JEE Main Previous Year Solved Questions on Radioactivity

Q1: A sample of radioactive material A , that has an activity of $10 \mathrm{mCi}\left(1 \mathbf{C i}=3.7 \times 10{ }^{10}\right.$ decays/s) has twice the number of nuclei as another sample of a different radioactive material B, which has an activity of 20 mCi . The correct choices for half-lives of A and B would then be respectively
(a) 20 days and 5 days
(b) 10 days and 40 days
(c) 20 days and 10 days
(d) 5 days and 10 days

Solution
$\mathrm{R}_{\mathrm{A}}=10 \mathrm{mCi}, \mathrm{R}_{\mathrm{B}}=20 \mathrm{mCi}, \mathrm{N}_{\mathrm{A}}=2 \mathrm{~N}_{\mathrm{B}}$
$\mathrm{R}_{\mathrm{A}} / \mathrm{R}_{\mathrm{B}}=\lambda_{\mathrm{A}} \mathrm{N}_{\mathrm{A}} / \lambda_{\mathrm{B}} \mathrm{N}_{\mathrm{B}}=\left[\left(\mathrm{T}_{1 / 2}\right)_{\mathrm{B}} /\left(\mathrm{T}_{1 / 2}\right)_{\mathrm{A}}\right] \mathrm{x}\left[\mathrm{N}_{\mathrm{A}} / \mathrm{N}_{\mathrm{B}}\right]$
$(1 / 2)=\left[\left(\mathrm{T}_{1 / 2}\right)_{\mathrm{B}} /\left(\mathrm{T}_{1 / 2}\right)_{\mathrm{A}}\right] \times 2 \Rightarrow\left(\mathrm{~T}_{1 / 2}\right)_{\mathrm{A}}=4\left(\mathrm{~T}_{1 / 2}\right)_{\mathrm{B}}$
Answer: (a) 20 days and 5 days
Q2: Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At t $=0$ it was 1600 counts per second and at $t=8$ seconds it was 100 counts per second. The count rate observed, as counts per second, at $t=6$ seconds is close to
(a) 200
(b) 360
(c) 150
(d) 400

Solution

According to the law of radioactivity, the count rate at $t=8$ seconds is
$\mathrm{N}_{1}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
$\mathrm{dN} / \mathrm{dt}=\lambda \mathrm{N}=\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
At t $=0,1600=\lambda \mathrm{N}_{0} \mathrm{e}^{0}=\lambda \mathrm{N}_{0} \cdots---(1)$
At $t=8 \mathrm{~s}, 100=\lambda \mathrm{N}_{0} \mathrm{e}^{-8 \lambda}$ \qquad

The Learning App
$\Rightarrow 100=1600 \mathrm{e}^{-8 \lambda}$
$e^{8 \lambda}=16$
Therefore half life is $\mathrm{t} / 2=2 \mathrm{sec}$
At $t=6 \mathrm{sec}$
$(\mathrm{dN} / \mathrm{dt})=\lambda \mathrm{N}_{0} \mathrm{e}^{-6 \lambda}=1600 \times\left(\mathrm{e}^{-2 \lambda}\right)^{3}=1600 \times(1 / 8)=200$
Answer: (a) 200
Q3: Radiation coming from transitions $\mathbf{n}=\mathbf{2}$ to $\mathbf{n}=\mathbf{1}$ of hydrogen atoms fall on $\mathrm{He}+$ ions in $\mathbf{n}=\mathbf{1}$ and $\mathbf{n}=\mathbf{2}$ states. The possible transition of helium ions as they absorb energy from the radiation?

Solution

$E=13.6(1 / 1-1 / 4)=13.6 \times(3 / 4)=10.2 \mathrm{eV}$
Let us check the transitions possible on He
$\mathrm{n}=1$ or $\mathrm{n}=2$
$E_{1}=4 \times 13.6(1-1 / 4)=40.8$ eV $\left[E_{1}>E\right.$, hence not possible $]$
$\mathrm{n}=1$ or $\mathrm{n}=3$
$\mathrm{E}_{2}=4 \times 13.6(1-(1 / 9))=48.3 \mathrm{eV}\left[\mathrm{E}_{2}>\mathrm{E}\right.$, hence not possible $]$
$\mathrm{n}=2$ or $\mathrm{n}=3$
$\mathrm{E}_{3}=4 \times 13.6((1 / 4)-(1 / 9))=7.56 \mathrm{eV}\left[\mathrm{E}_{3}<\mathrm{E}\right.$, hence it is possible $]$
$\mathrm{n}=2$ or $\mathrm{n}=4$
$\mathrm{E}_{4}=4 \times 13.6((1 / 4)-(1 / 6))=10.2 \mathrm{eV}\left[\mathrm{E}_{4}=\mathrm{E}\right.$, hence it is possible $]$
Hence E_{3} and E_{4} can be possible
Answer: \mathbf{E}_{3} and \mathbf{E}_{4} is possible
Q4: Two radioactive materials A and B have decay constants 10λ and λ, respectively. If initially, they have the same number of nuclei, then the ratio of the number of nuclei of A to that of B will be $1 / e$ after a time
(a) $1 / 9 \lambda$
(b) $11 / 10 \lambda$
(c) $1 / 10 \lambda$
(d) $1 / 11 \lambda$

Solution

$$
\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}
$$

So, $\mathrm{N}_{1}=\mathrm{N}_{0} \mathrm{e}^{-10 \lambda t}$ and $\mathrm{N}_{2}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t}$
$\Rightarrow(1 / \mathrm{e})=\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right)=\left(\mathrm{N}_{0} \mathrm{e}^{-10 \lambda t}\right) /\left(\mathrm{N}_{0} \mathrm{e}^{-\lambda t}\right)$
$\Rightarrow(1 / \mathrm{e})=\mathrm{e}^{-9 \lambda t}=\mathrm{e}^{-1}=\mathrm{e}^{-9 \lambda t}$
$\Rightarrow 1=9 \lambda t \Rightarrow t=1 / 9 \lambda$
Answer: (a) 1/9 λ
Q5: Half-lives of two radioactive nuclei A and B are 10 minutes and 20 minutes, respectively. If, initially a sample has an equal number of nuclei, then after 60 minutes, the ratio of decayed numbers of nuclei A and B will be
(a) $3: 8$
(b) $1: 8$
(c) $9: 8$
(d) $8: 1$

Solution

By the law of radioactivity $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
For nuclei A,
$N_{A}=N_{0 A} e^{-2 t}$
Or $\left(\mathrm{N}_{\mathrm{A}} / \mathrm{N}_{0 \mathrm{~A}}\right)=(1 / 2)^{\mathrm{n}}=(1 / 2)^{t 10}=(1 / 2)^{6}-\cdots---(1)$
$\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{0 \mathrm{~A}} / 2^{6}$
For nuclei B,
$\left(\mathrm{N}_{\mathrm{B}} / \mathrm{N}_{0 \mathrm{~B}}\right)=(1 / 2)^{\mathrm{n}}=(1 / 2)^{t 20}=(1 / 2)$
$\Rightarrow \mathrm{N}_{\mathrm{B}}=\left(\mathrm{N}_{\mathrm{OB}}\right) / 2^{3}$
Ratio of nuclei decayed will be
$\left(\mathrm{N}^{\prime}{ }_{A} / \mathrm{N}^{\prime}{ }_{B}\right)=\left(\mathrm{N}_{0 A}-\mathrm{N}_{\mathrm{A}}\right) /\left(\mathrm{N}_{0 B}-\mathrm{N}_{\mathrm{B}}\right)=\left(\mathrm{N}_{0 A} / \mathrm{N}_{0 B}\right)\left[1-(1 / 2)^{6} / 1-(1 / 2)^{3}\right]=9 / 8$
Answer: (c) 9: 8
Q6: Two radioactive substances A and B have decay constant 5λ and λ respectively. At $t=0$, a sample has
the same number of the two nuclei. The time taken for the ratio of the number of nuclei to become $(1 / \mathbf{e})^{\mathbf{2}}$ will be
(a) $2 / \lambda$
(b) $1 / \lambda$
(c) $1 / 4 \lambda$
(d) $1 / 2 \lambda$

Solution

The number of undecayed nuclei at any time t,
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t}$
As $\mathrm{N}_{0 \mathrm{~A}}=\mathrm{N}_{0 \mathrm{~B}}$ (given)
So, for nuclei A and B
$\left.\left(N_{A} / N_{B}\right)=e^{(-\lambda}{ }_{A}+\lambda_{B}\right) t$
$\mathrm{t}=\left[1 /\left(\lambda_{\mathrm{B}}-\lambda_{\mathrm{A}}\right)\right] \operatorname{In}\left(\mathrm{N}_{\mathrm{A}} / \mathrm{N}_{\mathrm{B}}\right)=1 /(\lambda-5 \lambda) \operatorname{In}\left(1 / \mathrm{e}^{2}\right)=1 / 2 \lambda$
Answer: (d) 1/2 λ
Q7: The radiation corresponding to $3 \rightarrow 2$ transitions of hydrogen atom falls on metal surface to produce photoelectrons. These electrons are made to enter a magnetic field of $3 \times 10^{-4} \mathrm{~T}$. If the radius of the largest circular path followed by these electrons is 10.0 mm , the work function of the metal is close to
(a) 1.6 eV
(b) 1.8 eV
(c) 1.1 eV
(d) 0.8 eV

Solution

Radius of a charged particle moving in a constant magnetic field is given by
$\mathrm{R}=(\mathrm{mv} / \mathrm{qB})$ or $\mathrm{R}^{2}=\mathrm{m}^{2} \mathrm{v}^{2} / \mathrm{q}^{2} \mathrm{~B}^{2}$
$\mathrm{R}^{2}=\left[2 \mathrm{~m}\left((1 / 2) \mathrm{mv}^{2}\right)\right] / \mathrm{q}^{2} \mathrm{~B}^{2}$
$\mathrm{R}^{2}=2 \mathrm{~m}(\mathrm{~K} . \mathrm{E}) / \mathrm{q}^{2} \mathrm{~B}^{2}$

$$
\Rightarrow K \cdot E=\left(q^{2} B^{2} R^{2}\right) / 2 m \Rightarrow K \cdot E_{\max }=\left(q^{2} B^{2} R_{\max }^{2}\right) / 2 m=0.80 \mathrm{eV}
$$

Energy of photon corresponding transition from orbit $3 \rightarrow 2$ in hydrogen atom.
$\left.\mathrm{E}=13.6\left(1 / 2^{2}\right)-\left(1 / 3^{2}\right)\right)=1.89 \mathrm{eV}$
Using Einstein photoelectric equation.
$\mathrm{E}=\mathrm{K} . \mathrm{E}_{\text {max }}+\Phi$
$\Rightarrow 1.89=0.8+\Phi$
$\Rightarrow \Phi=1.09 \approx 1.1 \mathrm{eV}$
Answer (c) 1.1 eV
Q8: Assume that a neutron breaks into a proton and an electron. The energy released during this process is
(Mass of neutron $=1.6725 \times \mathbf{1 0}^{-27} \mathbf{~ k g}$
Mass of proton $=1.6725 \times 10^{-27} \mathbf{~ k g}$
Mass of electron $=9 \times 10^{-31} \mathbf{~ k g}$)
(a) 7.10 MeV
(b) 6.30 MeV
(c) 5.4 MeV
(d) 0.73 MeV

Solution

Mass defect, $\Delta m=m_{p}+m_{e}-m_{n}$
$\Delta \mathrm{m}=\left(1.6725 \times 10^{-27}\right)+\left(9 \times 10^{-31}\right)-\left(1.6725 \times 10^{-27}\right) \mathrm{Kg}$
$\Delta \mathrm{m}=9 \times 10^{-31} \mathrm{~kg}$
Energy released $=\Delta \mathrm{mc}^{2}$
Energy released $=\left(9 \times 10^{-31}\right) \times\left(3 \times 10^{8}\right)^{2} \mathrm{~J}$
Energy released $=\left[\left(9 \times 10^{-31}\right) \times\left(9 \times 10^{16}\right)\right] /\left[1.6 \times 10^{-13}\right] \mathrm{Mev}=0.51 \mathrm{MeV}$
Answer: None of the given options are correct
Q9: The half-life period of a radioactive element X is the same as the mean lifetime of another radioactive element Y. Initially, they have the same number of atoms. Then
(a) X and Y decay at the same rate always
(b) X will decay faster than Y
(c) Y will decay faster than X
(d) X and Y have the same decay rate initially

Solution

$\mathrm{T}_{1 / 2}$, half-life of $\mathrm{X}=\mathrm{T}_{\text {mean }}$, mean life of y
Or $0.693 / \lambda_{\mathrm{x}}=1 / \lambda_{\mathrm{y}}$
$\lambda_{\mathrm{x}}=0.693 \lambda_{\mathrm{y}}$
$\lambda_{\mathrm{x}}<\lambda_{\mathrm{y}}$
Rate of decay $=\lambda \mathrm{N}$
Initially, number of atoms (N) of both are equal but since $\lambda_{\mathrm{x}}<\lambda_{\mathrm{y}}$, therefore y will decay at a faster rate than x

Answer: (c) Y will decay faster than \mathbf{X}

Q10: If the binding energy of the electron in a hydrogen atom is 13.6 eV , the energy required to remove the electron from the first excited state of $\mathbf{L i}^{++}$is
(a) 30.6 eV
(b) 13.6 eV
(c) 3.4 eV
(d) 122.4 eV

Solution

$\mathrm{E}_{2}=\left(-\mathrm{Z}^{2} \mathrm{E}_{0}\right) / \mathrm{n}^{2}$
$\mathrm{E}_{2}=\left(-(3)^{2} \times 13.6\right) /(2)^{2}$
$=-30.6 \mathrm{eV}$
Energy required $=30.6 \mathrm{eV}$
Answer: (a) 30.6 eV

