Question 1: If $P Q R$ be a triangle of area Δ with $a=2, b=7 / 2$ and $c=5 / 2$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R, respectively. Then $(2 \sin P-\sin 2 P) /(2 \sin P+$ $\sin 2 P$) is equal to
(a) $3 / 4 \Delta$
(b) $45 / 4 \Delta$
(c) $(3 / 4 \Delta)^{2}$
(d) $(45 / 4 \Delta)^{5}$

Solution:

Given $\mathrm{a}=2, \mathrm{~b}=7 / 2$ and $\mathrm{c}=5 / 2$
$\mathrm{s}=(\mathrm{a}+\mathrm{b}+\mathrm{c}) / 2$
$=4$
$(2 \sin \mathrm{P}-\sin 2 \mathrm{P}) /(2 \sin \mathrm{P}+\sin 2 \mathrm{P})=(2 \sin \mathrm{P}-2 \sin \mathrm{P} \cos \mathrm{P}) /(2 \sin \mathrm{P}+2 \sin \mathrm{P} \cos \mathrm{P})$
$=2 \sin \mathrm{P}(1-\cos \mathrm{P}) / 2 \sin \mathrm{P}(1+\cos \mathrm{P})$
$=(1-\cos \mathrm{P}) /(1+\cos \mathrm{P})$
$=2 \sin ^{2}(\mathrm{P} / 2) / 2 \cos ^{2}(\mathrm{P} / 2)$
$=\tan ^{2}(\mathrm{P} / 2)$
$=(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c}) / \mathrm{s}(\mathrm{s}-\mathrm{a})($ since $\tan (\mathrm{P} / 2)=\sqrt{ }((\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c}) / \mathrm{s}(\mathrm{s}-\mathrm{a}))$
$=(\mathrm{s}-\mathrm{b})^{2}(\mathrm{~s}-\mathrm{c})^{2} / \mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$ (multiply numerator and denominator by $(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$)
$=(4-7 / 2)^{2}(4-5 / 2)^{2} / \Delta^{2}$
$=(1 / 2 \times 3 / 2)^{2} / \Delta^{2}$
$=(3 / 4 \Delta)^{2}$
Hence option (c) is the answer.
Question 2: Let $A B C$ and $A B C$ ' be two non congruent triangles with sides $A B=4, A C=A C '=2 \sqrt{ } 2$ and angle $B=\mathbf{3 0}$. The absolute value of the difference between the areas of these triangles is

Solution:

Given $\mathrm{AB}=4, \mathrm{AC}=\mathrm{AC}^{\prime}=2 \sqrt{ } 2$
$\angle \mathrm{B}=30^{\circ}$

Using cosine rule, $\cos \mathrm{B}=\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right) / 2 \mathrm{ac}$
$\sqrt{3} / 2=\left(a^{2}+16-8\right) / 8 a$
$\sqrt{3} / 2=\left(a^{2}+8\right) / 8 a$
$a^{2}-4 \sqrt{ } 3 a+8=0$
Let a_{1} and a_{2} be the roots of this equation.
$a_{1}+a_{2}=4 \sqrt{ } 3$
$\mathrm{a}_{1} \mathrm{a}_{2}=8$
$\left|a_{1}-a_{2}\right|^{2}=\left(a_{1}+a_{2}\right)^{2}-4 a_{1} a_{2}$
$=48-32$
$=16$
$\left|a_{1}-a_{2}\right|=4$
$\left|\Delta_{1}-\Delta_{2}\right|=1 / 2\left|a_{1}-a_{2}\right| c \sin B$
$=1 / 24 \sin 30^{\circ} \times 4$
$=4$
Question 3: If the angles of a triangle are in the ratio 1:3:5 and $\boldsymbol{\theta}$ denotes the smallest angle, then the ratio of the largest side to the smallest side of the triangle is
(a) $(\sqrt{ } 3 \sin \theta+\cos \theta) / 2 \sin \theta$
(b) $(\sqrt{ } 3 \cos \theta-\sin \theta) / 2 \sin \theta$
(c) $(\cos \theta+\sqrt{3} \sin \theta) / 2 \sin \theta$
(d) $(\sqrt{ } 3 \cos \theta+\sin \theta) / 2 \sin \theta$

Solution:

Given angles are in the ratio $1: 3: 5$.
So $\theta+3 \theta+5 \theta=180$
$9 \theta=180$
So $\theta=20^{\circ}$
Let $\mathrm{A}=20^{\circ}, \mathrm{B}=60^{\circ}$ and $\mathrm{C}=100^{\circ}$
$\mathrm{a} / \sin \mathrm{A}=\mathrm{b} / \sin \mathrm{B}=\mathrm{c} / \sin \mathrm{C}$
$\mathrm{c} / \mathrm{a}=\sin \mathrm{C} / \sin \mathrm{A}=\sin (120-\theta) / \sin \theta$
$=(\sin 120 \cos \theta-\cos 120 \sin \theta) / \sin \theta$
$=((\sqrt{3} / 2) \cos \theta+1 / 2 \sin \theta) / \sin \theta$
$=(\sqrt{3} \cos \theta+\sin \theta) / 2 \sin \theta$
Hence option (d) is the answer.
Question 4: If R and r are the radii of the circumcircle and incircle of a regular polygon of n sides, each side being of length a, then a is equal to
(a) $2(R+r) \sin (\pi / 2 n)$
(b) $2(R+r) \tan (\pi / 2 n)$
(c) $\mathbf{2}(\mathbf{R}+\mathbf{r})$
(d) none of these

Solution:

We know $\mathrm{R}=1 / 2 \mathrm{a} \operatorname{cosec}(\pi / \mathrm{n})$
$\mathrm{r}=1 / 2 \mathrm{a} \cot (\pi / \mathrm{n})$
So $2(\mathrm{R}+\mathrm{r})=\mathrm{a}(1 / \sin (\pi / \mathrm{n})+\cos (\pi / \mathrm{n}) / \sin (\pi / \mathrm{n}))$
$=\mathrm{a}\left(2 \cos ^{2}(\pi / 2 \mathrm{n})\right) / 2 \sin (\pi / 2 \mathrm{n}) \cos (\pi / 2 \mathrm{n})$
$=\mathrm{a} \cot (\pi / 2 \mathrm{n})$
So $\mathrm{a}=2(\mathrm{R}+\mathrm{r}) / \cot (\pi / 2 \mathrm{n})$
$=2(\mathrm{R}+\mathrm{r}) \tan (\pi / 2 \mathrm{n})$
Hence option (b) is the answer.
Question 5: In a triangle, the sum of two sides is x and the product of the same two sides is y. If $\mathbf{x}^{2}-c^{2}=y$, where \mathbf{c} is a third side of the triangle, then the ratio of the in-radius to the circumradius of the triangle is
(a) $3 y / 2 x(x+c)$
(b) $3 y / 2 c(x+c)$
(c) $3 y / 4 x(x+c)$
(d) $3 y / 4 c(x+c)$

Solution:

In-radius $=$ area $/$ semi perimeter
$=\Delta / \mathrm{s}$

Circumradius $=\mathrm{abc} / 4 \Delta$

In-radius/circumradius $=4 \Delta^{2} /$ abcs ..(i)
Let a and b be the two sides of the triangle.
$a+b=x$
$a b=y$
Given $\mathrm{x}^{2}-\mathrm{c}^{2}=\mathrm{y}$
$a+b+c=x+c$

Semi perimeter, $\mathrm{s}=(\mathrm{a}+\mathrm{b}+\mathrm{c}) / 2=(\mathrm{x}+\mathrm{c}) / 2$
So (i) becomes
In-radius/circumradius $=8 \Delta^{2} / \mathrm{yc}(\mathrm{x}+\mathrm{c})$
$\Delta=1 / 2 \mathrm{ab} \sin \mathrm{C}$
$\cos \mathrm{C}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) / 2 \mathrm{ab}$
$=\left(\mathrm{x}^{2}-2 \mathrm{y}-\mathrm{c}^{2}\right) / 2 \mathrm{y}$
$=-1 / 2$
$=>\mathrm{C}=120^{\circ}$
$\sin C=\sqrt{ } 3 / 2$
$\Delta=1 / 2 \mathrm{y} . \sqrt{ } 3 / 2$
$=(\sqrt{ } 3 / 4) y$
In-radius/circumradius $=8 \Delta^{2} / \mathrm{yc}(\mathrm{x}+\mathrm{c})$
$=24 y^{2} / 16 y c(x+c)$
$=3 y / 2 c(x+c)$
Hence option b is the answer.
Question 6: If d_{1}, d_{2}, d_{3} are the diameters of the three escribed circles of a triangle, then $d_{1} d_{2}+d_{2} d_{3}+d_{3} d_{1}$ is

The Learning App
equal to
(a) $4 s^{2}$
(b) Δ^{2}
(c) $4 \Delta^{2}$
(d) $2 \Delta^{2}$

Solution:

We know $\mathrm{d}_{1}=2 \mathrm{r}_{1}, \mathrm{~d}_{2}=2 \mathrm{r}_{2}, \mathrm{~d}_{3}=2 \mathrm{r}_{3}$
We have $\mathrm{r}_{1}=\Delta /(\mathrm{s}-\mathrm{a})$
$\mathrm{r}_{2}=\Delta /(\mathrm{s}-\mathrm{b})$
$\mathrm{r}_{3}=\Delta /(\mathrm{s}-\mathrm{c})$
$\mathrm{d}_{1} \mathrm{~d}_{2}+\mathrm{d}_{2} \mathrm{~d}_{3}+\mathrm{d}_{3} \mathrm{~d}_{1}=4\left(\mathrm{r}_{1} \mathrm{r}_{2}+\mathrm{r}_{2} \mathrm{r}_{3}+\mathrm{r}_{3} \mathrm{r}_{1}\right)$
$=4 \Delta^{2}(1 /(s-a)(s-b)+1 /(s-b)(s-c)+1 /(s-c)(s-a))$
$=4 \Delta^{2}(\mathrm{~s}-\mathrm{c}+\mathrm{s}-\mathrm{a}+\mathrm{s}-\mathrm{b}) /(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$
$=4 \Delta^{2}(3 \mathrm{~s}-(\mathrm{a}+\mathrm{b}+\mathrm{c})) /(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$
$=4 \Delta^{2}(3 s-2 s) /(s-a)(s-b)(s-c)$
$=4 \Delta^{2} \mathrm{~s} /(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$
Multiply numerator and denominator by s
$=4 \Delta^{2} s^{2} / s(s-a)(s-b)(s-c)$
$=4 \Delta^{2} \mathrm{~s}^{2} / \Delta^{2}$
$=4 \mathrm{~s}^{2}$
Hence option (a) is the answer.
Question 7: If in a triangle $A B C, \sin C+\cos C+\sin (2 B+C)-\cos (2 B+C)=2 \sqrt{ } 2$, the the triangle $A B C$ is
(a) equilateral
(b) scalene
(c) isosceles right-angled
(d) obtuse-angled

Solution:

Given $\sin \mathrm{C}+\cos \mathrm{C}+\sin (2 \mathrm{~B}+\mathrm{C})-\cos (2 \mathrm{~B}+\mathrm{C})=2 \sqrt{ } 2$
Rearranging the equation, we get
$\sin C+\sin (2 B+C)+\cos C-\cos (2 B+C)=2 \sqrt{ } 2 . .(i)$
We know that $\sin \mathrm{A}+\sin \mathrm{B}=2 \sin (\mathrm{~A}+\mathrm{B}) / 2 \cos (\mathrm{~A}-\mathrm{B}) / 2$
So $(\mathrm{i})=>2 \sin (\mathrm{~B}+\mathrm{C}) \cos \mathrm{B}+2 \sin (\mathrm{~B}+\mathrm{C}) \sin \mathrm{B}=2 \sqrt{ } 2$
$\Rightarrow \sin (\pi-\mathrm{A}) \cos \mathrm{B}+\sin (\pi-\mathrm{A}) \sin \mathrm{B}=\sqrt{ } 2$
$\Rightarrow \sin \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}=\sqrt{ } 2$
$\Rightarrow \sin A(\cos B+\sin B)=\sqrt{ } 2$
Divide both sides by $\sqrt{ } 2$
$\sin A((1 / \sqrt{ } 2) \cos B+(1 / \sqrt{ } 2) \sin B)=1$
We know $\sin \pi / 4=\cos \pi / 4=1 / \sqrt{ } 2$
$\Rightarrow>\sin \mathrm{A}(\sin \pi / 4 \cos \mathrm{~B}+\sin \pi / 4 \sin \mathrm{~B})=1$
$\Rightarrow>\sin \mathrm{A} \sin (\mathrm{B}+\pi / 4)=1$
$\Rightarrow>\sin \mathrm{A}=1$ and $\sin (\mathrm{B}+\pi / 4)=1$
$\Rightarrow \mathrm{A}=90^{\circ}$, and $(\mathrm{B}+\pi / 4)=\pi / 2$
$\mathrm{B}=\pi / 4=45^{\circ}$
So $\mathrm{C}=45^{0}$
Thus the triangle is isosceles right angled.
Hence option (c) is the answer.
Question 8: In a triangle $P Q R, P$ is the largest angle and $\cos P=1 / 3$. Further the in-circle of the triangle touches the sides $P Q, Q R$ and $R P$ at N, L and M respectively, such that the length of $P N, Q L$ and $R M$ are consecutive even integer. Then possible length(s) of the side(s) of the triangle is (are)
(a) 16
(b) 18
(c) 24
(d) 22

Solution:

Given that $\cos P=1 / 3$

$$
\begin{aligned}
& \cos P=\left[(2 x+2)^{2}+(2 x+4)^{2}-(2 x+6)^{2}\right] / 2(2 x+2)(2 x+4) \\
& 1 / 3=[4 x-16] / 2\left(4 x^{2}+12 x+8\right) \\
& \Rightarrow 8 x^{2}+24 x+16=12 x^{2}-48 \\
& \Rightarrow 4 x^{2}-24 x-64=0 \\
& \Rightarrow(x-8)(x-2)=0 \\
& \Rightarrow x=8
\end{aligned}
$$

So the sides of the triangle are $18,20,22$.
Hence option b and option d are correct.
Question 9: In a triangle, $\mathrm{ABC}, \mathrm{AD}, \mathrm{BE}$, and CF are the altitudes, and R is the circumradius then the radius of the circle DEF is
(a) 2 R
(b) R
(c) $\mathrm{R} / 2$
(d) none of these

Solution:

Consider triangle DEF
$\mathrm{EF}=\mathrm{a} \cos \mathrm{A}$
$\mathrm{DE}=\mathrm{c} \cos \mathrm{C}$
$\mathrm{DF}=\mathrm{b} \cos \mathrm{B}$
Let R_{1} is the circumradius of $\triangle D E F$.
$\mathrm{R}_{1}=(\mathrm{a} \cos \mathrm{A})(\mathrm{b} \cos \mathrm{B})(\mathrm{c} \cos \mathrm{C}) / 4 \times 1 / 2 \mathrm{DF} \times \mathrm{DE} \sin \angle \mathrm{EDF}$
$\angle \mathrm{EDF}=180-2 \mathrm{~A}$
So $\mathrm{R}_{1}=(\mathrm{abc} \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}) / 2 \mathrm{~b} \cos \mathrm{~B} \mathrm{c} \cos \mathrm{C} \sin (180-2 \mathrm{~A})$
$=\mathrm{a} \cos \mathrm{A} / 2 \sin 2 \mathrm{~A}$
$=\mathrm{a} \cos \mathrm{A} / 4 \sin \mathrm{~A} \cos \mathrm{~A}$
Put $\mathrm{a}=2 \mathrm{R} \sin \mathrm{A}$
$\mathrm{R}_{1}=2 \mathrm{R} \sin \mathrm{A} / 4 \sin \mathrm{~A}$
$=\mathrm{R} / 2$
Hence option (c) is the answer.
Question 10: The sides of a triangle are in the ratio 5: 8: 11. If $\boldsymbol{\theta}$ denotes the angle opposite to the largest side of the triangle, then the value of $\tan ^{2} \theta / 2$ is equal to
(a) $1 / 21$
(b) $7 / 48$
(c) $7 / 3$
(d) $7 / 12$

Solution:

Given the sides are in the ratio 5: 8: 11
Let the sides be $5 \mathrm{x}, 8 \mathrm{x}$, and 11 x .
Then $\mathrm{s}=(5 \mathrm{x}+8 \mathrm{x}+11 \mathrm{x}) / 2=12 \mathrm{x}$
θ is opposite to the side 11 x .
$\tan ^{2} \theta / 2=(\mathrm{s}-5 \mathrm{x})(\mathrm{s}-8 \mathrm{x}) / \mathrm{s}(\mathrm{s}-11 \mathrm{x})$

$$
\begin{aligned}
& =(12 \mathrm{x}-5 \mathrm{x})(12 \mathrm{x}-8 \mathrm{x}) / 12 \mathrm{x}(12 \mathrm{x}-11 \mathrm{x}) \\
& =7 \mathrm{x} \times 4 \mathrm{x} / 12 \mathrm{x} \times \mathrm{x} \\
& =28 \mathrm{x}^{2} / 12 \mathrm{x}^{2} \\
& =7 / 3
\end{aligned}
$$

Hence option (c) is the answer.

