Question 1: Let $a_{1}, a_{2}, a_{3}, \ldots b e$ in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0$ is
(a) 22
(b) 23
(c) 24
(d) 25

Solution:
Given $a_{1}, a_{2}, a_{3}, \ldots$ are in HP.
Then $1 / a_{1}, 1 / a_{2}, 1 / a_{3}$ are in AP.
Take d as the common difference,
Given $\mathrm{a}_{1}=5$ and $\mathrm{a}_{20}=25$
$1 / a_{20}=1 / a_{1}+19 \mathrm{~d}$
$1 / \mathrm{a}_{20}-1 / \mathrm{a}_{1}=19 \mathrm{~d}$
$1 / 25-1 / 5=19 \mathrm{~d}$
$-4 / 25=19 \mathrm{~d}$
$d=-4 / 25 \times 19$
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}<0$
$=>(1 / 5)+(n-1)(-4 / 25 \times 19)<0$
$4(\mathrm{n}-1) / 19 \times 5>1$
$\mathrm{n}-1>19 \times 5 / 4$
$\mathrm{n}>19 \times 5 / 4+1$
$\mathrm{n}=25$
So the least positive value of n is 25 .
Hence option d is the answer.
Question 2: Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be positive integers such that \mathbf{b} / \mathbf{a} is an integer. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are in geometric progression and the arithmetic mean of a, b, c is $b+2$, then the value of $\left(a^{2}+a-14\right) /(a+1)$ is

Solution:

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in geometric progression.
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$ (where r is the common ratio)
Given $(a+b+c) / 3=b+2$
$=>\left(a+a r+a r^{2}\right)=3(a r)+6($ since $b=a r)$
$\Rightarrow \mathrm{ar}^{2}-2 \mathrm{ar}+\mathrm{a}=6$
$\Rightarrow a\left(r^{2}-2 r+1\right)=6$
$\Rightarrow \mathrm{a}(\mathrm{r}-1)^{2}=6$
$\Rightarrow(r-1)^{2}=6 / \mathrm{a}$
6/a should be a perfect square.
So the possible value for a is 6 .
$\left(\mathrm{a}^{2}+\mathrm{a}-14\right) /(\mathrm{a}+1)=(36+6-14) / 7$
$=28 / 7$
$=4$
Hence the value of $\left(a^{2}+a-14\right) /(a+1)$ is 4 .
Question 3: A pack contains n cards numbered from 1 to \mathbf{n}. Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is $\mathbf{1 2 2 4}$. If the smaller to the numbers on the removed card is k, then $k-20$ equals
(a) 5
(b) 10
(c) 15
(d) 50

Solution:

Sum of n natural numbers $=\mathrm{n}(\mathrm{n}+1) / 2$
$\mathrm{n}(\mathrm{n}+1) / 2-(\mathrm{k}+\mathrm{k}+1)=1224$
$\mathrm{n}(\mathrm{n}+1) / 2-2 \mathrm{k}=1225$
$\mathrm{n}^{2}+\mathrm{n}-2450=4 \mathrm{k}$
$\Rightarrow>\mathrm{k}=(\mathrm{n}+50)(\mathrm{n}-49) / 4$
The smaller to the numbers on the removed card is k .
So $1 \leq \mathrm{k} \leq \mathrm{n}-1$
$\Rightarrow 1 \leq(n+50)(n-49) / 4 \leq n-1$
$49<$ n <51
$=>\mathrm{n}=50$
$\Rightarrow \mathrm{k}=100 / 4=25$
$\mathrm{k}-20=25-20=5$
Hence option a is the answer.
Question 4: The sides of the right-angled triangle are in AP. If the triangle has an area 24, then what is the length of its smallest side?

Solution:

Let $\mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}$ be the sides of the right angled triangle.
Using pythagoras theorem, we can write
$(a+d)^{2}=a^{2}+(a-d)^{2}$
$a^{2}+2 a d+d^{2}=a^{2}+a^{2}-2 a d+d^{2}$
$a^{2}-4 a d=0$
$\mathrm{a}(\mathrm{a}-4 \mathrm{~d})=0$
$\Rightarrow \mathrm{a}=4 \mathrm{~d}$ or $\mathrm{a}=0$ (rejected)
$=>a=4 d$..(i)
Area of triangle $=1 / 2 \mathrm{bh}$
$24=1 / 2(\mathrm{a}-\mathrm{d}) \mathrm{a}$
$48=3 d \times 4 d$
$48 / 12=d^{2}$
$\Rightarrow d^{2}=4$
$\Rightarrow>\mathrm{d}=2$

So $\mathrm{a}=8$
Length of smallest side $=\mathrm{a}-\mathrm{d}$
$=8-2$
$=6$
Hence the length of smallest side is 6 units.
Question 5: If the sum of the first \mathbf{n} terms of an $A P$ is $\mathbf{c n}^{2}$, then the sum of squares of these \mathbf{n} terms is
(a) $n\left(4 n^{2}-1\right) c^{2} / 6$
(b) $n\left(4 n^{2}+1\right) c^{2} / 3$
(c) $n\left(4 n^{2}-1\right) \mathrm{c}^{2} / 3$
(d) $n\left(4 n^{2}+1\right) c^{2} / 6$

Solution:

Let the sum of the first n terms of an AP be S_{n}.
Given $\mathrm{S}_{\mathrm{n}}=\mathrm{cn}^{2}$
$\mathrm{S}_{\mathrm{n}-1}=\mathrm{c}(\mathrm{n}-1)^{2}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}$
$=\mathrm{cn}^{2}-\mathrm{c}(\mathrm{n}-1)^{2}$
$=\mathrm{cn}^{2}-\mathrm{cn}^{2}+2 \mathrm{cn}-\mathrm{c}$
$=c(2 n-1)$
Sum of squares $=\sum \operatorname{Tn}^{2}$
$=\mathrm{c}^{2}\left[4 \sum \mathrm{n}^{2}+\sum 1-4 \sum \mathrm{n}\right]$
$=\left[4 \mathrm{c}^{2}(\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1) / 6]+\mathrm{nc}^{2}-\left(2 \mathrm{c}^{2} \mathrm{n}(\mathrm{n}+1)\right)\right.$
$=n c^{2}\left(4 n^{2}+6 n+2+3-6 n-6\right) / 3$
$=\mathrm{nc}^{2}\left(4 \mathrm{n}^{2}-1\right) / 3$
$=\mathrm{n}\left(4 \mathrm{n}^{2}-1\right) \mathrm{c}^{2} / 3$
Hence option (c) is the answer.
Question 6: The third term of a geometric progression is 4 . The product of the first five terms is
(a) 4^{3}
(b) 4^{4}
(c) 4^{5}
(d) 4

Solution:

Let a be the first term and r be the common ratio.
Third term $=\mathrm{ar}^{2}=4$
Product of first five terms $=a(a r)\left(a r^{2}\right)\left(a r^{3}\right)\left(a r^{4}\right)$
$=a^{5} \mathrm{r}^{10}$
$=\left(a r^{2}\right)^{5}$
$=4^{5}$
Hence option c is the answer.
Question 7: Let X be the set consisting of the first 2018 terms of an arithmetic progression, 1, 6, 11...., and Y be the set consisting of the first 2018 terms of arithmetic progression $9,16,23, \ldots$. Then, the number of elements in the set $(\mathbf{X} \cup \mathbf{Y})$ is

Solution:

$\mathrm{X}=\{1,6,11, \ldots\}$
Here $\mathrm{a}=1, \mathrm{~d}=5$
We know $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$2018^{\text {th }}$ term $=1+2017 \times 5$
$=10086$
$\mathrm{Y}=\{9,16,23, .$.
Here $\mathrm{a}=9, \mathrm{~d}=7$
$2018^{\text {th }}$ term $=9+2017 \times 7$
$=14128$
$\mathrm{X} \cap \mathrm{Y}=\{16,51,86, \ldots\}$
$10086 \geq 16+(\mathrm{n}-1) 35$

The number of elements in the set $\mathrm{X} \cup \mathrm{Y}$ is $\mathrm{n}(\mathrm{X} \cup \mathrm{Y})=\mathrm{n}(\mathrm{X})+\mathrm{n}(\mathrm{Y})-\mathrm{n}(\mathrm{X} \cap \mathrm{Y})$
$=2018+2018-288$
$=3748$
The number of elements in the set $(\mathrm{X} \cup \mathrm{Y})$ is 3748 .
Question 8: The minimum value of the sum of real numbers $a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}$ and a^{10} with $a>0$ is
(a) 9
(b) 8
(c) 2
(d) 1

Solution:

Since $a>0, a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}$ and a^{10} are positive.
So $\mathrm{AM} \geq \mathrm{GM}$
$=>(1 / 8)\left[a^{-5}+a^{-4}+a^{-3}+a^{-3}+a^{-3}+1+a^{8}+a^{10}\right] \geq\left[a^{-5} \times a^{-4} \times a^{-3} \times a^{-3} \times a^{-3} \times 1 \times a^{8} \times a^{10}\right]^{1 / 8}$
$=>(1 / 8)\left[a^{-5}+a^{-4}+a^{-3}+a^{-3}+a^{-3}+1+a^{8}+a^{10}\right] \geq 1^{1 / 8}$
$\left[a^{-5}+a^{-4}+a^{-3}+a^{-3}+a^{-3}+1+a^{8}+a^{10}\right] \geq 8$
The minimum value of the sum is 8 .
Hence option b is the answer.
Question 9: Let $S_{n}=\sum_{k=1}{ }^{4 n}(-1)^{k(k+1) / 2} \mathbf{k}^{2}$. Then S_{n} can take values
(a) 1056
(b) 1088
(c) 1120
(d) 1332

Solution:
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{k}=1} \mathrm{An}_{\mathrm{n}}(-1)^{\mathrm{k}(\mathrm{k}+1) / 2} \mathrm{k}^{2}=-1^{2}-2^{2}+3^{2}+4^{2}-5^{2}-6^{2}+7^{2}+8^{2}-\ldots+(4 \mathrm{n})^{2}$
$=\left(-1^{2}+3^{2}-5^{2}+7^{2}-\ldots+(4 n-1)^{2}\right)+\left(-2^{2}+4^{2}-6^{2}+8^{2}-. .+\left(4 n^{2}\right)\right.$
$=2(4+12+20+\ldots(8 n-4))+2(6+14+22+\ldots(8 n-2))($ Sum of n terms in A.P)
$=n(8 n)+n(8 n+4) \ldots$ (Use equation for sum of terms of A.P)
$=\mathrm{n}(16 \mathrm{n}+4)$
Put $\mathrm{n}=8, \mathrm{~S}_{\mathrm{n}}=1056$.
Put $\mathrm{n}=9, \mathrm{~S}_{\mathrm{n}}=1332$
Hence option (a) and (d) are correct.
Question 10: If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that 4th A.M is equal to 2 nd G.M, then m is equal to

Solution:

Let the AP be $3, a_{1}, a_{2} \ldots a_{m}, 243$.
Common difference, $\mathrm{d}=(243-3) /(\mathrm{m}+1)$
$=240 /(\mathrm{m}+1)$
Let $3, G_{1}, G_{2}, G_{3}, 243$ be the GP.
Let r be the common ratio.

$$
\begin{aligned}
& 3 r^{4}=243 \\
& =>r^{4}=243 / 3=81 \\
& =>r=3
\end{aligned}
$$

4th A.M is equal to 2 nd G.M
$\mathrm{G}_{2}=\mathrm{a}_{4}$
$\mathrm{ar}^{2}=\mathrm{a}+4 \mathrm{~d}$
$=>27=3+4 \times 240 /(\mathrm{m}+1)$
$=>24=960 /(\mathrm{m}+1)$
$\Rightarrow 960 / 24=1 /(\mathrm{m}+1)$
$\Rightarrow 1 / 40=1 /(m+1)$
$=>\mathrm{m}+1=40$

So $m=39$

Hence the value of m is 39 .
Question 11: Let $b_{i}>1$ for $i=1,2, \ldots 101$. Suppose $\log _{e} b_{1}, \log _{e} b_{2}, \ldots \log _{e} b_{10}$ are in AP with the common difference $\log 2$. Suppose $a_{1}, a_{2}, . . a_{101}$ are in AP such that $a_{1}=b_{1}$ and $a_{51}=b_{51}$. If $t=b_{1}+b_{2}+\ldots+b_{51}$ and $s=$ $a_{1}+a_{2}+\ldots+a_{51}$ then
(a) $s>t$ and $a_{101}>b_{101}$
(b) $\mathrm{s}>\mathrm{t}$ and $\mathrm{a}_{101}<\mathrm{b}_{101}$
(c) $\mathrm{s}<\mathrm{t}$ and $\mathrm{a}_{101}>\mathrm{b}_{101}$
(d) $\mathrm{s}<\mathrm{t}$ and $\mathrm{a}_{101}<\mathrm{b}_{101}$

Solution:
Given $\log _{e} \mathrm{~b}_{1}, \log _{\mathrm{e}} \mathrm{b}_{2}, \ldots \log _{\mathrm{e}} \mathrm{b}_{10}$ are in AP.
$\log _{\mathrm{e}} \mathrm{b}_{2}-\log _{\mathrm{e}} \mathrm{b}_{1}=\log _{\mathrm{e}} 2$
$\log _{\mathrm{e}}\left(\mathrm{b}_{2} / \mathrm{b}_{1}\right)=\log _{\mathrm{e}} 2$
$=>\left(b_{2} / b_{1}\right)=2$
Similarly $\mathrm{b}_{3} / \mathrm{b}_{2}=2$
$\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{101}$ are in GP with common ratio $\mathrm{r}=2$.
$\mathrm{b}_{\mathrm{n}}=2^{\mathrm{n}-1} \mathrm{~b}_{1} \ldots$ (i)
Given $a_{1}, a_{2}, . . a_{101}$ are in AP.
$\mathrm{t}=\mathrm{b}_{1}+\mathrm{b}_{2}+\ldots+\mathrm{b}_{51}$
$\mathrm{s}=\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{51}$
$t=$ sum of 51 terms of G.P
$=\mathrm{b}_{1}\left(\mathrm{r}^{51}-1\right) /(\mathrm{r}-1)$
$=b_{1}\left(2^{51}-1\right)$
$s=$ sum of 51 terms of A.P
$=(\mathrm{n} / 2)($ first term + last term $)$
$=(51 / 2)\left(a_{1}+a_{51}\right)$
$=(51 / 2)\left(\mathrm{b}_{1}+\mathrm{b}_{51}\right)$
$=(51 / 2)\left(\mathrm{b}_{1}+2^{50} \mathrm{~b}_{1}\right)$
$=b_{1}(51 / 2)\left(1+2^{50}\right)$
It is clear that $\mathrm{s}>\mathrm{t}$.
Given $\mathrm{a}_{51}=\mathrm{b}_{51}$ amd $\mathrm{a}_{1}=\mathrm{b}_{1}$.
$\mathrm{a}_{51}=\mathrm{a}_{1}+50 \mathrm{~d}$
$\mathrm{b}_{51}=\mathrm{b}_{1}+50 \mathrm{~d}$
$=>\mathrm{d}=\left(\mathrm{b}_{51}-\mathrm{b}_{1}\right) / 50$
$a_{101}=a_{1}+100 d$
$=b_{1}+100\left(b_{51}-b_{1}\right) / 50$
$=b_{1}+2\left(b_{51}-b_{1}\right)$
$=2 b_{51}-b_{1}$
$=2 \times 2^{50} \mathrm{~b}_{1}-\mathrm{b}_{1}($ from (i))
$=\mathrm{b}_{1}\left(2^{51}-1\right)$
$\mathrm{b}_{101}=2^{100} \mathrm{~b}_{1}$
It is clear that $2^{100} b_{1}>b_{1}\left(2^{51}-1\right)$
$=>b_{101}>a_{101}$
Hence option b is the answer.
Question 12: The harmonic mean and geometric mean of two positive numbers be the ratio 4:5. Then the two numbers are in the ratio
(a) $1: 4$
(b) $4: 1$
(c) $3: 4$
(d) $4: 3$

Solution:

Let a and b be the two positive numbers.
$H M=2 a b /(a+b)$
$\mathrm{GM}=\sqrt{ }(\mathrm{ab})$
$\mathrm{HM} / \mathrm{GM}=4 / 5$
$2 \mathrm{ab} /(\mathrm{a}+\mathrm{b}) \div \sqrt{ }(\mathrm{ab})=4 / 5$
$\Rightarrow 2 \sqrt{ }(\mathrm{ab}) /(\mathrm{a}+\mathrm{b})=4 / 5$
$\sqrt{ } \mathrm{ab} /(\mathrm{a}+\mathrm{b})=2 / 5$
Cross multiply
$5 \sqrt{ } \mathrm{ab}=2(\mathrm{a}+\mathrm{b})$
Squaring both sides
$25 a b=4(a+b)^{2}$
$25 a b=4\left(a^{2}+2 a b+b^{2}\right)$
$4 a^{2}-17 a b+4 b^{2}=0$
$(a-4 b)(4 a-b)=0$
$\Rightarrow(\mathrm{a}-4 \mathrm{~b})=0$ or $(4 \mathrm{a}-\mathrm{b})=0$
$\Rightarrow \mathrm{a} / \mathrm{b}=4 / 1$ or $\mathrm{a} / \mathrm{b}=1 / 4$
Hence option a and option b are correct.
Question 13: If the sum of the first 40 terms of the series, $3+4+8+9+13+14+18+19+\ldots$. is $(102) \mathrm{m}$, then m is equal to
(a) 20
(b) 5
(c) 10
(d) 25

Solution:

Given $3+4+8+9+13+14+18+19+\ldots=102 \mathrm{~m}$
$=>(3+4)+(8+9)+(13+14)+(18+19)+\ldots=102 \mathrm{~m}$
$=>7+17+27+\ldots 20$ terms $=102 \mathrm{~m}$

Here $\mathrm{a}=7, \mathrm{~d}=10, \mathrm{n}=20$
Sum of n terms of $A P=(n / 2)(2 a+(n-1) d)$
$=10(14+190)$
$=2040$
$=102 \mathrm{~m}$
So $\mathrm{m}=2040 / 102$
$=20$
Hence option a is the answer.
Question 14: The number of terms in an AP is even; the sum of the odd terms in it is 24 and that the even terms is 30. If the last term exceeds the first term by
$10 \frac{1}{2}$
then the number of terms in the AP is:
(a) 4
(b) 8
(c) 12
(d) 16

Solution:

Let 2 n be the number of terms in the AP.
Sum of odd terms $=\left(a_{1}+a_{3}+\ldots a_{2 n-1}\right)=24 \ldots(i)$
Sum of even terms $=\left(a_{2}+a_{4}+\ldots a_{2 n}\right)=30 \ldots$ (ii)
$\mathrm{a}_{2 \mathrm{n}}=\mathrm{a}_{1}+(2 \mathrm{n}-1) \mathrm{d}$
$\mathrm{a}_{2 \mathrm{n}}-\mathrm{a}_{1}=2 \mathrm{nd}-\mathrm{d}$
$10 \frac{1}{2}$

$$
=2 \mathrm{nd}-\mathrm{d}
$$

$21 / 2=2 n d-d .$. (iii)
(ii) - (i)
$\mathrm{a}_{2}-\mathrm{a}_{1}+\mathrm{a}_{4}-\mathrm{a}_{3}+\ldots \mathrm{a}_{2 \mathrm{n}}-\mathrm{a}_{2 \mathrm{n}-1}=30-24$
$\mathrm{d}+\mathrm{d}+\ldots . \mathrm{n}$ times $=6$
nd $=6$...(iv)
Substitute (iv) in (iii)
$21 / 2=2 \times 6-\mathrm{d}$
$12-\mathrm{d}=21 / 2$
$=>\mathrm{d}=(24-21) / 2$
$=3 / 2$
Put din (iv)
$3 n / 2=6$
$\Rightarrow>\mathrm{n}=12 / 3=4$
So $2 \mathrm{n}=8$
Hence option b is the answer.
Question 15: The value of $1^{2}+3^{2}+5^{2}+\ldots+25^{2}$ is
(a) 2925
(b) 1469
(c) 1728
(d) 1456

Solution:

$$
\begin{aligned}
& 1^{2}+3^{2}+5^{2}+\ldots+25^{2}=\left(1^{2}+2^{2}+3^{2}+\ldots .+25^{2}\right)-\left(2^{2}+4^{2}+\ldots .+24^{2}\right) \\
& =\left(1^{2}+2^{2}+3^{2}+\ldots .+25^{2}\right)-2^{2}\left(1^{2}+2^{2}+\ldots+12^{2}\right) \\
& =25 \times 26 \times 51 / 6-4 \times 12 \times 13 \times 25 / 6 \\
& =5525-2600 \\
& =2925
\end{aligned}
$$

Hence option a is the answer.

BYJU'S
The Learning App

