

Question 1: If PQR be a triangle of area \triangle with a = 2, b = 7/2 and c = 5/2, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R, respectively. Then (2 sin P - sin 2P)/(2 sin P + sin 2P) is equal to

(a) $3/4\Delta$

(b) $45/4\Delta$

(c) $(3/4\Delta)^2$

(d) $(45/4\Delta)^5$

Solution:

Given a = 2, b = 7/2 and c = 5/2

s = (a + b + c)/2

= 4

 $(2 \sin P - \sin 2P)/(2 \sin P + \sin 2P) = (2 \sin P - 2 \sin P \cos P)/(2 \sin P + 2 \sin P \cos P)$

 $= 2 \sin P(1 - \cos P)/2 \sin P(1 + \cos P)$

- $=(1 \cos P)/(1 + \cos P)$
- $= 2 \sin^2 (P/2)/2 \cos^2 (P/2)$

 $= \tan^2 (P/2)$

= (s - b)(s - c)/s(s - a) (since $\tan (P/2) = \sqrt{((s - b)(s - c)/s(s - a))}$

 $= (s - b)^2(s - c)^2/s(s - a)(s - b)(s - c)$ (multiply numerator and denominator by (s - b)(s - c))

 $= (4 - 7/2)^2 (4 - 5/2)^2 / \Delta^2$

 $= (\frac{1}{2} \times 3/2)^2 / \Delta^2$

```
=(3/4\Delta)^2
```

Hence option (c) is the answer.

Question 2: Let ABC and ABC' be two non congruent triangles with sides AB = 4, $AC = AC' = 2\sqrt{2}$ and angle $B = 30^{\circ}$. The absolute value of the difference between the areas of these triangles is

Solution:

Given AB = 4, AC = AC' = $2\sqrt{2}$

 $\angle B = 30^{\circ}$

Using cosine rule, $\cos B = (a^2 + c^2 - b^2)/2ac$ $\sqrt{3}/2 = (a^2 + 16 - 8)/8a$ $\sqrt{3}/2 = (a^2 + 8)/8a$ $a^2 - 4\sqrt{3}a + 8 = 0$ Let a_1 and a_2 be the roots of this equation. $a_1 + a_2 = 4\sqrt{3}$ $a_1a_2 = 8$ $|a_1 - a_2|^2 = (a_1 + a_2)^2 - 4a_1a_2$ = 48 - 32 = 16 $|a_1 - a_2| = 4$ $|\Delta_1 - \Delta_2| = \frac{1}{2} |a_1 - a_2|c \sin B$ $= \frac{1}{2} 4 \sin 30^0 \times 4$ = 4

Question 3: If the angles of a triangle are in the ratio 1 : 3: 5 and θ denotes the smallest angle, then the ratio of the largest side to the smallest side of the triangle is

(a) $(\sqrt{3} \sin \theta + \cos \theta)/2 \sin \theta$

(b) $(\sqrt{3} \cos \theta - \sin \theta)/2 \sin \theta$

(c) $(\cos \theta + \sqrt{3} \sin \theta)/2 \sin \theta$

(d) $(\sqrt{3}\cos\theta + \sin\theta)/2\sin\theta$

Solution:

Given angles are in the ratio 1 : 3 : 5.

So θ + 3 θ + 5 θ = 180

 $9\theta = 180$

So $\theta = 20^{\circ}$

Let $A = 20^{\circ}$, $B = 60^{\circ}$ and $C = 100^{\circ}$

a/sin A = b/sin B = c/sin C

- $c/a = \sin C/\sin A = \sin (120 \theta)/\sin \theta$
- = $(\sin 120 \cos \theta \cos 120 \sin \theta)/\sin \theta$
- $= ((\sqrt{3}/2) \cos \theta + \frac{1}{2} \sin \theta) / \sin \theta$

= $(\sqrt{3} \cos \theta + \sin \theta)/2 \sin \theta$

Hence option (d) is the answer.

Question 4: If R and r are the radii of the circumcircle and incircle of a regular polygon of n sides, each side being of length a, then a is equal to

(a) $2(R + r) \sin(\pi/2n)$

(b) $2(R + r) \tan(\pi/2n)$

(c) 2(R + r)

(d) none of these

Solution:

```
We know R = \frac{1}{2} a cosec (\pi/n)
```

 $r = \frac{1}{2} a \cot(\pi/n)$

So $2(R + r) = a (1/\sin (\pi/n) + \cos (\pi/n)/\sin (\pi/n))$

= a $(2 \cos^2 (\pi/2n))/2 \sin (\pi/2n) \cos (\pi/2n)$

 $= a \cot(\pi/2n)$

So $a = 2(R + r) / \cot(\pi/2n)$

 $= 2(R + r) \tan(\pi/2n)$

Hence option (b) is the answer.

Question 5: In a triangle, the sum of two sides is x and the product of the same two sides is y. If $x^2 - c^2 = y$, where c is a third side of the triangle, then the ratio of the in-radius to the circumradius of the triangle is

(a) 3y/2x(x+c)

(b) 3y/2c(x+c)

(c) 3y/4x(x+c)

(d) 3y/4c(x+c)

Solution:

In-radius = area/semi perimeter

 $=\Delta/s$

Circumradius = $abc/4\Delta$

In-radius/circumradius = $4\Delta^2/abcs$..(i)

Let a and b be the two sides of the triangle.

a+b = x

ab = y

Given $x^2 - c^2 = y$

a+b+c = x+c

Semi perimeter, s = (a+b+c)/2 = (x+c)/2

So (i) becomes

In-radius/circumradius = $8\Delta^2/yc(x+c)$

 $\Delta = \frac{1}{2}$ ab sin C

$$\cos C = (a^2 + b^2 - c^2)/2ab$$

$$=(x^2 - 2y - c^2)/2y$$

$$= -1/2$$

$$=> C = 120^{\circ}$$

 $\sin C = \sqrt{3/2}$

 $\Delta = \frac{1}{2}$ y. $\sqrt{3/2}$

$$=(\sqrt{3}/4)y$$

In-radius/circumradius = $8\Delta^2/yc(x+c)$

 $= 24y^{2}/16yc(x+c)$

$$= 3y/2c(x+c)$$

Hence option b is the answer.

Question 6: If d_1 , d_2 , d_3 are the diameters of the three escribed circles of a triangle, then $d_1d_2 + d_2d_3 + d_3d_1$ is

https://byjus.com

equal to

- (a) $4s^2$
- (b) Δ^2
- (c) $4\Delta^2$
- (d) $2\Delta^2$

Solution:

We know $d_1 = 2r_1$, $d_2 = 2r_2$, $d_3 = 2r_3$

We have $r_1 = \Delta/(s - a)$

 $r_2 = \Delta/(s - b)$

 $r_3 = \Delta/(s - c)$

$$d_1d_2 + d_2d_3 + d_3d_1 = 4(r_1r_2 + r_2r_3 + r_3r_1)$$

$$= 4\Delta^2(1/(s-a)(s-b) + 1/(s-b)(s-c) + 1/(s-c)(s-a))$$

$$= 4\Delta^{2}(s - c + s - a + s - b)/(s - a)(s - b)(s - c)$$

$$= 4\Delta^2 (3s - (a + b + c))/(s - a)(s - b)(s - c)$$

$$= 4\Delta^2(3s - 2s)/(s - a)(s - b)(s - c)$$

$$= 4\Delta^2 s/(s - a)(s - b)(s - c)$$

Multiply numerator and denominator by s

$$= 4\Delta^2 s^2/s(s - a)(s - b)(s - c)$$

$$= 4\Delta^2 s^2/\Delta^2$$

$$=4s^{2}$$

Hence option (a) is the answer.

Question 7: If in a triangle ABC, sin C + cos C + sin (2B + C) - cos (2B + C) = $2\sqrt{2}$, the the triangle ABC is

- (a) equilateral
- (b) scalene
- (c) isosceles right-angled
- (d) obtuse-angled

Solution:

Given sin C + cos C + sin (2B + C) - cos (2B + C) = $2\sqrt{2}$ Rearranging the equation, we get $\sin C + \sin (2B + C) + \cos C - \cos (2B + C) = 2\sqrt{2}$..(i) We know that $\sin A + \sin B = 2\sin (A + B)/2 \cos (A - B)/2$ So (i) => 2 sin (B + C) cos B + 2 sin (B + C) sin B = $2\sqrt{2}$ \Rightarrow sin (π - A) cos B + sin (π - A) sin B = $\sqrt{2}$ \Rightarrow sin A cos B + sin A sin B = $\sqrt{2}$ $\Rightarrow \sin A(\cos B + \sin B) = \sqrt{2}$ Divide both sides by $\sqrt{2}$ $\sin A((1/\sqrt{2}) \cos B + (1/\sqrt{2}) \sin B) = 1$ We know $\sin \pi/4 = \cos \pi/4 = 1/\sqrt{2}$ $\Rightarrow \sin A(\sin \pi/4 \cos B + \sin \pi/4 \sin B) = 1$ $=> \sin A \sin (B + \pi/4) = 1$ $=> \sin A = 1$ and $\sin (B + \pi/4) = 1$ $=> A = 90^{\circ}$, and $(B + \pi/4) = \pi/2$ $B = \pi/4 = 45^{\circ}$ So $C = 45^{\circ}$

Thus the triangle is isosceles right angled.

Hence option (c) is the answer.

Question 8: In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the in-circle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the length of PN, QL and RM are consecutive even integer. Then possible length(s) of the side(s) of the triangle is (are)

- (a) 16
- (b) 18
- (c) 24
- (d) 22

Solution:

Given that $\cos P = \frac{1}{3}$ $\cos P = \frac{(2x+2)^2 + (2x+4)^2 - (2x+6)^2}{2(2x+2)(2x+4)}$ $\frac{1}{3} = \frac{[4x-16]}{2(4x^2+12x+8)}$ $=> 8x^2 + 24x + 16 = 12x^2 - 48$ $=> 4x^2 - 24x - 64 = 0$ => (x-8)(x-2) = 0=> x = 8

So the sides of the triangle are 18, 20, 22.

Hence option b and option d are correct.

Question 9: In a triangle, ABC, AD, BE, and CF are the altitudes, and R is the circumradius then the radius of the circle DEF is

- (a) 2R
- (b) R
- (c) R/2
- (d) none of these

Solution:

Consider triangle DEF EF = a cos A DE = c cos C DF = b cos B Let R₁ is the circumradius of Δ DEF. R₁ = (a cos A) (b cos B) (c cos C)/4× ½ DF×DE sin \angle EDF \angle EDF = 180 - 2A So R₁ = (abc cos A cos B cos C)/2 b cos B c cos C sin (180 - 2A) = a cos A/2 sin 2A = a cos A/4 sin A cos A Put a = 2R sin A R₁= 2R sin A/4 sin A

= R/2

Hence option (c) is the answer.

Question 10: The sides of a triangle are in the ratio 5: 8: 11. If θ denotes the angle opposite to the largest side of the triangle, then the value of $\tan^2 \theta/2$ is equal to

- (a) 1/21
- (b) 7/48
- (c) 7/3
- (d) 7/12

Solution:

Given the sides are in the ratio 5: 8: 11

Let the sides be 5x, 8x, and 11x.

Then s = (5x + 8x + 11x)/2 = 12x

 θ is opposite to the side 11x.

 $\tan^2 \theta/2 = (s - 5x)(s - 8x)/s(s - 11x)$

- =(12x 5x)(12x 8x)/12x(12x 11x)
- $= 7x \times 4x/12x \times x$
- $= 28x^2/12x^2$
- = 7/3

Hence option (c) is the answer.

