Question 1: Let $\left(x_{0}, y_{0}\right)$ be the solution of the following equations.
$(\mathbf{2 x})^{\ln 2}=(\mathbf{3 y})^{\ln 3}$
$3^{\ln x}=2^{\ln y}$. Then x_{0} is
(a) $1 / 6$
(b) $1 / 3$
(c) $1 / 2$
(d) 6

Solution:
Given that $(2 x)^{\ln 2}=(3 y)^{\ln 3} . .(i)$
Taking \log on both sides
$\log 2 \log (2 x)=\log 3 \log (3 y)$
$\log 2(\log 2+\log x)=\log 3(\log 3+\log y) . .(i i)$
Also $3^{\ln x}=2^{\ln y}$..(iii)
Taking \log on both sides
$\log \mathrm{x} \log 3=\log \mathrm{y} \log 2$
$\log y=\log x \log 3 / \log 2 \ldots$ (iv)
Substitute (iv) in (ii)
$\log 2(\log 2+\log x)=\log 3(\log 3+\log x \log 3 / \log 2)$
$(\log 2)^{2}+\log 2 \log \mathrm{x}=(\log 3)^{2}+\log \mathrm{x}(\log 3)^{2} / \log 2$
$\left[\log 2-(\log 3)^{2} / \log 2\right] \log x=(\log 3)^{2}-(\log 2)^{2}$
$\log x=\left[(\log 3)^{2}-(\log 2)^{2}\right] /\left[\left((\log 2)^{2}-(\log 3)^{2}\right) / \log 2\right]$
$\log x=-\log 2$
$\log \mathrm{x}=\log 2^{-1}$
$\Rightarrow \mathrm{x}=2^{-1}$
$=1 / 2$

Hence option c is the answer.
Question 2: If $3^{x}=4^{x-1}$, then $x=$

Solution:

Given that $3^{x}=4^{x-1}$
Take log on both sides
$\log 3^{x}=\log 4^{x-1}$
$x \log 3=(x-1) \log 4$
$=\mathrm{x} \log 4-\log 4$
$\log 4=x(\log 4-\log 3)$
So $\mathrm{x}=\log 4 /(\log 4-\log 3)$
$=1 /(1-\log 3 / \log 4)$
$=1 /\left(1-\log _{4} 3\right)$
Hence the value of x is $1 /\left(1-\log _{4} 3\right)$.
Question 3: The number of positive integers satisfying the equation $x+\log _{10}\left(2^{x}+1\right)=x \log _{10} 5+\log _{10} 6$ is
(a) 0
(b) 1
(c) 2
(d) infinite

Solution:

$x+\log _{10}\left(2^{x}+1\right)=x \log _{10} 5+\log _{10} 6$
$x\left[1-\log _{10} 5\right]+\log _{10}\left(2^{x}+1\right)=\log _{10} 6$
$\mathrm{x}\left[\log _{10} 10-\log _{10} 5\right]+\log _{10}\left(2^{\mathrm{x}}+1\right)=\log _{10} 6$
$x \log _{10} 2+\log _{10}\left(2^{x}+1\right)=\log _{10} 6$
$\log _{10} 2^{x}\left(2^{x}+1\right)=\log _{10} 6$
$\left(2^{x}\right)^{2}+2^{x}-6=0$
$2^{x}=2$ or $2^{x}=-3$ (rejected)

So number of positive integers $=1$
Hence option b is the answer.
Question 4: $\operatorname{If} \log _{7} \mathbf{2}=k$, then $\log _{49} 28$ is equal to
(a) $(1+2 \mathrm{k}) / 4$
(b) $(1+2 \mathrm{k}) / 2$
(c) $(1+2 \mathrm{k}) / 3$
(d) none of the above

Solution:

Given $\log _{7} 2=\mathrm{k}$
$\log _{49} 28=$
$\log _{7^{2}} 28$
$=1 / 2 \log _{7} 28$
$=1 / 2 \log _{7}(4 \times 7)$
$=1 / 2 \log _{7} 4+1 / 2 \log _{7} 7$
$=1 / 2 \log _{7} 2^{2}+1 / 2$
$=\log _{7} 2+1 / 2$
$=\mathrm{k}+1 / 2$
$=(2 \mathrm{k}+1) / 2$
Hence option b is the answer.
Question 5: If $\log _{a} x=b$ for permissible values of a and x then which is/are correct.
(a) If a and b are two irrational numbers, then x can be rational
(b) If a is rational and b is irrational, then x can be rational
(c) If a is irrational and b is rational, then x can be rational
(d) If a and b are rational, then x can be rational

Solution:

Given that $\log _{\mathrm{a}} \mathrm{x}=\mathrm{b}$
$=>x=e^{b} / a$
Case 1: Let, b be any irrational number and a be equal to $\mathrm{a}=\mathrm{e}^{\mathrm{b}}$ that means a is irrational because e is irrational. So $\mathrm{x}=\mathrm{e}^{\mathrm{b}} / \mathrm{a}$ becomes rational.

Hence option a is correct.
Case 2: Let a be rational and b is irrational.
If we take any rational number as a and $\mathrm{b}=\ln \mathrm{a}$, then $\mathrm{x}=\mathrm{e}^{\mathrm{b}} / \mathrm{a}=\mathrm{e}^{\ln \mathrm{a}} / \mathrm{a}=\mathrm{a} / \mathrm{a}=1$.
So x is rational.
Hence option b is correct.
Case 3: Let a be irrational and b is rational,
If we consider any rational number as b and $a=e^{b}$
Then $\mathrm{x}=\mathrm{e}^{\mathrm{b}} / \mathrm{e}^{\mathrm{b}}=1$ is rational.
Hence option c is correct.
Case 4: let a and b be rational.
If we take $\mathrm{a}=$ any rational number and $\mathrm{b}=0, \mathrm{x}$ can be rational.
Hence option d is correct.
So option a, b, c and d are correct.
Question 6: If $x=9$ is a solution of $\ln \left(x^{2}+15 a^{2}\right)-\ln (a-2)=\ln (8 a x /(a-2))$ then
(a) $a=3 / 5$
(b) $a=3$
(c) $x=15$
(d) $x=2$

Solution:

Given $\ln \left(x^{2}+15 a^{2}\right)-\ln (a-2)=\ln (8 a x /(a-2))$
$\ln \left[\left(\mathrm{x}^{2}+15 \mathrm{a}^{2}\right) /(\mathrm{a}-2)\right]=\ln (8 \mathrm{ax} /(\mathrm{a}-2))$
$=>\left(\mathrm{x}^{2}+15 \mathrm{a}^{2}\right) /(\mathrm{a}-2)=(8 \mathrm{ax} /(\mathrm{a}-2))$
$=>x^{2}+15 a^{2}=8 a x$
$=>x^{2}+15 a^{2}-8 a x=0$..(i)
Given $\mathrm{x}=9$ is a root.
$=>81+15 a^{2}-72 \mathrm{a}=0$
$\Rightarrow 5 a^{2}-24 a+27=0$
$=>(5 a-9)(a-3)=0$
$\Rightarrow \mathrm{a}=9 / 5$ or $\mathrm{a}=3$
Put value of a in (i)
When $\mathrm{a}=9 / 5$, we get $\mathrm{x}=9$ or $\mathrm{x}=27 / 5$
When $\mathrm{a}=3$, we get $\mathrm{x}=9$ or $\mathrm{x}=15$
Hence option b and care correct.
Question 7: If $\log _{10} 5=a$ and $\log _{10} 3=b$ then
(a) $\log _{30} 8=3(1-a) /(b+1)$
(b) $\log _{40} 15=(a+b) /(3-2 a)$
(c) $\log _{243} 32=(1-a) / b$
(d) none of these

Solution:

Given $\log _{10} 5=\mathrm{a}$ and $\log _{10} 3=\mathrm{b}$
We check all the given options.
$\log _{30} 8=\log 2^{3} / \log (3 \times 10)$
$=3 \log 2 /(\log 3+\log 10)$
$=3 \log (10 / 5) /(1+\log 3)$
$=3(1-\log 5) /(1+\log 3)$
$=3(1-\mathrm{a}) /(1+\mathrm{b})$
Hence option a is correct.
$\log _{40} 15=\log 15 / \log 40$

$$
\begin{aligned}
& B \text { The Learning App } \\
= & \log (3 \times 5) / \log (10 \times 4) \\
= & (\log 3+\log 5) /\left(1+\log 2^{2}\right) \\
= & (\log 3+\log 5) /(1+2 \log 2) \\
= & (\log 3+\log 5) /(1+2 \log (10 / 5)) \\
= & (\log 3+\log 5) /(1+2(1-\log 5)) \\
= & (\log 3+\log 5) /(1+2-2 \log 5) \\
= & (b+a) /(3-2 a)
\end{aligned}
$$

Hence option b is correct.
$\log _{243} 32=\log 32 / \log 243$
$=\log 2^{5} / \log 3^{5}$
$=5 \log 2 / 5 \log 3$
$=\log 2 / \log 3$
$=(1-\log 5) / \log 3($ since $\log 2=\log (10 / 5)=\log 10-\log 5=1-\log 5)$
$=(1-\mathrm{a}) / \mathrm{b}$
So option c is correct.
Hence option a, b and c are correct.
Question 8: The value of

$$
\left(\left(\log _{2} 9\right)^{2}\right)^{\frac{1}{\log _{2}\left(\log _{2} 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _{4} 7}}
$$

is
(a) 8
(b) 1
(c) 2
(d) none of these

Solution:

$$
\begin{aligned}
& \log _{2} 9^{\frac{2}{\log _{2}\left(\log _{2} 9\right)}} \times 7^{\frac{1 / 2}{\log _{4} 7}} \\
& =\left(\log _{2} 9\right)^{2 \log _{\log _{2} 9} 9} \times 7^{\frac{1}{2} \log _{7} 4} \\
& =4 \times 2=8
\end{aligned}
$$

Hence option a is the answer.
Question 9: If $\log _{10} 2=a$ and $\log _{10} 3=b$ then $\log 60$ can be expressed in terms of a and b as
(a) $a+b+1$
(b) $a-b+1$
(c) a-b-1
(d) $a+b-1$

Solution:

Given $\log _{10} 2=\mathrm{a}$ and $\log _{10} 3=\mathrm{b}$
$\log 60=\log (10 \times 2 \times 3)$
$=\log 10+\log 2+\log 3$
$=1+\mathrm{a}+\mathrm{b}$
Hence option a is the answer.
Question 10: If $\mathrm{A}=\log _{2} \log _{2} \log _{4} 256+\log _{\sqrt{2}} 2$, then A is equal to
(a) 2
(b) 3
(c) 5
(d) 7

Solution:

We use the property $\log _{a}(m)^{n}=n \log _{a} m$
$\log _{2} \log _{2} \log _{4} 256+\log _{\sqrt{2}} 2=\log _{2} \log _{2} \log _{4}(4)^{4}+\log _{\sqrt{2}} \sqrt{ } 2^{2}$

$$
\begin{aligned}
& =\log _{2} \log _{2} 4+2(2) \\
& =\log _{2} \log _{2} 2^{2}+4 \\
& =\log _{2} 2+4 \\
& =1+4\left(\log _{\mathrm{a}} \mathrm{a}=1\right) \\
& =5
\end{aligned}
$$

Hence option c is the answer.

