on which lies (h,k).
$h+4 k=18$
Again, distance of centre (h, k) from $(2,4)$ and $(0,1)$ on the circle are equal.
Hence, $(h-2)^{2}+(k-4)^{2}=h^{2}+(k-1)^{2}$
So, $4 \mathrm{~h}+6 \mathrm{k}=19$
Solving (i) and (ii), we get the centre $=(-16 / 5,53 / 10)$
Question 6: Find the equation of the axis of the given hyperbola $x^{2} / 3-y^{2} / 2=1$ which is equally inclined to the axes.

Solution:

$x^{2} / 3-y^{2} / 2=1$
Equation of tangent is equally inclined to the axis i.e., $\tan \theta=1=m$.
Equation of tangent $y=m x+\sqrt{ }\left(a^{2} m^{2}-b^{2}\right)$
Given equation is $\left[x^{2} / 3\right]-\left[y^{2} / 2\right]=1$ is an equation of hyperbola which is of form $\left[x^{2} / a^{2}\right]-\left[y^{2} / b^{2}\right]=1$.
Now, on comparing $\mathrm{a}^{2}=3, \mathrm{~b}^{2}=2$
$y=1 * x+\sqrt{ }(3-2)$
$y=x+1$
Question 7: If $4 x^{2}+p y^{2}=45$ and $x^{2}-4 y^{2}=5$ cut orthogonally, then the value of p is \qquad .

Solution:

Slope of $1^{\text {st }}$ curve $(d y / d x)_{1}=-4 x /$ py
Slope of $2^{\text {nd }}$ curve $(\mathrm{dy} / \mathrm{dx})_{\|}=\mathrm{x} / 4 \mathrm{y}$
For orthogonal intersection ($-4 x / p y$) (x/4y) = -1
$x^{2}=p y^{2}$
On solving equations of given curves $x=3, y=1$
$p(1)=(3)^{2}=9$
$p=9$
Question 8: If the foci of the ellipse $\left(x^{2} / 16\right)+\left(y^{2} / b^{2}\right)=1$ and the hyperbola $\left(x^{2} / 144\right)-\left(y^{2} / 81\right)=1 /$ 25 coincide, then the value of b^{2} is \qquad .

Solution:

Hyperbola is $\left(x^{2} / 144\right)-\left(y^{2} / 81\right)=1 / 25$
$a=\sqrt{ }(144 / 25) ; \quad b=\sqrt{ }(81 / 25)$
$e_{1}=\sqrt{ }\left(1+b^{2} / a^{2}\right)$
$=\sqrt{ }(1+81 / 144)$
$=15 / 12$
$=5 / 4$
Therefore, foci $=\left(\mathrm{ae}_{1}, 0\right)=\left([12 / 5]{ }^{*}[5 / 4], 0\right)=(3,0)$
Therefore, focus of ellipse $=(4 \mathrm{e}, 0)$ i.e. $(3,0)$
$=>e=3 / 4$
use formula $e^{2}=1-\left(b^{2} / a^{2}\right)$
Hence $b^{2}=16(1-[9 / 16])=7$
Question 9: Let E be the ellipse $x^{2} / 9+y^{2} / 4=1$ and C be the circle $x^{2}+y^{2}=9$. Let P and Q be the points (1,2) and (2,1), respectively. Then
A) Q lies inside C but outside E
B) Q lies outside both C and E
C) P lies inside both C and E
D) P lies inside C but outside E

Solution:

The given ellipse is $\left[x^{2} / 9\right]+\left[y^{2} / 4\right]=1$. The value of the expression $\left[x^{2} / 9\right]+\left[y^{2} / 4\right]-1$ is positive for x $=1, y=2$ and negative for $x=2, y=1$. Therefore, P lies outside E and Q lies inside E. The value of the expression $x^{2}+y^{2}-9$ is negative for both the points P and Q. Therefore, P and Q both lie inside C. Hence, P lies inside C but outside E.

Hence option d is the answer.
Question 10: The equation of the director circle of the hyperbola $\left[x^{2} / 16\right]-\left[y^{2} / 4\right]=1$ is given by
\qquad .

Solution:

Equation of the director circle of hyperbola is $x^{2}+y^{2}=a^{2}-b^{2}$. Here $a^{2}=16, b^{2}=4$
Therefore, $x^{2}+y^{2}=12$ is the required director circle.
Question 11: If m_{1} and m_{2} are the slopes of the tangents to the hyperbola $x^{2} / 25-y^{2} / 16=1$ which pass through the point $(6,2)$, then find the relation between the sum and product of the slopes.

Solution:

The line through $(6,2)$ is $y-2=m(x-6)$
$y=m x+2-6 m$
Now from condition of tangency, $(2-6 m)^{2}=25 m^{2}-16$
$36 m^{2}+4-24 m-25 m^{2}+16=0$
$11 m^{2}-24 m+20=0$
Obviously its roots are m_{1} and m_{2}, therefore $m_{1}+m_{2}=24 / 11$ and $m_{1} m_{2}=20 / 11$.
Question 12: The eccentricity of the curve represented by the equation $x^{2}+2 y^{2}-2 x+3 y+2=0$ is

Solution:

Equation $x^{2}+2 y^{2}-2 x+3 y+2=0$ can be written as $(x-1)^{2} / 2+(y+3 / 4)^{2}=1 / 16$
$\left[(x-1)^{2}\right] /(1 / 8)+\left[(y+3 / 4)^{2}\right] /(1 / 16)=1$, which is an ellipse with $a^{2}=1 / 8$ and $b^{2}=1 / 16$
$e=\sqrt{ }\left(1-b^{2} / a^{2}\right)$
$e^{2}=1-1 / 2$
$e=1 / \sqrt{ } 2$
Question 13: The foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$ are at \qquad .

Solution:

$\left[25(x+1)^{2} / 225\right]+\left[9(y+2)^{2} / 225\right]=1$
Here, $a=\sqrt{ }[225 / 25]=15 / 5=3$
$b=\sqrt{ }[225 / 9]=15 / 3=5$
Major axis of the ellipse lies along the y-axis.
$b^{2}=a^{2}\left(1-e^{2}\right)$
$e=\sqrt{ }[1-9 / 25]=4 / 5$
Focus $=(-1,-2 \pm[15 / 3] *[4 / 5])$
$=(-1,-2 \pm 4)$
$=(-1,2) ;(-1,-6)$
Question 14: The locus of a variable point whose distance from $(2,0)$ is $2 / 3$ times its distance from the line $x=-9 / 2$, is \qquad .

Solution:

Let point P be $\left(x_{1}, y_{1}\right)$ and $Q(2,0)$.
Given line => $x=-9 / 2$
=> $2 x+9=0$
Let $P M$ be distance from P to line $2 x+9=0$.
So, $P Q=(2 / 3) P M$
$=(2 / 3)\left(x_{1}+9 / 2\right)$

The Learning App
$\left(x_{1}+2\right)^{2}+y^{2}{ }_{1}=4 / 9\left(x_{1}+9 / 2\right)^{2}$
$9\left[x_{1}{ }^{2}+y^{2}{ }_{1}+4 x_{1}+4\right]=4\left(x_{1}{ }^{2}+(81 / 4)+9 x_{1}\right)$
$5 x_{1}{ }^{2}+9 y^{2}{ }_{1}=45$
$\left(\mathrm{x}_{1}{ }^{2} / 9\right)+\left(\mathrm{y}^{2}{ }_{1} / 5\right)=1$,
Locus of $\left(x_{1}, y_{1}\right)$ is $\left(x^{2} / 9\right)+\left(y^{2} / 5\right)=1$, which is the equation of an ellipse.
Question 15: The equation of the ellipse whose latus rectum is 8 and whose eccentricity is $1 / \sqrt{ } 2$, referred to the principal axes of coordinates, is \qquad .

Solution:

Equation of ellipse $=\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$
Latus rectum $=2 b^{2} / a=8$
$=>b^{2}=4 a$..(i)
Given $e=1 / \sqrt{ } 2$
We know $e^{2}=1-\left(b^{2} / a^{2}\right)$
$1 / 2=1-4 / a$
Solving we get $\mathrm{a}=8$.
So $b^{2}=4 a=32$
So $a^{2}=64, b^{2}=32$
Hence, the required equation of ellipse is $\left(x^{2} / 64\right)+\left(y^{2} / 32\right)=1$.

