

JEE Main Previous Year Solved Questions on Chemical Bonding

- 1. The bond dissociation energy of B–F in BF $_3$ is 646 kJ mol⁻¹ whereas that of C–F in CF $_4$ is 515 kJ mol⁻¹. The correct reason for higher B–F bond dissociation energy as compared to that of C–F is
- (1) Significant $p\pi$ $p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄.
- (2) Lower degree of $p\pi-p\pi$ interaction between B and F in BF_3 than that

between C and F in CF₄

- (3) Smaller size of B-atom as compared to that of C-atom
- (4) Stronger bond between B and F in BF₃ as compared to that between C and F in CF₄.

Solution:

Because of $p\pi$ - $p\pi$ back bonding in BF $_3$ molecule, all B-F bonds have partial double bond character.

Hence option (1) is the answer.

- 2. Among the following species which two have a trigonal bipyramidal shape?
- (1) NI₃ (2) I₃- (3) SO₃²- (4) NO₃-
- (1) II and III
- (2) III and IV
- (3) I and IV
- (4) I and III

Solution:

Let us find the hybridization (H) and shape of given species.

(1) For NI₃, H = $\frac{1}{2}$ (5+3) = 8/2 = 4 \rightarrow sp³ hybridized state. It is trigonal pyramidal in shape.

(2) For I_3 , $H = \frac{1}{2}(7+2+1) = \frac{10}{2} = 5 \rightarrow \text{sp}^3\text{d}$ hybridized state. It is linear in shape.

(3) For SO_3^{2-} , H = $\frac{1}{2}$ (6+2) = 8/2 = $4 \rightarrow sp^3$ hybridized state. It is trigonal pyramidal in shape.

(4) For NO_3^- , H = $\frac{1}{2}$ (5+1) = 6/2 = 3 \rightarrow sp² hybridized state. It is trigonal planar in shape.

Hence option (4) is the answer.

3. Using MO theory, predict which of the following species has the shortest bond length?

- $(1) O_2^{-1}$
- (2) O₂²-
- $(3) O_2^{2+}$
- $(4) O_2^+$

Solution:

Chemical $O_2^- O_2^{2-} O_2^{2+} O_2^{2+}$

species

Bond order 1.5 1 3 2.5

Therefore bond length order $O_2^{2-} > O_2^{-} > O_2^{+} > O_2^{2+}$

Hence option (3) is the answer.

4. Among the following, the species having the smallest bond is :

- (1) NO
- (2) NO⁺
- (3) O₂
- (4) NO⁻

Solution:

The bond order of given molecules are:

$$NO = 2.5$$
, $NO^+ = 3$, $O_2 = 2$, $NO^- = 2$

NO⁺ has the largest bond order 3.

Therefore, it will have the smallest bond.

Hence option (2) is the answer.

5. The hybridisation of orbitals of N atom in NO₃-, NO₂+, NH₄+ are respectively:

- $(1) sp^2, sp^3, sp$
- (2) sp, sp^3 , sp^2
- (3) sp, sp^2 , sp^3
- $(4) sp^2, sp, sp^3$

Solution:

In NO₃, the central N atom has 3 bonding domains and zero lone pairs of electrons.

In NO₂, the central N atom has 2 bonding domains and zero lone pairs of electrons.

In NH₄, the central N atom has 4 bonding domains and zero lone pairs of electrons.

The Hybridization of N atom in NO₃-, NO₂+, NH₄+ are sp², sp, sp³ respectively.

Hence option (4) is the answer.

6. Based on lattice energy and other considerations, which one of the following alkali metal chlorides is expected to have the highest melting point?

- (1) RbCl
- (2) LiCl
- (3) KCI
- (4) NaCl

Solution:

NaCl has the highest melting point.

(4) SnCl₂

Hence option (4) is the answer. 7. The structure of IF, is: (1) octahedral (2) pentagonal bipyramid (3) square pyramid (4) trigonal bipyramid Solution: For IF₇, hybridisation - sp³d³. The shape is pentagonal bipyramidal. Hence option (2) is the answer. 8. Which of the following has the square planar structure : $(1) NH_4^+$ (2) CCI₄ (3) XeF₄ (4) BF₄ Solution: Hybridization of XeF₄ sp³d² It has a square planar shape. Hence option (3) is the answer. 9. Among the following the maximum covalent character is shown by the compound : (1) AICI₃ (2) MgCl₂ (3) FeCl₂

AI ⁺³ is having the highest polarizing power than other compounds having greater covalent character.	
Hence option (1) is the answer.	
10. The compound of Xenon with zero dipole moment is :	
(1) XeO ₃	
(2) XeO ₂	
(3) XeF ₄	
(4) XeOF ₄	
Solution:	
XeF₄ has dipole moment zero.	
Hence option (3) is the answer.	
11. Which of the following has a maximum number of lone pairs associated with Xe?	
(1) XeO ₃	
(2) XeF ₄	
(3) XeF ₆	
(4) XeF ₂	
Solution:	
XeO_3 has 1 lone pair of electrons. XeF_4 has 2 lone pairs of electrons. XeF_6 has 1 lone pair of electron XeF_2 has 3 lone pairs of electrons. XeF_2 has a maximum number of lone pairs of electrons.	าร
Hence option (4) is the answer.	
12. Among the following the molecule with the lowest dipole moment is :	
(1) CHCl ₃	
(2) CH ₂ Cl ₂	

(3)	CCI_4

(4) CH₃CI

Solution:

The order of the dipole moment is $CCI_4 < CHCI_3 < CH_2CI_2 < CH_3CI$. So CCI_4 has the lowest dipole moment.

Hence option (3) is the answer.

- 13. The number of types of bonds between two carbon atoms in calcium carbide is
- (1) One sigma, two pi
- (2) One sigma, one pi
- (3) Two sigma, one pi
- (4) Two sigma, two pi

Solution:

$$CaC_2 \rightarrow Ca^{+2} + C_2^{-2}$$

Number of sigma bond is 1 and number of pi bond is 2.

Hence option (1) is the answer.

- 14. The formation of molecular complex ${\rm BF_3}$ ${\rm NH_3}$ results in a change in the hybridisation of boron
- (1) From sp^3 to sp^3d
- (2) From sp^2 to dsp^2
- (3) From sp³ to sp²
- (4) From sp² to sp³

Solution:

 $(3) O_2$

In BF₃, Boron atom has 3 bond pairs of electrons and 0 lone pairs of electrons. It is sp² hybridized. In $F_3B \leftarrow NH_3$, Boron atom has 4 bond pairs of electrons and 0 lone pairs of electrons. It is sp^3 hybridized. So the formation of molecular complex results in a change in the hybridization of boron from sp² to sp³.

Hence option (4) is the answer.

 $(4) S_2$

Solution:

C₂ and N₂ have no unpaired electrons. So they exhibit diamagnetic behaviour.

18. Which of the following is the wrong statement?

- (1) ONCI and ONO are not isoelectronic
- (2) O₃ molecule is bent
- (3) Ozone is violet-black in solid-state
- (4) Ozone is diamagnetic gas

Solution:

In the given options all are correct statements.

19. Stability of the species Li₂, Li₂ and Li₂ increases in the order of :

- (1) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$
- (2) $\text{Li}_{2}^{-} < \text{Li}_{2}^{+} < \text{Li}_{2}$
- (3) $Li_2 < Li_2 < Li_2^+$
- (4) $Li_2^- < Li_2 < Li_2^+$

Solution:

The bond order of Li_2 is 1. The bond order of Li_2^+ is 0.5. The bond order of Li_2^- is 0.5. Stability will depend on the bond order. Li_2^+ is more stable than Li_2^- because the higher interelectronic repulsion in Li_2^- makes it the least stable. So the order is $\text{Li}_2 > \text{Li}_2^+ > \text{Li}_2^-$.

Hence option (2) is the answer.

20. In which of the following pairs of molecules/ions, both species are not likely to exist?

- (1) H₂+, He₂²-
- (2) H₂-, He₂²⁻
- (3) H₂²⁺, He₂

(4)
$$H_2^-$$
, He_2^{2+}

The bond order of H_2^{2+} and He_2 is zero. So these molecules do not exist.

Hence option (3) is the answer.

- 21. Bond distance in HF is 9.17 × 10^{-11} m. Dipole moment of HF is 6.104 × 10^{-30} Cm. The per cent ionic character in HF will be : (electron charge = 1.60×10^{-19} C)
- (1) 61.0%
- (2) 38.0%
- (3) 35.5%
- (4) 41.5%

Solution:

Given Bond distance = 9.17×10^{-11} m.

Dipole moment = 6.104×10^{-30} Cm

% iconic character = $6.104 \times 10^{-30} \times 100 / (1.60 \times 10^{-19} \times 9.17 \times 10^{-11})$

= 41.5%

Hence option (4) is the answer.

- 22. In which of the following ionization processes the bond energy has increased and also the magnetic behaviour has changed from paramagnetic to diamagnetic?
- (1) NO \rightarrow NO⁺
- (2) $O_2 \rightarrow O_2^+$
- (3) $N_2 \to N_2^+$
- (4) $C_2 \to C_2^+$

Solution:

During the ionisation of NO \rightarrow NO⁺, the bond order changes from 2.5 to 3. Also magnetic character changes from paramagnetic to diamagnetic.

During the ionisation of $O_2 \rightarrow O_2^+$, the bond order increases from 2 to 2.5 and the magnetic character changes from paramagnetic to diamagnetic.

During the ionisation of $N_2 \rightarrow N_2^+$, the bond order decreases from 3 to 2.5 and the magnetic behaviour changes from diamagnetic to paramagnetic.

During the ionisation of $C_2 \rightarrow C_2^+$, the bond order decreases from 2 to 1.5 and the magnetic behaviour changes from diamagnetic to paramagnetic.

Hence option (1) is the answer.

23. Which one of the following molecules is paramagnetic?	23.	Which one	of the	following	molecules	is	parama	ıgı	netic	c?
---	-----	-----------	--------	-----------	-----------	----	--------	-----	-------	----

- (1) NO
- $(2) O_3$
- $(3) N_2$
- (4) CO

Solution:

NO has an unpaired electron. So it is paramagnetic in nature.

Hence option (1) is the answer.

24. The catenation tendency of C, Si and Ge is in the order Ge < Si < C. The bond energies (in kJ mol^{-1} of C — C, Si —Si and Ge—Ge bonds are respectively:

- (1) 348, 260, 297
- (2) 348, 297, 260
- (3) 297, 348, 260
- (4) 260, 297, 348

Solution:

Bond energy order is C - C > Si - Si > Ge - Ge.

Hence option (2) is the answer.

25. Oxidation state of sulphur in anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ increases in the orders

(1)
$$S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$$

(2)
$$SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$$

(3)
$$S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$$

(4)
$$S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$$

Solution:

The oxidation state of sulphur in SO_3^{2-} is +4. The Oxidation state of sulphur in $S_2O_4^{2-}$ is +3 and in $S_2O_6^{2-}$ is +5. So the order is $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$

Hence option (3) is the answer.

26. In which of the following species is the underlined carbon having sp³ hybridisation?

- (1) CH₃COOH
- (2) CH₃CH₂OH
- (3) CH₃COCH₃
- (4) CH₂=CH-CH₃

Solution:

Only in CH₃CH₂OH, carbon has sp³ hybridisation.

In other molecules, the carbon atom has multiple bonds,

Hence option (2) is the answer.

27. In which of the following sets, all the given species are isostructural?

BF₄-, CCl₄, NH₄+,PCl₄+ are tetrahedral.

Hence option (3) is the answer.

28. In XeF₂, XeF₄, XeF₆ the number of lone pairs of Xe are respectively

- (1) 2, 3, 1
- (2) 1, 2, 3
- (3)4,1,2
- (4) 3, 2, 1

Solution:

 XeF_2 has 3 lone pairs of electrons. XeF_4 has 2 lone pairs of electrons. XeF_6 has 1 lone pair of electrons.

Hence option (4) is the answer.

29. Which of the following statements is true?

- (1) HF is less polar than HBr
- (2) absolutely pure water does not contain any ions
- (3) chemical bond formation take place when forces of attraction overcome the forces of repulsion
- (4) in covalency transference of electron takes place

Solution:

Chemical bond formation takes place when forces of attraction overcome the forces of repulsion.

Hence option (3) is the answer.

30. Which one of the following pairs of molecules will have permanent dipole moments for both members?

(1) N0₂ and C0₂

- (2) $N0_2$ and 0_3
- (3) SiF₄ and CO₂
- (4) SiF₄ and NO₂

NO₂ and O₃ have angular shapes. So they will have a net dipole moment.

Hence option (2) is the answer.

- 31. The states of hybridization of boron and oxygen atoms in boric acid (H₃B0₃) are respectively
- (1) sp^2 and sp^2 (2) sp^3 and sp^3
- (3) sp^3 and sp^2 (4) sp^2 and sp^3

Solution:

Hybridization of B is sp² and O is sp³

Hence option (4) is the answer.

- 32. The maximum number of 90° angles between bond pair of electrons is observed in
- (1) dsp³ hybridization
- (2) sp³d² hybridization
- (3) dsp² hybridization
- (4) sp³d hybridization

Solution:

 $sp^3d^2\ hybridisation\ has\ an\ octahedral\ configuration.$ All the bond angles are 90° in the structure.

Hence option (2) is the answer.

- 33. Which of the following are arranged in an increasing order of their bond strengths?
- (1) $O_2^- < O_2 < O_2^+ < O_2^{2-}$
- (2) $O_2^{2-} < O_2^{-} < O_2 < O_2^{+}$

$$(3) O_2^{-1} < O_2^{-2} < O_2 < O_2^{+1}$$

$$(4) O_2^+ < O_2 < O_2^- < O_2^{2-}$$

Higher the bond order, stronger the bonds. The increasing order is $O_2^{2-} < O_2^- < O_2^- < O_2^+$.

Hence option (2) is the answer.

34. Bond order and magnetic nature of CN⁻ are respectively

- (1) 3, diamagnetic
- (2) 2.5, paramagnetic
- (3) 3, paramagnetic
- (4) 2.5, diamagnetic

Solution:

Bond order = $\frac{1}{2}$ [$n_b - n_a$]

= 3

It does not have unpaired electrons. So, it is diamagnetic.

Hence option (1) is the answer.

35. The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true for these two species?

- (1)Bond length in $NO^{\scriptscriptstyle +}$ is greater than in NO
- (2)Bond length is unpredictable
- (3)Bond length in NO⁺ in equal to that in NO
- (4)Bond length in NO is greater than in NO+

When bond order increases, bond length decreases. So the bond length in NO is greater than in NO⁺.

Hence option (4) is the answer.

