Question 1)When the temperature of a metal wire is increased from $0^{0} \mathrm{C}$ to $10^{\circ} \mathrm{C}$, its length increases by 0.02%. The percentage change in its mass density will be closest to:
(A) 0.06
(B) 2.3
(C) 0.008
(D) 0.8

Answer: (A) 0.06
Solution:
Change in the length of the metal wire $(\Delta \mathrm{l})$ when its temperature is changed by $\Delta \mathrm{T}$ is given by
$\Delta \mathrm{l}=\mathrm{l} \alpha \Delta \mathrm{T}$
Here, $\alpha=$ coefficient of linear expansion
$\Delta \mathrm{l}=0.02 \%, \Delta \mathrm{~T}=10^{\circ} \mathrm{C}$
Therefore, $\alpha=\Delta 1 / 1 \Delta \mathrm{~T}$
$=0.02 /(100 \times 10)$
$\Rightarrow \alpha=2 \times 10^{-5}$
Volume coefficient of expansion, $\gamma=3 \alpha=6 \times 10^{-5}$
Since $\rho=M / V$
$(\Delta \mathrm{V} / \mathrm{V}) \times 100=\gamma \Delta \mathrm{T}=\left(6 \times 10^{-5} \times 10 \times 100\right)=6 \times 10^{-2}$
Volume increase by 0.06% therefore density decreases by 0.06%
Question 2) On a linear temperature scale Y, water freezes at $-160^{\circ} \mathrm{Y}$ and boils at $-50^{\circ} \mathrm{Y}$. On this Y scale, a temperature of 340 K would be read as (water freezes at 273 K and boils at 373 K)
(A) -73.70 Y
(B) -233.70 Y
(C) $-86.3^{0} \mathrm{Y}$
(D) $-106.3^{0} \mathrm{Y}$

Answer:(C)-86.3 ${ }^{\mathbf{0}} \mathrm{Y}$

Solution:

(Reading on any scale - LFP)/(UFP - LFP)
$=$ constant for all scales
$(340-273) /(373-273)=(\mathrm{Y}-(-160)) /(-50-(-160))$
$\Rightarrow(67 / 100)=(Y+160) / 110$
$\mathrm{Y}=-86.3^{\circ} \mathrm{Y}$
Question 3) A metal ball immersed in alcohol weighs W_{1} at $0^{\circ} \mathrm{C}$ and W_{2} at $50^{\circ} \mathrm{C}$. The coefficient of expansion of cubical metal is less than that of alcohol. Assuming that the density of the metal is large compared to that of alcohol, it can be shown that
(A) $\mathrm{W}_{1}>\mathrm{W}_{2}$
(B) $\mathrm{W}_{1}=\mathrm{W}_{2}$
(C) $\mathrm{W}_{1}<\mathrm{W}_{2}$
(D) None of these

Answer: (C) $\mathbf{W}_{1}<\mathbf{W}_{2}$

Solution:

$$
\begin{aligned}
& \quad W_{1}=m g-V d_{a} g \\
& W_{2}=m g-V^{\prime} d_{a}^{\prime} g=m g-V\left(1+50 \gamma_{b}\right) \frac{d_{a} g}{\left(1+50 \gamma_{a}\right)} \\
& =m g-V d_{a} g\left[\frac{1+50 \gamma_{b}}{1+50 \gamma_{a}}\right]
\end{aligned}
$$

Given $\gamma_{b}<\gamma_{a}$
$\begin{array}{ll}\therefore & 1+50 \gamma_{b}<1+50 \gamma_{a} \quad \text { or, } \\ \therefore & W_{2}>W_{1} \text { or } W_{1}<W_{2}\end{array} \quad \frac{1+50 \gamma_{b}}{1+50 \gamma_{a}}<1$

Question 4) A non-isotropic solid metal cube has a coefficient of linear expansion as $5 \times 10^{-5} /{ }^{0} \mathrm{C}$ along the x-axis and $5 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ along the Y and the Z-axis. If the coefficient of volume expansion of the solid is $C X$ $10^{-6} /^{\circ} \mathrm{C}$ then the value of C is \qquad
Answer: 60

Solution:

Volume, $\mathrm{V}=\mathrm{lbh}$
$\gamma=(\Delta \mathrm{V} / \mathrm{V} \Delta \mathrm{t})=(\Delta \mathrm{l} / \mathrm{l} \Delta \mathrm{t})+(\Delta \mathrm{b} / \mathrm{b} \Delta \mathrm{t})+(\Delta \mathrm{h} / \mathrm{h} \Delta \mathrm{t})$
($\gamma=$ coefficient of volume expansion)
$\Rightarrow \gamma=5 \times 10^{-5}+5 \times 10^{-6}+5 \times 10^{-6}$
$=60 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Therefore, value of $\mathrm{C}=60.00$
Question 5) A bakelite beaker has a volume capacity of 500 cc at $30^{\circ} \mathrm{C}$. When it is partially filled with Vm volume (at $30^{\circ} \mathbf{C}$) of mercury, it is found that the volume of the beaker remains constant as the temperature is varied. If $\gamma_{\text {beaker }}=6 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\gamma_{\text {mercury }}=1.5 \times 10^{-4} /{ }^{0} \mathrm{C}$, where γ is the coefficient of volume expansion, then V_{m} (in cc) is close to

Answer: 20
Solution:
Volume capacity of the beaker, $\mathrm{V}_{0}=500 \mathrm{cc}$
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{0}+\mathrm{V}_{0} \gamma_{\text {beaker }} \Delta \mathrm{T}$
When beaker is partially filled with V_{m} volume of mercury
$\mathrm{V}_{\mathrm{b}}{ }^{\prime}=\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{m}} \gamma_{\mathrm{m}} \Delta \mathrm{T}$
Unfilled volume $\left(\mathrm{V}_{0}-\mathrm{V}_{\mathrm{m}}\right)=\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{m}}{ }^{\prime}\right)$
$\Rightarrow V_{0} \gamma_{\text {beaker }}=V_{m} \gamma_{\mathrm{m}}$
Therefore, $\mathrm{V}_{\mathrm{m}}=\left(\mathrm{V}_{0} \gamma_{\text {beaker }}\right) / \gamma_{\mathrm{m}}$
$=\left(500 \times 6 \times 10^{-6}\right) /\left(1.5 \times 10^{-4}\right)$
$=20 \mathrm{cc}$
Question 6) Two rods A and B of identical dimensions are at temperature $30^{\circ} \mathrm{C}$. If A is heated upto $180^{\circ} \mathrm{C}$ and B upto $T^{0} C$, then the new lengths are the same. If the ratio of the coefficient of linear expansion of A and B is $4: 3$, then the value of T is
(A) $230^{\circ} \mathrm{C}$
(B) $270^{\circ} \mathrm{C}$
(C) $200^{\circ} \mathrm{C}$
(D) $250^{\circ} \mathrm{C}$

Answer: (A) $\mathbf{2 3 0}^{\mathbf{0}} \mathrm{C}$

Solution:

Change in length in both rods are same
i.e $\triangle \mathrm{l}_{1}=\triangle \mathrm{l}_{2}$
$l \alpha_{1} \triangle \theta_{1}=1 \alpha_{2} \triangle \theta_{2}$
$\left(\alpha_{1} / \alpha_{2}\right)=\left(\triangle \theta_{2} / \triangle \theta_{1}\right)$
$(4 / 3)=(\theta-30) /(180-30)$
$\theta=230^{\circ} \mathrm{C}$
Question 7)A rod, of length L at room temperature and uniform area of cross-section A, is made of a metal having a coefficient of linear expansion $\alpha /{ }^{\circ} \mathrm{C}$. It is observed that an external compressive force F , is applied on each of its ends, prevents any change in the length of the rod, when its temperature rises by $\Delta T \mathrm{~K}$. Young's modulus, Y for this metal is
(A) $\mathrm{F} / \mathrm{A} \alpha \triangle \mathrm{T}$
(B) $\mathrm{F} / \mathrm{A} \alpha(\triangle \mathrm{T}-273)$
(C) $\mathrm{F} / 2 \mathrm{~A} \alpha \triangle \mathrm{~T}$
(D) $2 \mathrm{~F} / \mathrm{A} \alpha \triangle \mathrm{T}$

Answer:(A) F/A $\alpha \triangle \mathbf{T}$

Solution:

Young's modulus $\mathrm{Y}=$ Stress $/$ Strain $=(\mathrm{F} / \mathrm{A}) /((\triangle \mathrm{l} / \mathrm{l}))$
Using coefficient of linear expansion
$\alpha=\triangle \mathrm{l} / 1 \triangle \mathrm{~T}$
$\Rightarrow \triangle \mathrm{l} / \mathrm{l}=\alpha \triangle \mathrm{T}$
Therefore, $Y=F / A \alpha \triangle T$
Question 8) At $40^{\circ} \mathrm{C}$, a brass wire of 1 mm radius is hung from the ceiling. A small mass, M is hung from the free end of the wire. When the wire is cooled down from $40^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ it regains its original length of 0.2 m . The value of M is close to
(Coefficient of linear expansion and Young's modulus of brass are $10^{-5} / /^{0} \mathrm{C}$ and $10^{11} \mathrm{~N} / \mathrm{m}^{2}$, respectively; $\mathrm{g}=10$ $\mathrm{m} / \mathbf{s}^{2}$)
(A) 9 Kg
(B) 0.5 Kg
(C) 1.5 kg
(D) 0.9 kg

Answer: $\mathbf{6 . 2 8} \mathrm{Kg}$ (Bonus)

Solution:

$\Delta_{\text {temp }}=\Delta_{\text {load }}$
and $\mathrm{A}=\pi \mathrm{r}^{2}=\pi\left(10^{-3}\right)^{2}=\pi \times 10^{-6}$
$\mathrm{L} \alpha \Delta \mathrm{T}=\mathrm{FL} / \mathrm{AY}$
$0.2 \times 10^{-5} \times 20=\left(\mathrm{Fx} 0.2 /\left(\pi \times 10^{-6}\right) \times 10^{11}\right.$
$\mathrm{F}=20 \pi \mathrm{~N}$
Therefore, $\mathrm{m}=\mathrm{F} / \mathrm{g}=2 \pi=6.28 \mathrm{Kg}$
Question 9) An external pressure P is applied on a cube at $0^{\circ} \mathrm{C}$ so that it is equally compressed from all sides. K is the bulk modulus of the material of the cube and α is its coefficient of linear expansion. Suppose we want to bring the cube to its original size by heating it. The temperature should be raised by
(A) $3 \alpha / \mathrm{PK}$
(B) $3 \mathrm{PK} \alpha$
(C) $\mathrm{P} / 3 \alpha \mathrm{~K}$
(D) $\mathrm{P} / \alpha \mathrm{K}$

Answer: (C) P/ 3aK
Solution:
As we know, Bulk modulus

$$
\begin{aligned}
& K=\frac{\Delta P}{\left(\frac{-\Delta V}{V}\right)} \quad \Rightarrow \frac{\Delta V}{V}=\frac{P}{K} \\
& V=V_{0}(1+\gamma \Delta t) \\
& \frac{\Delta V}{V_{0}}=\gamma \Delta t \quad \therefore \quad \frac{P}{K}=\gamma \Delta t \Rightarrow \Delta t=\frac{P}{\gamma K}=\frac{P}{3 \alpha K}
\end{aligned}
$$

Question 10) A compressive force, F is applied at the two ends of a long thin steel rod. It is heated, simultaneously, such that its temperature increases by ΔT. The net change in its length is zero. Let l be the length of the rod, A its area of cross-section, Y its Young's modulus, and α its coefficient of linear expansion. Then, F is equal to:
(A) $l^{2} Y \alpha \Delta T$
(B) $1 \mathrm{AY} \alpha \Delta \mathrm{T}$
(C) $A Y \alpha \Delta T$
(D) $\mathrm{AY} / \alpha \Delta \mathrm{T}$

Answer: (C)AYa $\mathbf{A T}$

Solution:

Due to thermal expansion, change in length $(\Delta l)=1 \alpha \Delta T$
Young's modulus $(\mathrm{Y})=$ Normal Stress/Longitudinal Strain
$\mathrm{Y}=(\mathrm{F} / \mathrm{A}) /(\Delta \mathrm{l} / \mathrm{l})$
$\Rightarrow \Delta \mathrm{l}=\mathrm{Fl} / \mathrm{AY}$
$\mathrm{Fl} / \mathrm{AY}=1 \alpha \Delta \mathrm{~T}$
$\mathrm{F}=\mathrm{AY} \alpha \Delta \mathrm{T}$

