

Maths Important Formulas for Class 9

Below listed are the important formulae which are required to solve various maths problems for Class 9.

Geometry

Geometry Shapes Formulas for Class 9		
Geometric Figure	Area	Perimeter
Rectangle	A= I × w	P = 2 × (I+w)
Triangle	$A = (1/2) \times p \times h$	P = a + b + c
Trapezoid	$A = (1/2) \times h \times (b_1 + b_2)$	P = a + b + c + d
Parallelogram	$A = b \times h$	P = 2 (a+b)
Circle	$A = \pi r^2$	C = 2 π r

Surface Area and Volumes

Shape	Surface Area	Volume
Cuboid	2(lb + bh +lh) I= length, b=breadth, h=height	lbh
Cube	6a ²	a ³
Cylinder	2πr(h+r) r = radius of circular bases h = height of cylinder	$\pi r^2 h$
Cone	πr(l+r) r=radius of base l=slant height Also, l ² =h ² +r ² , where h is the height of cone	(1/3)πr ² h
Sphere	4πr ²	(4/3)πr ³

Algebra

Algebraic Identities For Class 9
$(a+b)^2=a^2+2ab+b^2$
$(a-b)^2 = a^2 - 2ab + b^2$
$\left(a+b ight)\left(a\!-\!b ight)=a^2\!-\!b^2$
$(x+a) (x+b) = x^2 + (a+b)x + ab$
$\left(x+a ight)\left(x\!-\!b ight)=x^{2}+(a\!-\!b)x\!-\!ab$
$(x{-}a)\left(x+b ight)=x^2+(b{-}a)x{-}ab$
$(x{-}a)\left(x{-}b ight)=x^2{-}\left(a+b ight)x+ab$
${\left({a + b} \right)^3} = {a^3} + {b^3} + 3ab\left({a + b} \right)$
$\left(a{-}b ight)^{3}=a^{3}{-}b^{3}{-}3ab\left(a{-}b ight)$
$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2xz$
$(x+y\!-\!z)^2 = x^2+y^2+z^2+2xy\!-\!2yz\!-\!2xz$
$(x-y+z)^2 = x^2 + y^2 + z^2 - 2xy - 2yz + 2xz$
$(x\!-\!y\!\!-\!\!z)^2 = x^2 + y^2 + z^2\!\!-\!\!2xy + 2yz\!\!-\!\!2xz$
$x^3+y^3+z^3\!-\!3xyz=(x+y+z)(x^2+y^2+z^2\!-\!xy\!-\!yz-xz)$
$x^2 + y^2 = rac{1}{2} \left[(x+y)^2 + (x\!-\!y)^2 ight]$
$(x+a)(x+b)(x+c) = x^3 + (a+b+c)x^2 + (ab+bc+ca)x + abc$
$x^3+y^3=(x+y)(x^2\!-\!xy+y^2)$
$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$
$x^2 + y^2 + z^2 - xy - yz - zx = rac{1}{2}[(x - y)^2 + (y - z)^2 + (z - x)^2]$

https://byjus.com

Heron's Formula

Area of triangle using three sides =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Semi-perimeter, s = (a+b+c)/2

Polynomial

Polynomial Formula

$$P(x) = a_n x^n + a_{n-1} x^{n-1} - a_{n-2} x^{n-2} + \dots + ax + a_0$$

Statistics

Measure of Central Tendency	
Mean	Sum of Observation/Total number of observation = $\sum x/n$
Median	[(n+1)/2]th term [For odd number of observation] Mean of (n/2)th term and (n/2+1)th term [For even number of observation]
Mode	Value which is repeated maximum time in a data set

Probability

Empirical Probability = Number of trials with expected outcome/Total number of Trials