
GOVERNMENT OF TAMILNADU

COMPUTER SCIENCE

A publication under Free Textbook Programme of Government of Tamil Nadu

Department of School Education

HIGHER SECONDARY FIRST YEAR

Untouchability is Inhuman and a Crime

Introduction Folder.indd 1 3/24/2020 9:25:44 AM

II

Government of Tamil Nadu
First Edition - 2018
Revised Edition - 2019, 2020

(Published under new syllabus)

Tamil Nadu Textbook and
Educational Services Corporation

State Council of Educational
Research and Training
© SCERT 2018

Printing & Publishing

Content Creation

The wise
possess all

NOT FOR SALE

Introduction Folder.indd 2 3/24/2020 9:25:44 AM

III

Human civilization achieved the highest peak with the
development of computer known as “Computer era”.

Literate are those who have the
knowledge in using the computer
whereas others are considered
illiterate inspite of the other degrees
obtained.

T h e growth of the nation at present lies in the
hands of the youth, hence the content of this book is

prepared in such a way so as to attain utmost knowledge
considering the future needs of the youth.

 This book does not require
prior knowledge in computer
Technology

 Each unit comprises of simple
activities and demonstrations
which can be done by the teacher
and also students.

 Technical terminologies are listed
in glossary for easy understanding

 The “ Do you know?” boxes enrich the knowledge of reader with
additional information

 Workshops are introduced to solve the exercises using software
applications

 QR codes are used to link supporting additional
 materials in digital form

Let’s use the QR code in the text books!
o Download DIKSHA app from the Google Play Store.
o Tap the QR code icon to scan QR codes in the textbook.
o Point the device and focus on the QR code.
o On successful scan, content linked to the QR code gets listed.

Note: For ICT corner, Digi Links QR codes use any other QR scanner.

PREFACE

HOW
TO USE

THE BOOK

Introduction Folder.indd 3 3/24/2020 9:25:44 AM

IV

CAREER GUIDANCE AFTER 12TH

COURSES COLLEGES/
UNIVERSITIES PROFESSION

B.E / B.Tech
All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Software Engineer, Hardware
Engineer, Software
Development, Healthcare
Section, IT & ITEs

Science and Humanities
B.Sc (Computer Science)
BCA
B.Sc (Maths, Physics, Chemistry,
Bio-Chemistry, Geography,
journalism, Library Sciences,
Political Science, Travel and
Tourism)

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Government Job and Private
Company BPO, Geologist,
Journalist

LAW
LLB
B.A+LLB
B.Com
BBM+LLB
BBA+LLB

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Lawyer, Legal Officer, Govt
Job

CA The Institute of Chartered Accountant
of India (ICAI) CA Private and Govt.

Diploma Government Polytechnic and Self-
financing colleges

Junior Engineer (Government
and Private)

Commerce Courses
B.com-Regular,
B.com-Taxation & Tax Procedure,
B.com-Travel &Tourism,
B.com-Bank Management,
B.com-Professional,
BBA/BBM-Regular,
BFM- Bachelors in Financial
Markets,
BMS-Bachelors in Management
Studies,
BAF- Bachelors in Accounting &
Finance,
Certified Stock Broker &
Investment Analysis,
Certified Financial Analyst,
Certified Financial Planner,
Certified Investment Banker

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Private Organization ,
Government ,Banking sectors
and prospects for self –
employment.

Introduction Folder.indd 4 3/24/2020 9:25:44 AM

V

COURSES COLLEGES/
UNIVERSITIES PROFESSION

Management Courses
Business Management
Bank Management
Event Management
Hospital Management
Human Resource Management
Logistics Management

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Private Organization ,
Government ,Banking sectors
and prospects for self –
employment.

LAW
LLB
B.A+LLB
B.Com
BBM+LLB
BBA+LLB

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Lawyer, Legal Officer, Private
Organization , Government,
Banking sectors and prospects
for self – employment

CA-Chartered Accountant
CMA-Cost Management
Accountant.
CS-Company Secretary
(Foundation)

The Institute of Chartered Accountant
of India (ICAI)

CA, Private Organization,
Government ,Banking sectors
and prospects for self –
employment.

Science and Humanities
B.Sc.Botany
B.Sc.Zoology
B.Sc.Dietician & Nutritionist
B.Sc.Home Science
B.Sc.Food Technology
B.Sc.Dairy Technology
B.Sc. Hotel Management
B.Sc. Fashion Design
B.Sc. Mass Communication
B.Sc. Multimedia
B.Sc. -3D Animation

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad

Government Job and Private
Company BPO, Geologist,
Journalist

LAW
LLB
B.A+LLB
B.Com
BBM+LLB
BBA+LLB

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Lawyer, Legal Officer, Govt
Job

CA The Institute of Chartered Accountant
of India (ICAI) CA Private and Govt.

Diploma Government Polytechnic and Self-
financing colleges

Junior Engineer (Government
and Private)

Introduction Folder.indd 5 3/24/2020 9:25:44 AM

VI

E - book Assessment DIGI links

Table of ContentsTable of Contents
Chapter

No. Title Page Month

UNIT I –FUNDAMENTALS OF COMPUTER AND WORKING WITH A
TYPICAL OPERATING SYSTEMS (WINDOWS & LINUX)

1 Introduction to Computers 1 June

2 Number Systems 14 June

3 Computer Organization 41 June

4 Theoretical Concepts of Operating System 50 July

5 Working with Windows Operating System 57 July

UNIT II-ALGORITHMIC PROBLEM SOLVING

6 Specification and Abstraction 76 July

7 Composition and Decomposition 88 August

8 Iteration and recursion 102 August
UNIT III – INTRODUCTION TO C++

9 Introduction to C++ 115 September
10 Flow of Control 152 September

11 Functions 180 October

12 Arrays and Structures 206 October
UNIT IV - OBJECT ORIENTED PROGRAMMING WITH C++

13 Introducton to Object Oriented Programming
Techniques 228 October

14 Classes and objects 233 November
15 Polymorphism 249 November
16 Inheritance 260 December

UNIT V – COMPUTER ETHICS AND CYBER SECURITY
17 Computer Ethics and Cyber Security 275 December
18 Tamil Computing 286 December

Practicals 298

Introduction Folder.indd 6 3/24/2020 9:25:44 AM

1

CHAPTER 1Unit I Fundamentals of Computers

Introduction to Computers

Learning Objectives

After learning the concepts in this chapter,
the students will be able
• To know about Computers
• To learn about various generations of

computer
• To understand the basic operations of

computers
• To know the components and their

functions.
• To know about booting of a computer

Charles Babbage
is considered
to be the

father of computer,
for his invention
and the concept of
Analytical Engine in
1837. The Analytical
Engine contained an
Arithmetic Logic Unit
(ALU), basic flow
control, and integrated
memory; which led
to the development of first general-
purpose computer concept.

Father of Computer

1.1 Introduction to Computers

 Computers are seen everywhere
around us, in all spheres of life, in the field
of education, research, travel and tourism,
weather forecasting, social networking,
e-commerce etc. Computers have now
become an indispensable part of our lives.
Computers have revolutionised our lives with
their accuracy and speed of performing a job,
it is truly remarkable. Today, no organisation
can function without a computer. In fact,
various organisations have become paperless.
Computers have evolved over the years from
a simple calculating device to high speed
portable computers.
 The growth of computer industry started
with the need for performing fast calculations.
The manual method of computing was slow
and prone to errors. So, attempts were made
to develop fast calculating devices, the journey
started from the first known calculating device
(Abacus) which has led us today to an extremely
high speed calculating devices.

1.2 Generations of Computers

 Growth in the computer industry is
determined by the development in technology.
 Based on various stages of development,
computers can be categroised into different
generations.

SN Generation Period
Main Component

used
Merits/Demerits

 1
First
Generation

1940-
1956

Vacuum tubes

• Big in size
• Consumed more power
• Malfunction due to overheat
• Machine Language was used

Chapter 1 Page 001-013.indd 1 3/24/2020 9:09:44 AM

2

First Generation Computers - ENIAC , EDVAC , UNIVAC 1
ENIAC weighed about 27 tons, size 8 feet × 100 feet × 3 feet and consumed around 150

watts of power

 2
Second
Generation

1956-
1964

Transistors

• Smaller compared to First
Generation

• Generated Less Heat
• Consumed less power

compared to first generation
• Punched cards were used
• First operating system was

developed - Bat ch Processing
and Multiprogramming
Operating System

• Machine language as well as
Assembly language was used.

Second Generation Computers IBM 1401, IBM 1620, UNIVAC 1108

3
Third
Generation

1964
-1971

Integrated
Circuits (IC)

• Computers were smaller,
faster and more reliable

• Consumed less power
• High Level Languages were

used

Third Generation Computers IBM 360 series, Honeywell 6000 series

 4
Fourth
Generation

1971-
1980 Microprocessor

Very Large Scale
Integrated Circuits

(VLSI)

• Smaller and Faster
• Microcomputer series such

as IBM and APPLE were
developed

• Portable Computers were
introduced.

 5
Fifth
Generation

1980 - till
date

Ultra Large
Scale Integration

(ULSI)

• Parallel Processing
• Super conductors
• Computers size was drastically

reduced.
• Can recognise Images and

Graphics
• Introduction of Artificial

Intelligence and Expert
Systems

• Able to solve high complex
problems including decision
making and logical reasoning

Chapter 1 Page 001-013.indd 2 3/24/2020 9:09:45 AM

3

 6
Sixth
Generation

In future

• Parallel and Distributed
computing

• Computers have become
smarter, faster and smaller

• Development of robotics
• Natural Language Processing
• Development of Voice

Recognition Software

Table1.1 Generations of computers

The first digital computer

The ENIAC (Electronic Numerical
Integrator And Calculator)

was invented by J. Presper Eckert and
John Mauchly at
the University of
Pennsylvania and
began construction
in 1943 and was
not completed until
1946. It occupied about 1,800 square feet and
used about 18,000 vacuum tubes, weighing
almost 50 tons. ENIAC was the first digital
computer because it was fully functional.

1.3 Sixth Generation Computing

 In the Sixth Generation, computers
could be defined as the era of intelligent
computers, based on Artificial Neural
Networks. One of the most dramatic
changes in the sixth generation will be the
explosive growth of Wide Area Networking.
Natural Language Processing (NLP) is
a component of Artificial Intelligence
(AI). It provides the ability to develop the
computer program to understand human
language.

 Optical Character
Recognition (Optical
Grapheme Recognition) engine
for the Indus Scripts has been

developed using Deep Learning Neural
Networks (a sub-field of Artificial
Intelligence).
Given photographs, scans, or any image
feed of an Indus Valley Civilization
artifact, the system will
be able to recognise the
inscriptions (the symbol/
grapheme sequences)
from the image. There
are totally 417 Symbols/
Graphemes/Characters in the Indus
Scripts and just 3700+ text inscriptions
of data for the machine to learn and
attain expert-level status.

1.4. Data and Information

 We all know what a computer is? It
is an electronic device that processes the
input according to the set of instructions
provided to it and gives the desired output

Chapter 1 Page 001-013.indd 3 3/24/2020 9:09:46 AM

4

at a very fast rate. Computers are very
versatile as they do a lot of different tasks
such as storing data, weather forecasting,
booking airlines, railway or movie tickets
and even playing games.

 Data: Data is defined as an un-
processed collection of raw facts, suitable
for communication, interpretation or
processing.

 For example, 134, 16 ‘Kavitha’, ‘C’
are data. This will not give any meaningful
message.

 Information: Information is a
collection of facts from which conclusions
may be drawn. In simple words we can say
that data is the raw facts that is processed
to give meaningful, ordered or structured
information. For example Kavitha is
16 years old. This information is about
Kavitha and conveys some meaning. This
conversion of data into information is
called data processing.

INPUT OUTPUTPROCESS

DATA

INFORMATION

Figure 1.1 Data and Information
“A Computer is an electronic device that
takes raw data (unprocessed) as an input
from the user and processes it under the
control of a set of instructions (called
program), produces a result (output), and
saves it for future use.”

1.5 Components of a Computer

The computer is the combination of
hardware and software. Hardware is the
physical component of a computer like
motherboard, memory devices, monitor,
keyboard etc., while software is the set of

programs or instructions. Both hardware
and software together make the computer
system to function.

Figure 1.2: Computer
 Let us first have a look at the
functional components of a computer.
Every task given to a computer follows an
Input- Process- Output Cycle (IPO cycle).
It needs certain input, processes that
input and produces the desired output.
The input unit takes the input, the central
processing unit does the processing of
data and the output unit produces the
output. The memory unit holds the data
and instructions during the processing.

ALU

Internal
Memory

Main Memory

Secondary Storage

Output UnitInput Unit

Control Unit

Data Path
Control Path

Figure 1.3 components of a computer

1.5.1 Input Unit
 Input unit is used to feed any form
of data to the computer, which can be
stored in the memory unit for further
processing. Example: Keyboard, mouse,
etc.

Chapter 1 Page 001-013.indd 4 3/24/2020 9:09:47 AM

5

1.5.2 Central Processing Unit
 CPU is the major component
which interprets and executes software
instructions. It also control the operation
of all other components such as memory,
input and output units. It accepts binary
data as input, process the data according
to the instructions and provide the result
as output.

 The CPU has three components
which are Control unit, Arithmetic and
logic unit (ALU) and Memory unit.

1.5.2.1 Arithmetic and Logic Unit

 The ALU is a part of the CPU
where various computing functions are
performed on data. The ALU performs
arithmetic operations such as addition,
subtraction, multiplication, division
and logical operations. The result of an
operation is stored in internal memory
of CPU. The logical operations of ALU
promote the decision-making ability of a
computer.

1.5.2.2 Control Unit

The control unit controls the flow of
data between the CPU, memory and
I/O devices. It also controls the entire
operation of a computer.

1.5.3. Output Unit

An Output Unit is any hardware
component that conveys information to
users in an understandable form. Example:
Monitor, Printer etc.

1.5.4. Memory Unit

 The Memory Unit is of two types
which are primary memory and secondary
memory. The primary memory is used

to temporarily store the programs and
data when the instructions are ready to
execute. The secondary memory is used
to store the data permanently.

 The Primary Memory is volatile, that
is, the content is lost when the power supply
is switched off. The Random Access Memory
(RAM) is an example of a main memory. The
Secondary memory is non volatile, that is,
the content is available even after the power
supply is switched off. Hard disk, CD-ROM
and DVD ROM are examples of secondary
memory.

1.5.5. Input and Output Devices

Input Devices:

 (1) Keyboard: Keyboard (wired /
wireless, virtual) is the most common input
device used today. The individual keys for
letters, numbers and special characters
are collectively known as character keys.
This keyboard layout is derived from the
keyboard of original typewriter. The data
and instructions are given as input to
the computer by typing on the keyboard.
Apart from alphabet and numeric keys,
it also has Function keys for performing
different functions. There are different set
of keys available in the keyboard such as
character keys, modifier keys, system and
GUI keys, enter and editing keys, function
keys, navigation keys, numeric keypad
and lock keys.

Figure 1.4 Keyboard
 (2) Mouse: Mouse (wired/wireless)
is a pointing device used to control the

Chapter 1 Page 001-013.indd 5 3/24/2020 9:09:47 AM

6

Fingerprint Reader / Scanner is a very safe
and convenient
device for security
instead of using
passwords, which
is vulnerable to
fraud and is hard
to remember.

 (5) Track Ball:
Track ball is similar to
the upside- down design
of the mouse. The user
moves the ball directly,
while the device itself
remains stationary. The
user spins the ball in
various directions to navigate the screen
movements.
 (6) Retinal Scanner: This performs
a retinal scan which is a biometric
technique that uses unique patterns on a
person's retinal blood vessels.

Figure 1.8 Retinal Scanner
 (7) Light Pen: A light pen is a
pointing device
shaped like a pen
and is connected
to a monitor. The
tip of the light
pen contains a
l i g h t - s e n s i t i v e
element which detects the light from the
screen enabling the computer to identify the
location of the pen on the screen. Light pens

Figure 1.6 Fingerprint
Scanner

Figure 1.7 Track
Ball

Figure 1.9 Light Pen

movement of the cursor on the display
screen. It can be used to select icons,
menus, command buttons or activate
something on a computer. Some mouse
actions are move, click, double click, right
click, drag and drop.
 Different types of mouse available
are: Mechanical Mouse, Optical, Laser
Mouse, Air Mouse, 3D Mouse, Tactile
Mouse, Ergonomic Mouse and Gaming
Mouse.

Who invented
Mouse?

The computer
mouse as we know it

today was
i n v e n t e d
and developed by
Douglas Engelbart, with
the assistance of Bill
English, during the 1960's

and was patented on November 17, 1970.

 (3) Scanner: Scanners are used to
enter the information directly into the
c o m p u t e r ’ s
memory. This
device works like
a Xerox machine.
The scanner
converts any
type of printed
or written information including
photographs into a digital format, which
can be manipulated by the computer.

 (4)Fingerprint Scanner: Finger
print Scanner is a fingerprint recognition
device used for computer security,
equipped with the fingerprint recognition
feature that uses biometric technology.

Figure 1.5 Scanner

Chapter 1 Page 001-013.indd 6 3/24/2020 9:09:47 AM

7

have the advantage of ‘drawing’ directly onto
the screen, but this becomes hard to use, and
is also not accurate.
 (8) Optical Character Reader: It is
a device which
detects characters
printed or written
on a paper with
OCR, a user can
scan a page from a
book. The Computer
will recognise the
characters in the
page as letters and punctuation marks and
stores. The Scanned document can be
edited using a wordprocessor.
 (9) Bar Code / QR Code Reader: A
Bar code is a pattern printed in lines of
different thickness. The Bar code reader
scans the information on the bar codes
transmits to the
Computer for
further processing.
The system gives
fast and error free
entry of
information into
the computer.
 QR (Quick response) Code: The
QR code is the two dimension bar code
which can be read by a camera and
processed to interpert the image.
 (10) Voice Input Systems:
Microphone serves as
a voice Input device.
It captures the voice
data and send it to
the Computer. Using
the microphone
along with speech
recognition software
can offer a completely

Figure 1.10 Optical
Character Reader

Figure 1.11 Bar code
Reader

Figure 1.12 Voice
input System

new approach to input information into
the Computer.
 (11) Digital Camera: It captures
images / videos
directly in the digital
form. It uses a CCD
(Charge Coupled
Device) electronic
chip. When light falls
on the chip through
the lens, it converts
light rays into digital
format.

 (12) Touch Screen: A touch screen
is a display device that allows the user to
interact with a computer by using the
finger. It can be quite useful as an
alternative to a mouse or keyboard for
navigating a Graphical
User Interface (GUI).
Touch screens are used
on a wide variety of
devices such as
computers, laptops,
monitors, smart
phones, tablets, cash
registers and
information kiosks.
Some touch screens
use a grid of infrared beams to sense the
presence of a finger instead of utilizing
touch-sensitive input.
 (13) Keyer : A
Keyer is a device
for signaling by
hand, by way of
pressing one or
more switches.
Modern keyers
have a large number of switches but not
as many as a full size keyboard. Typically,

Figure 1.13
Digital Camera

Figure 1.14 Touch
Screen

Figure 1.15 Keyer

Chapter 1 Page 001-013.indd 7 3/24/2020 9:09:49 AM

8

this number is between 4 and 50. A keyer
differs from a keyboard, which has "no
board", but the keys are arranged in a
cluster.
Output Devices:
 (1) Monitor: Monitor is the most
commonly used output
device to display the
information. It looks
like a TV. Pictures on
a monitor are formed
with picture elements
called PIXELS.
Monitors may either
be Monochrome
which display text
or images in Black
and White or can be color, which display
results in multiple colors. There are
many types of monitors available such as
CRT (Cathode Ray Tube), LCD (Liquid
Crystal Display) and LED (Light Emitting
Diodes). The monitor works with the
VGA (Video Graphics Array) card. The
video graphics card helps the keyboard
to communicate with the screen. It acts
as an interface between the computer
and display monitor. Usually the recent
motherboards incorporate built-in video
card.

The first computer monitor was part of
the Xerox Alto computer system, which
was released on March 1, 1973.

 (2) Plotter: Plotter is an output
device that is used to produce graphical
output on papers. It uses single color or
multi color pens to draw pictures.

Figure 1.16 Monitor

Figure 1.17 Plotter
 (3) Printers: Printers are used to
print the information on papers. Printers
are divided into two main categories:
 • Impact Printers
 • Non Impact printers
Impact Printers
 T h e s e
printers print
with striking of
hammers or pins
on ribbon. These
printers can print
on multi-part
(using carbon
papers) by using
mechanical pressure. For example, Dot
Matrix printers and Line matrix printers
are impact printers.

 A Dot matrix printer that prints using
a fixed number of pins or wires. Each dot is
produced by a tiny metal rod, also called a
“wire” or “pin”, which works by the power
of a tiny electromagnet or solenoid, either
directly or through a set of small levers. It
generally prints one line of text at a time. The
printing speed of these printers varies from
30 to 1550 CPS (Character Per Second).

 Line matrix printers use a fixed
print head for printing. Basically, it prints
a page-wide line of dots. But it builds up a
line of text by printing lines of dots. Line

Figure 1.18 Impact
Printer

Chapter 1 Page 001-013.indd 8 3/24/2020 9:09:49 AM

9

printers are capable of printing much more
than 1000 Lines Per Minute, resulting
in thousands of pages per hour. These
printers also uses mechanical pressure to
print on multi-part (using carbon papers).

Non-Impact Printers

 These printers do not use striking
mechanism for printing. They use
electrostatic or laser technology. Quality
and speed of these printers are better than
Impact printers. For example, Laser printers
and Inkjet printers are non-impact printers.

Laser Printers

 Laser printers mostly work with
similar technology used by photocopiers.
It makes a laser beam scan back and
forth across a drum inside the printer,
building up a pattern. It can produce very
good quality of graphic images. One of
the chief characteristics of laser printer
is their resolution – how many Dots per
inch(DPI). The available resolution range
around 1200 dpi. Approximately it can
print 100 pages per minute(PPM)

Figure 1.19 Laser Printer
Inkjet Printers:
 Inkjet Printers use colour cartridges
which combined Magenta, Yellow and Cyan
inks to create color tones. A black cartridge
is also used for monochrome output. Inkjet
printers work by spraying ionised ink at a
sheet of paper. The speed of Inkjet printers
generaly range from 1-20 PPM (Page Per
Minute).

Figure 1.20 Inkjet Printer
 They use the technology of firing
ink by heating it so that it explodes towards
the paper in bubbles or by using
piezoelectricity in which tiny electric
currents controlled by electronic circuits
are used inside the printer to spread ink in
jet speed. An Inkjet printer can spread
millions of dots of ink at the paper every
single second.

 Sp e a k er s :
Speakers produce
voice output
(audio) . Using
speaker along with
speech synthesise
software, the
computer can provide voice output. This
has become very common in places like
airlines, schools, banks, railway stations,
e t c .

Multimedia Projectors:
 Multimedia projectors are used to
produce computer output on a big screen.
These are used to display presentations in
meeting halls or in classrooms.

Figure 1.22 Multimedia Projector

Figure 1.21 Speakers

Chapter 1 Page 001-013.indd 9 3/24/2020 9:09:49 AM

10

1.6 Booting of computer

 An Operating system (OS) is a
basic software that makes the computer
to work. When a computer is switched
on, there is no information in its RAM.At
the same time, in ROM, the pre-written
program called POST (Power on Self
Test) will be executed first. This program
checks if the devices like RAM, keyboard,
etc., are connected properly and ready to
operate. If these devices are ready, then
the BIOS (Basic Input Output System) gets
executed. This process is called Booting.
Thereafter, a program called “Bootstrap
Loader” transfers OS from hard disk into
main memory. Now the OS gets loaded
(Windows/Linux, etc.,) and will get
executed. Booting process is of two types.

1) Cold Booting

2) Warm Booting

 Cold Booting: When the system
starts from initial state i.e. it is switched
on, we call it cold booting or Hard Booting.
When the user presses the Power button,
the instructions are read from the ROM to
initiate the booting process.

 Warm Booting: When the system
restarts or when Reset button is pressed,
we call it Warm Booting or Soft Booting.
The system does not start from initial state
and so all diagnostic tests need not be
carried out in this case. There are chances
of data loss and system damage as the data
might not have been stored properly.

Points to Remember:

• Computers are seen everywhere around
us, in all spheres of life.

• It is an electronic device that processes
the input according to the set of
instructions provided to it and
gives the desired output at a very fast
rate.

• Based on various stages of development,
computers can be divided into six
different generations.

• The computer is the combination of
hardware and software.

• Hardware is the physical component of
a computer.

• Input unit is used to feed any form of
data to the computer.

• CPU interprets and executes software
instructions.

• The ALU is a part of the CPU where
various computing functions are
performed on data.

• The control unit controls the flow of
data between the CPU, memory and
I/O devices.

• An Output Unit is any hardware
component that conveys information
to one or more people in user
understandable form.

• The Memory Unit is of two kinds which
are primary memory and secondary
memory.

Activity

STUDENT ACTIVITY
1. Explain the classification of computers.

2. Give the details of motherboard names,
RAM capacity used in the years 1993,
1995, 2005, 2008, 2016.

3. Mention two new input and output
devices that are not given in this
chapter.

Chapter 1 Page 001-013.indd 10 3/24/2020 9:09:49 AM

11

Evaluation

SECTION – A
Choose the correct answer
1. First generation

computers used

 (a) Vacuum tubes
 (b) Transistors
 (c) Integrated circuits
 (d) Microprocessors
2. Name the volatile memory
 (a) ROM (b) PROM
 (c) RAM (d) EPROM
3. Identify the output device
 (a) Keyboard (b) Memory
 (c) Monitor (d) Mouse
4. Identify the input device
 (a) Printer (b) Mouse
 (c) Plotter (d) Projector
5. …....… Output device is used for

printing building plan.
 (a) Thermal printer
 (b) Plotter
 (c) Dot matrix
 (d) inkjet printer
6. Which one of the following is used

to in ATM machines
 (a) Touch Screen (b) speaker
 (c) Monitor (d) Printer
7. When a system restarts which type

of booting is used.
 (a) Warm booting
 (b) Cold booting
 (c) Touch boot
 (d) Real boot.

8. Expand POST
 (a) Post on self Test
 (b) Power on Software Test
 (c) Power on Self Test
 (d) Power on Self Text
9. Which one of the following is the

main memory?
 (a) ROM (b) RAM
 (c) Flash drive (d) Hard disk
10. Which generation of computer used

IC’s?
 (a) First (b) Second
 (c) Third (d) Fourth

SECTION-B

Very Short Answers

1. What is a computer?
2. Distinguish between data and

i n f o r m a t i o n .
3. What are the components of a CPU?
4. What is the function of an ALU?
5. Write the functions of control unit.
6. What is the function of memory?
7. Differentiate Input and output unit.
8. Distinguish Primary and Secondary

memor y.
SECTION-C

Short Answers

1. What are the characteristics of a
c o m p u t e r ?

2. Write the applications of computer.
3. What is an input device? Give two

examples .
4. Name any three output devices.
5. Differentiate optical and Laser

m o u s e
6. Write shortnote on impact printer
7. Write the characteristics of sixth

g e n e r at i on .
8. Write the significant features of

m o n i t o r.

Chapter 1 Page 001-013.indd 11 3/24/2020 9:09:49 AM

12

SECTION - D
Explain in detail
1. Explain the basic components of a computer with a neat diagram.
2. Discuss the various generations of computers.
3. Explain the following

a. Inkjet Printer b. Multimedia projector c. Bar code / QR code Reader

References

(1) Fundamentals of Computers – V. Rajaraman – PHI Publications
(2) Computer Science text book – NCERT, New Delhi

Prepare a comparative study of various computers of past and present with respect
to speed, memory, size, power consumption and other features

Computer
It is an electronic device that processes the
input according to the set of instructions
provided to it and gives the desired output at a very fast rate.

Vacuum tube
Vacuum tubes contain electrodes for controlling electron flow
and were used in early computers as a switch or an amplifier.

Transistors

The transistor ("transfer resistance") is made up of semi-
conductors. It is a component used to control the amount of
current or voltage used for amplification/modulation of an
electronic signal.

Punched cards
Punch cards also known as Hollerith cards are paper cards
containing several punched or perforated holes that were
punched by hand or machine to represent data.

Machine Language
Machine language is a collection of binary digits or bits that the
computer reads and interprets.

Assembly language An assembly language is a low-level programming language.

Chapter 1 Page 001-013.indd 12 3/24/2020 9:09:49 AM

13

Integrated Circuits
The IC is a package containing many circuits, pathways,
transistors, and other electronic components all working
together to perform a particular function or a series of functions.

Microcomputer
Micro computer is used to describe a standard personal
computer.

High-level languages
A high-level language is a computer programming language
that isn't limited by the computer, designed for a specific job,
and is easier to understand.

Natural Language
Processing (NLP)

Natural Language Processing is a method used in artificial
intelligence to process and derive meaning from the human
language.

Robotics

Robot is a term coined by Karel Capek in the 1921 to play
RUR (Rossum's Universal Robots). It is used to describe a
computerized machine designed to respond to input received
manually or from its surroundings.

Nanotechnology
Nanotechnology is an engineering, science, and technology that
develops machines or works with one atom or one molecule
that is 100 nanometers or smaller.

Bioengineering
A discipline that applies engineering principles of design and
analysis to biological systems and biomedical technologies

Chapter 1 Page 001-013.indd 13 3/24/2020 9:09:49 AM

14

Learning Objectives

• To know how the computer interprets
and stores data in the memory.

• To learn various data representations
and binary arithmetic.

• To learn conversion between various
Number Systems.

2.1 Introduction

 The term data comes from the
word datum, which means a raw fact. The
data is a fact about people, places or some
objects.
Example:
 Let ‘Name’, ‘Age’, ‘Class’, ‘Marks’
and ‘Subject’ be some defined variables.
Now, let us assign a value to each of these
variables.

Name = Rajesh
Age = 16
Class = XI
Mark = 65
Subject = Computer Science

Figure 2.1 Example for Data

 In the above example, the values
assigned to the five different variables
are called data. When the above data is
processed, we get an information “Rajesh
is 16 years old, studying in Class XI, has
scored 65 marks in Computer Science
subject”.

2.2 Data Representations

 Computer handles data in the form
of ‘0’(Zero) and ‘1’ (One). Any kind of data
like number, alphabet, special character
should be converted to ‘0’ or ‘1’ which can
be understood by the Computer. ‘0’ and
‘1’ that the Computer can understand is
called Machine language. ‘0’ or ‘1’ are
called ‘Binary Digits’(BIT). Therefore,
the study of data representation in the
computer is important.
• A bit is the short form of Binary digit

which can be ‘0’ or ‘1’. It is the basic
unit of data in computers.

• A nibble is a collection of 4 bits (Binary
digits).

• A collection of 8 bits is called Byte.
A byte is considered as the basic unit
of measuring the memory size in the
computer.

• Word length refers to the number of
bits processed by a Computer’s CPU.
For example, a word length can have 8
bits, 16 bits, 32 bits and 64 bits (Present
day Computers use 32 bits or 64 bits)

TeraByte (1024 GB)

GigaByte (1024 MB)

MegaByte (1024 KB)

KiloByte (1024 bytes)

Byte (8 bits)

Nibble (4 bits)

Bit
(0 or 1)

 Figure 2.2 Data Representation

CHAPTER 2Unit I Fundamentals of Computers

Number Systems

Chapter 2 Page 014-040.indd 14 3/24/2020 12:03:06 PM

15

Table 2.1 Memory Size (Read 2^10 as 2 power 10)

Name Abbr. Size
Kilo K 2^10 = 1,024

Mega M 2^20 = 1,048,576
Giga G 2^30 = 1,073,741,824
Tera T 2^40 = 1,099,511,627,776
Peta P 2^50 = 1,125,899,906,842,624
Exa E 2^60 = 1,152,921,504,606,846,976

Zetta Z 2^70 = 1,180,591,620,717,411,303,424
Yotta Y 2^80 = 1,208,925,819,614,629,174,706,173

 Bytes are used to represent characters in a text. Different types of coding schemes
are used to represent the character set and numbers. The most commonly used coding
scheme is the American Standard Code for Information Interchange (ASCII). Each
binary value between 0 and 127 is used to represent a specific character. The ASCII value
for (blank space) is 32 and the ASCII value of numeric 0 is 48. The range of ASCII values
for lower case alphabets is from 97 to 122 and the range of ASCII values for the upper case
alphabets is 65 to 90.

The speed of a computer depends on the number of bits it can process at once. For
example, a 64- bit computer can process 64-bit numbers in one operation, while a
32-bit computer break 64-bit numbers down into smaller pieces, making it slower.

2.3 Different Types of Number Systems

Number Systems

Decimal Binary Octal Hexadecimal

Base value
10

(0,1,2,3,4,5,6,7,8,9)

Base value
2

(0,1)

Base value
8

(0,1,2,3,4,5,6,7)

Base value
16

(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Figure 2.3. Number Systems

 Computer memory (Main Memory
and Secondary Storage)is normally
represented in terms of KiloByte (KB) or
MegaByte (MB). In decimal system, 1 Kilo

represents 1000, that is , 103. In binary
system, 1 KiloByte represents 1024 bytes
that is 210. The following table represents
the various memory sizes:

Chapter 2 Page 014-040.indd 15 3/24/2020 12:03:06 PM

16

 A numbering system is a way
of representing numbers. The most
commonly used numbering system in
real life is Decimal number system.
Other number systems are Binary, Octal,
Hexadecimal number system. Each
number system is uniquely identified by
its base value or radix. Radix or base is the
count of number of digits in each number
system. Radix or base is the general idea
behind positional numbering system.
2.3.1 Decimal Number System
 It consists of 0,1,2,3,4,5,6,7,8,9(10
digits). It is the oldest and most popular
number system used in our day to day life.
In the positional number system, each
decimal digit is weighed relative to its
position in the number. This means that
each digit in the number is multiplied by
10 raised to a power corresponding to that
digit’s position.
Example

(123)10 = 1x102 + 2x101 + 3x100
 = 100 + 20 + 3
 = (123)10

2.3.2 Binary Number System
 There are only two digits in the
Binary system, namely, 0 and 1. The
numbers in the binary system are
represented to the base 2 and the positional
multipliers are the powers of 2. The left
most bit in the binary number is called as
the Most Significant Bit (MSB) and it has
the largest positional weight. The right
most bit is the Least Significant Bit (LSB)
and has the smallest positional weight.

1 1 0 1

MSB LSB

Example

 The binary sequence (1101)2 has
the decimal equivalent:

(1101)2 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20

 = 8 + 4 + 0 + 1
 = (13)10

2.3.3 Octal Number System

 Octal number system uses digits
0,1,2,3,4,5,6 and 7 (8 digits). Each octal
digit has its own positional value or weight
as a power of 8.

Example

 The Octal sequence (547)8 has the
decimal equivalent:

(547)8 = 5×82 + 4×81 + 7×80

 = 5×64 + 4×8 + 7×1
 = 320 + 32 + 7
 = (359)10

2.3.4 Hexadecimal Number System

 A hexadecimal number is
represented using base 16. Hexadecimal
or Hex numbers are used as a shorthand
form of binary sequence. This system is
used to represent data in a more compact
manner. Since 16 symbols are used, 0 to
F, the notation is called hexadecimal. The
first 10 symbols are the same as in the
decimal system, 0 to 9 and the remaining
6 symbols are taken from the first 6 letters
of the alphabet sequence, A to F, where A
represents 10, B is 11, C is 12, D is 13, E is
14 and F is 15.

Chapter 2 Page 014-040.indd 16 3/24/2020 12:03:06 PM

17

Table 2.2 Binary, Octal, Hexadecimal
equivalent of Decimal Numbers
Decimal Binary Octal Hexadecimal

0 0000 000 0000
1 0001 001 0001
2 0010 002 0002
3 0011 003 0003
4 0100 004 0004
5 0101 005 0005
6 0110 006 0006
7 0111 007 0007
8 1000 010 0008
9 1001 011 0009

10 1010 012 A
11 1011 013 B
12 1100 014 C
13 1101 015 D
14 1110 016 E
15 1111 017 F

Example
 The hexadecimal sequence (25)16
has the decimal equivalent:

(25)16 = 2×161 + 5×160

 = 32+5
 = (37)10

Workshop
1. Identify the number system for the
following numbers
S. No. Number Number system

1 (1010)10 Decimal Number
system

2 (1010)2

3 (989)16

4 (750)8

5 (926)10

2. State whether the following numbers are valid or not. If invalid, give reason.

S.No. Statement Yes / No Reason (If invalid)

1. 786 is an Octal number

2. 101 is a Binary number

3. Radix of Octal number is 7

2.4 Number System Conversions
2.4.1 Decimal to Binary Conversion
Generally two methods followed.
Method 1: To convert Decimal to Binary
“Repeated Division by 2” method can be
used. Any Decimal number divided by 2
will leave a remainder of 0 or 1. Repeated
division by 2 will leave a sequence of 0s
and 1s that become the binary equivalent
of the decimal number. Suppose it is
required to convert the decimal number N
into binary form, dividing N by 2 in the

decimal system, we will obtain a quotient
N1 and a remainder R1, where R1 can
have a value of either 0 or 1. The process
is repeated until the quotient becomes 0
or 1. When the quotient is ‘0’ or ‘1’, it
is the final remainder value. Write the
final answer starting from final remainder
value obtained to the first remainder value
obtained.
Example
 Convert (65)10 into its equivalent
binary number

Chapter 2 Page 014-040.indd 17 3/24/2020 12:03:06 PM

18

1

1

2 65
2 32 -
2 16 - 0
2 8 - 0

2 4 - 0
2 2 - 0

 - 0

LSB

MSB

Note :
65/2 = 32 + 1
32/2 = 16 + 0
16/2 = 8 + 0
8/2 = 4 + 0
4/2 = 2 + 0
2/2 = 1 + 0

Remainder

(65)10 = (1 0 0 0 0 0 1)2

Method 2 : Sum of Powers of 2.
 A decimal number can be converted
into a binary number by adding up the
powers of 2 and then adding bits as needed
to obtain the total value of the number.
a) Find the largest power of 2 that is

smaller than or equal to 65.
6510 > 6410

b) Set the 64’s bit to 1 and subtract 64
from the original number

65-64=1
c) 32 is greater than the remaining total.

Therefore, set the 32’s bit to 0.
d) 16 is greater than the remaining total.

Therefore, set the 16’s bit to 0.
e) 8 is greater than the remaining total.

Therefore, set the 8’s bit to 0.
f) 4 is greater than the remaining total.

Therefore, set the 4’s bit to 0.
g) 2 is greater than the remaining total.

Therefore, set the 2’s bit to 0.
h) As the remaining value is equivalent to

1’s bit, set it to 1.
1-1=0

Conversion is complete 6510 = (1000001)2

Example
The conversion steps can be given as
follows:

Given Number : 65
Equivalent or value less than power of 2
is : 64
(1) 65 - 64 = 1
(2) 1 - 1= 0

Power’s of 2 64 32 16 8 4 2 1
Binary
Number

1 0 0 0 0 0 1

6510 = (1000001)2

2.4.2 Decimal to Octal Conversion
 To convert Decimal to Octal,
“Repeated Division by 8” method can be
used. The method is the same we have
learnt in 2.4.1, but in this method, we
have to divide the given number by 8.
Example
 Convert (65)10 into its equivalent
Octal number

8 65
8 8 - 1

1 - 0

LSB

MSB

(65)10 = (1 0 1)8

2.4.3 Decimal to Hexadecimal
Conversion
 To convert Decimal to Hexadecimal,
“Repeated division by 16” method can be
used. The method is the same as we have
learnt in 2.4.1, but in this method, we have
to divide the given number by 16.
Example
 Convert (31)10 into its equivalent
hexadecimal number.

16 31
1 - 15

LSB

MSB

(16)10 = (1F)16(Refer Table 2.2 F=15)

Chapter 2 Page 014-040.indd 18 3/24/2020 12:03:06 PM

19

2.4.4 Conversion of fractional Decimal
to Binary
 The method of repeated
multiplication by 2 has to be used to
convert such kind of decimal fractions.
 The steps involved in the method of
repeated multiplication by 2:
Step 1: Multiply the decimal fraction by

2 and note the integer part. The
integer part is either 0 or 1.

Step 2: Discard the integer part of the
previous product. Multiply the
fractional part of the previous
product by 2. Repeat Step 1
until the same fraction repeats
or terminates (0).

Step 3: The resulting integer part forms
a sequence of 0s and 1s that
become the binary equivalent of
decimal fraction.

Step 4: The final answer is to be written
from first integer part obtained
till the last integer part obtained.

Integer part

0.2 × 2 = 0.4 0 (first integer part obtained)

0.4 × 2 = 0.8 0

0.8 × 2 = 1.6 1

0.6 × 2 = 1.2 1

0.2 × 2 = 0.4 0 (last integer part obtained)

Note: Fraction repeats, the product is the
same as in the first step.
 Write the integer parts from
top to bottom to obtain the equivalent
fractional binary number. Hence
(0.2)10=(0.00110011…)2 = (0.00110011)2

Workshop

3. Convert the following Decimal
numbers to its equivalent Binary, Octal,
Hexadecimal.

1) 1920 2) 255 3)126

2.4.5 Binary to Decimal Conversion
 To convert Binary to Decimal we
can use positional notation method.
Step 1: Write down the Binary digits and

list the powers of 2 from right to
left(Positional Notation)

Step 2: For each positional notation
written for the digit, now write
the equivalent weight.

Step 3: Multiply each digit with its
corresponding weight

Step 4: Add all the values.
Table 2.3 Positional Notation and Weight
Positional
Notation

Weight Positional
Notation

Weight

20 1 26 64
21 2 27 128
22 4 28 256
23 8 29 512
24 16 210 1024
25 32

Example

 Convert (111011)2 into its
equivalent decimal number.

Weight 32 16 8 4 2 1
Positional
Notation

25 24 23 22 21 20

Given
number

1 1 1 0 1 1

Chapter 2 Page 014-040.indd 19 3/24/2020 12:03:06 PM

20

32+16+8+0+2+1 = (59)10

 (111011)2 = (59)10

2.4.6 Binary to Octal Conversion
Step 1: Group the given binary number

into 3 bits from right to left.
Step 2: You can add preceding 0 to make

a group of 3 bits if the left most
group has less than 3 bits.

Step 3: Convert equivalent octal value
using "2's power positional weight
method"

Table 2.4 Octal numbers and their Binary
equivalent

Octal
Binary

Equivalent
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Example
 Convert (11010110)2 into octal
equivalent number
Step 1: Group the given number into 3

bits from right to left.
011 010 110

Note: The left most groups have less
than 3 bits, so 0 is added to its left
to make a group of 3 bits.

Step-2: Find Octal equivalent of each
group

011 010 110

(11010110)2 = (326)8

 3 2 6

{ { {

2.4.7. Binary to Hexadecimal Conversion
Step 1: Group the given number into 4

bits from right to left.
Step 2: You can add preceding 0’s to make

a group of 4 bits if the left most
group has less than 4 bits.

Step 3: Convert equivalent Hexadecimal
value using "2's power positional
weight method"

Example
 Convert (1111010110)2 into
Hexadecimal number
Step 1: Group the given number into 4

bits from right to left.
0011 1101 0110

Note: 0’s are added to the left most group
to make it a group of 4 bits

0011 1101 0110

(1111010110)2 = (3D6)16

 3 D 6

{ { {
2.4.8 Conversion of fractional Binary to
Decimal equivalent
 Follow the steps to convert
fractional Binary number to its Decimal
equivalent.
Step 1: Convert integral part of Binary

to Decimal equivalent using
positional notation method
(Procedure is same as discussed in
2.4.5)

Step 2: To convert the fractional part of
binary to its decimal equivalent.

 Step 2.1: Write down the Binary
digits in the fractional part

 Step 2.2: For all the digits write
powers of 2 from left to right
starting from 2-1, 2-2, 2-3...... 2-n,

 now write the equivalent weight.

Chapter 2 Page 014-040.indd 20 3/24/2020 12:03:06 PM

21

 Step 2.3: Multiply each digit with
its corresponding weight

 Step 2.4: Add all the values which
you obtained in Step 2.3

Table 2.5 Positional notation and weight
Positional
notation

Weight

2-1 (1/2) 0.5
2-2 (1/4) 0.25
2-3 (1/8) 0.125
2-4 (1/16) 0.0625
2-5 (1/32) 0.03125
2-6 (1/64) 0.015625
2-7 (1/128) 0.0078125

Step 3: To get final answer write the
integral part (after conversion),
followed by a decimal point(.) and
the answer arrived at Step 2.4

Example
 Convert the given Binary number
(11.011)2 into its decimal equivalent
Integer part (11)2 = 3 (Refer table 2.2)

21 20 2-1 2-2 2-3

1 1 . 0 1 1

3 + . (0×0.5 + 1×0.25 + 1×0.125)
 = 3. 375
(11.011)2 = (3.375)10

Workshop

4. Convert the given Binary number
into its equivalent Decimal, Octal and
Hexadecimal number.
1) 101110101 2) 1011010 3) 101011111

2.4.9. Octal to Decimal Conversion
 To convert Octal to Decimal, we
can use positional notation method.
1. Write down the Octal digits and list the

powers of 8 from right to left(Positional
Notation)

2. For each positional notation of the
digit write the equivalent weight.

3. Multiply each digit with its
corresponding weight

4. Add all the values
Example
 Convert (1265)8 to equivalent
Decimal number

Weight 512 64 8 1

Positional
Notation

83 82 81 80

Given
number

1 2 6 5

(1265)8 = 512 ×1 + 64×2 + 8×6 +1×5
 = 512 + 128 + 48 + 5
(1265)8 = (693)10

2.4.10 Octal to Binary Conversion
 For each Octal digit in the given
number write its 3 digits binary equivalent
using positional notation.
Example
 Convert (6213)8 to equivalent
Binary number

6 2 1 3

110 010 001 011

(6213)8=(110010001011)2

Workshop

5. Convert the following Octal numbers
into Binary numbers.
(A) 472 (B) 145 (C) 347
(D) 6247 (E) 645

Chapter 2 Page 014-040.indd 21 3/24/2020 12:03:06 PM

22

2.4.11 Hexadecimal to Decimal
Conversion

 To convert Hexadecimal to Decimal
we can use positional notation method.
1. Write down the Hexadecimal digits

and list the powers of 16 from right to
left(Positional Notation)

2. For each positional notation written
for the digit, now write the equivalent
weight.

3. Multiply each digit with its
corresponding weight

4. Add all the values to get one final
value.

Example
 Convert (25F)16 into its equivalent
Decimal number.

Weight 256 16 1

Positional
Notation

162 161 160

Given
number

2 5 F(15)

(25F)16 = 2×256 + 5×16 + 15×1
= 512 + 80 +15
 (25F)16 = (607)10

2.4.12 Hexadecimal to Binary Conversion
 Write 4 bits Binary equivalent
for each Hexadecimal digit for the given
number using positional notation method.
Example
 Convert (8BC)16 into equivalent
Binary number

8 B C

1000 1011 1100

(8BC)16 = (100010111100)2

Workshop

6. Convert the following Hexadecimal
numbers to Binary numbers
(A) A6 (B) BE
(C) 9BC8 (D) BC9

2.5 Binary Representation for Signed
Numbers
 Computers can handle both positive
(unsigned) and negative (signed) numbers.
The simplest method to represent
negative binary numbers is called Signed
Magnitude. In signed magnitude method,
the left most bit is Most Significant Bit
(MSB), is called sign bit or parity bit.
 The numbers are represented in
computers in different ways:
• Signed Magnitude representation
• 1’s Complement
• 2’s Complement

2.5.1 Signed Magnitude representation
 The value of the whole numbers can
be determined by the sign used before it. If
the number has ‘+’ sign or no sign it will be
considered as positive. If the number has
‘–’ sign it will be considered as negative.
Example:

 +43 or 43 is a positive number

 –43 is a negative number

 In signed binary representation,
the left most bit is considered as sign bit.
If this bit is 0, it is a positive number and
if it 1, it is a negative number. Therefore
a signed binary number has 8 bits, only 7
bits used for storing values (magnitude)
and the 1 bit is used for sign.

Chapter 2 Page 014-040.indd 22 3/24/2020 12:03:06 PM

23

+43 is represented in memory as follows:

0 0 1 0 1 0 1 1

Sign bit Magnitude (Value)

Most Significant Bit (MSB)
(‘0’ represent that the number is positive)

Least Significant Bit (LSB)

-43 can be represented in memory as
follows.

1 1 0 1 0 1 0 1

Sign bit Magnitude (Value)

Most Significant Bit (MSB)
(‘1’ represent that the number is negative)

Least Significant Bit (LSB)

2.5.2 1’s Complement representation

 This is an easier approach to
represent signed numbers. This is for
negative numbers only i.e. the number
whose MSB is 1.

 The steps to be followed to find 1’s
complement of a number:

Step 1: Convert given Decimal number
into Binary

Step 2: Check if the binary number
contains 8 bits , if less add 0 at the
left most bit, to make it as 8 bits.

Step 3: Invert all bits (i.e. Change 1 as 0
and 0 as 1)

Example
 Find 1’s complement for (–24)10

Given
Number

Binary
Number

1’s Compliment

(-24)10 00011000 11100111

2.5.3 2’s Complement representation
 The 2’s-complement method for
negative number is as follows:

a. Invert all the bits in the binary
sequence (i.e., change every 0 to1 and
every 1 to 0 ie.,1’s complement)

b. Add 1 to the result to the Least
Significant Bit (LSB).

Example

 2’s Complement represent of (-24)10

Binary equivalent of +24: 11000
8bit format: 00011000
1’s complement: 11100111
Add 1 to LSB: +1
2’s complement of -24: 11101000

Workshop

7. Write the 1’s complement number and
2’s complement number for the following
decimal numbers:
(A) 22 (B) -13 (C) -65 (D) -46

2.6 Binary Arithmetic

 As decimal numbers, the binary
numbers also permit computations like
addition, subtraction, multiplication and
division. The following session deals only
with binary addition and subtraction.

2.6.1 Binary Addition

 The following table is useful when
adding two binary numbers.

A B SUM (A + B) Carry
0 0 0 -
0 1 1 -
1 0 1 -
1 1 0 1

 In 1 + 1 = 10, is considered as sum
0 and the 1 as carry bit. This carry bit is
added with the previous position of the bit
pattern.

Chapter 2 Page 014-040.indd 23 3/24/2020 12:03:07 PM

24

Example Add: 10112 + 10012

(Carry Bit)→ 1 1

 1 0 1 1

+ 1 0 0 1

1 0 1 0 0

} 1 0

 10112 + 10012 = 101002

Example Perform Binary addition for the
following: 2310 + 1210

Step 1: Convert 23 and 12 into binary form
2310

2’s power 16 8 4 2 1
Binary Number 1 0 1 1 1

2310 = 000101112

1210

2’s power 8 4 2 1
Binary Number 1 1 0 0

1210 = 000011002

Step 2: Binary addition of 23 and 12:
Carry Bit → 1 1 1

2310 = 0 0 0 1 0 1 1 1
1210 = 0 0 0 0 1 1 0 0
3510 = 0 0 1 0 0 0 1 1

2.6.2 Binary Substraction
 The table for Binary Substraction is
as follows:

A B Difference
(A-B)

Borrow

0 0 0 0
1 0 1 0
1 1 0 0
0 1 1 1

 When substracting 1 from 0, borrow
1 from the next Most Significant Bit, when
borrowing from the next Most Significant
Bit, if it is 1, replace it with 0. If the next Most

Significant Bit is 0, you must borrow from a
more significant bit that contains 1 and replace
it with 0 and 0s upto that point become 1s.
Example Subtract 10010102 – 101002

0 1 10 0 10

1 0 0 1 0 1 0

(-) 1 0 1 0 0

1 1 0 1 1 0

Example Perform binary addition for the
following: (–21)10 + (5)10

Step 1: Change -21 and 5 into binary form
2110

2’s power 16 8 4 2 1
Binary Number 1 0 1 0 1

2110 = 000101012

510

2’s power 4 2 1
Binary Number 1 0 1

510 = 000001012

Step 2:
 2110 0 0 0 1 0 1 0 1
1’s Compliment 1 1 1 0 1 0 1 0
2’s Compliment 1 1 1 0 1 0 1 1

Step 3:
Binary Addition of –21 and 5 :
Carry bit 1 1 1 1
-2110 1 1 1 0 1 0 1 1
 510 0 0 0 0 0 1 0 1
-1610 (Result) 1 1 1 1 0 0 0 0

Workshop

8. Perform the following binary
computations:
(A) 1010 + 1510 (B) –1210 + 510

(C) 1410 – 1210 (D) (–210) – (–610)

Chapter 2 Page 014-040.indd 24 3/24/2020 12:03:07 PM

25

2.7 Representing Characters in Memory

 As represented in introduction,
all the input data given to the computer
should be in understandable format. In
general, 26 uppercase letters, 26 lowercase
letters, 0 to 9 digits and special characters
are used in a computer, which is called
character set. All these character set
are denoted through numbers only. All
Characters in the character set needs
a common encoding system. There
are several encoding systems used for
computer. They are
• BCD – Binary Coded Decimal
• EBCDIC – Extended Binary Coded

Decimal Interchange Code
• ASCII – American Standard Code for

Information Interchange
• Unicode
• ISCII - Indian Standard Code for

Information Interchange
2.7.1 Binary Coded Decimal (BCD)
 This encoding system is not in the
practice right now. This is 26 bit encoding
system. This can handle 26 = 64 characters
only.
2.7.2 American Standard Code for
Information Interchange (ASCII)
 This is the most popular encoding
system recognized by United States.
Most of the computers use this system.
Remember this encoding system can
handle English characters only. This can
handle 27 bit which means 128 characters.
 In this system, each character has
individual number (Refer Appendix).
 The new edition (version) ASCII -8,
has 28 bits and can handle 256 characters are
represented from 0 to 255 unique numbers.

 The ASCII code equivalent to
the uppercase letter ‘A’ is 65. The binary
representation of ASCII (7 bit) value is
1000001. Also 01000001 in ASCII-8 bit.
2.7.3 Extended Binary Coded Decimal

Interchange Code (EBCDIC)
 This is similar to ASCII Code with
8 bit representation. This coding system
is formulated by International Business
Machine(IBM). The coding system can
handle 256 characters. The input code
in ASCII can be converted to EBCDIC
system and vice - versa.
2.7.4 Indian Standard Code for

Information Interchange (ISCII)
 ISCII is the system of handling
the character of Indian local languages.
This as a 8-bit coding system. Therefore
it can handle 256 (28) characters. This
system is formulated by the department
of Electronics in India in the year 1986-
88 and recognized by Bureau of Indian
Standards (BIS). Now this coding system
is integrated with Unicode.
2.7.5 Unicode
 This coding system is used in most of
the modern computers. The popular coding
scheme after ASCII is Unicode. ASCII can
represent only 256 characters. Therefore
English and European Languages alone can
be handled by ASCII. Particularly there was
a situation, when the languages like Tamil,
Malayalam, Kannada and Telugu could
not be represented by ASCII. Hence, the
Unicode was generated to handle all the
coding system of Universal languages. This is
16 bit code and can handle 65536 characters.
 Unicode scheme is denoted by
hexadecimal numbers. The Unicode table
of Tamil, Malayalam, Telugu and Kannada
is shown in Table 2.6

Chapter 2 Page 014-040.indd 25 3/24/2020 12:03:07 PM

26

Table 2.6

Unicode Table of Tamil Unicode Table of Malayalam

0B8 0B9 0BA 0BB 0BC 0BD 0BE 0BF

$ஂ

ஃ

அ

ஆ

இ

ஈ

உ

ஊ

எ

ஏ

ஐ

ஒ

ஓ

ஔ

க

ங

ச

ஜ

ஞ

ட

ண

த

ந

ன

ப

ம

ய

ர

ற

ல

ள

ழ

வ

ஶ

ஷ

ஸ

ஹ

$ா

$ி

$ ீ

$ு

$ூ

$ெ

$ே

$ை

$ொ

$ோ

$ௌ

$்

ௐ

$ௗ

௦

௧

௨

௩

௪

௫

௬

௭

௮

௯

௰

௱

௲

௳

௴

௵

௶

௷

௸

௹

௺

0B82

0B83

0B85

0B86

0B87

0B88

0B89

0B8A

0B8E

0B8F

0B90

0B92

0B93

0B94

0B95

0B99

0B9A

0B9C

0B9E

0B9F

0BA3

0BA4

0BA8

0BA9

0BAA

0BAE

0BAF

0BB0

0BB1

0BB2

0BB3

0BB4

0BB5

0BB6

0BB7

0BB8

0BB9

0BBE

0BBF

0BC0

0BC1

0BC2

0BC6

0BC7

0BC8

0BCA

0BCB

0BCC

0BCD

0BD0

0BD7

0BE6

0BE7

0BE8

0BE9

0BEA

0BEB

0BEC

0BED

0BEE

0BEF

0BF0

0BF1

0BF2

0BF3

0BF4

0BF5

0BF6

0BF7

0BF8

0BF9

0BFA

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7

$ഀ

$ഁ

$ം

$ഃ

അ

ആ

ഇ

ഈ

ഉ

ഊ

ഋ

ഌ

എ

ഏ

ഐ

ഒ

ഓ

ഔ

ക

ഖ

ഗ

ഘ

ങ

ച

ഛ

ജ

ഝ

ഞ

ട

ഠ

ഡ

ഢ

ണ

ത

ഥ

ദ

ധ

ന

ഩ

പ

ഫ

ബ

ഭ

മ

യ

ര

റ

ല

ള

ഴ

വ

ശ

ഷ

സ

ഹ

ഺ

$഻

$഼

ഽ

$ാ

$ി

$ീ

$ു

$ൂ

$ൃ

$ൄ

$ െ

$ േ

$ ൈ

$ൊ

$ോ

$ൌ

$്

ൎ

ൔ

ൕ

ൖ

$ൗ

൘

൙

൚

൛

൜

൝

൞

ൟ

ൠ

ൡ

$ ൢ

$ ൣ

൦

൧

൨

൩

൪

൫

൬

൭

൮

൯

൰

൱

൲

൳

൴

൵

൶

൷

൸

൹

ൺ

ൻ

ർ

ൽ

ൾ

ൿ

0D00

0D01

0D02

0D03

0D05

0D06

0D07

0D08

0D09

0D0A

0D0B

0D0C

0D0E

0D0F

0D10

0D12

0D13

0D14

0D15

0D16

0D17

0D18

0D19

0D1A

0D1B

0D1C

0D1D

0D1E

0D1F

0D20

0D21

0D22

0D23

0D24

0D25

0D26

0D27

0D28

0D29

0D2A

0D2B

0D2C

0D2D

0D2E

0D2F

0D30

0D31

0D32

0D33

0D34

0D35

0D36

0D37

0D38

0D39

0D3A

0D3B

0D3C

0D3D

0D3E

0D3F

0D40

0D41

0D42

0D43

0D44

0D46

0D47

0D48

0D4A

0D4B

0D4C

0D4D

0D4E

0D4F

0D54

0D55

0D56

0D57

0D58

0D59

0D5A

0D5B

0D5C

0D5D

0D5E

0D5F

0D60

0D61

0D62

0D63

0D66

0D67

0D68

0D69

0D6A

0D6B

0D6C

0D6D

0D6E

0D6F

0D70

0D71

0D72

0D73

0D74

0D75

0D76

0D77

0D78

0D79

0D7A

0D7B

0D7C

0D7D

0D7E

0D7F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Chapter 2 Page 014-040.indd 26 3/24/2020 12:03:07 PM

27

Table 2.6

Unicode Table of Telugu Unicode Table of Kannada

0C0 0C1 0C2 0C3 0C4 0C5 0C6 0C7

$ ఀ

$ఁ

$ం

$ః

అ

ఆ

ఇ

ఈ

ఉ

ఊ

ఋ

ఌ

ఎ

ఏ

ఐ

ఒ

ఓ

ఔ

క

ఖ

గ

ఘ

ఙ

చ

ఛ

జ

ఝ

ఞ

ట

ఠ

డ

ఢ

ణ

త

థ

ద

ధ

న

ప

ఫ

బ

భ

మ

య

ర

ఱ

ల

ళ

వ

శ

ష

స

హ

ఽ

$ా

$ ి

$ ీ

$ు

$ూ

$ృ

$ౄ

$ ె

$ే

$ ై

$ొ

$ో

$ౌ

$ ్

$ౕ

$ౖ

ౘ

ౙ

ౚ

ౠ

ౡ
$ ౢ

$ ౣ

౦

౧

౨

౩

౪

౫

౬

౭

౮

౯

౸

౹

౺

౻

౼

౽

౾

౿

0C00

0C01

0C02

0C03

0C05

0C06

0C07

0C08

0C09

0C0A

0C0B

0C0C

0C0E

0C0F

0C10

0C12

0C13

0C14

0C15

0C16

0C17

0C18

0C19

0C1A

0C1B

0C1C

0C1D

0C1E

0C1F

0C20

0C21

0C22

0C23

0C24

0C25

0C26

0C27

0C28

0C2A

0C2B

0C2C

0C2D

0C2E

0C2F

0C30

0C31

0C32

0C33

0C34

0C35

0C36

0C37

0C38

0C39

0C3D

0C3E

0C3F

0C40

0C41

0C42

0C43

0C44

0C46

0C47

0C48

0C4A

0C4B

0C4C

0C4D

0C55

0C56

0C58

0C59

0C5A

0C60

0C61

0C62

0C63

0C66

0C67

0C68

0C69

0C6A

0C6B

0C6C

0C6D

0C6E

0C6F

0C78

0C79

0C7A

0C7B

0C7C

0C7D

0C7E

0C7F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0C8 0C9 0CA 0CB 0CC 0CD 0CE 0CF

ಀ

$ಁ

$ಂ

$ಃ

ಅ

ಆ

ಇ

ಈ

ಉ

ಊ

ಋ

ಌ

ಎ

ಏ

ಐ

ಒ

ಓ

ಔ

ಕ

ಖ

ಗ

ಘ

ಙ

ಚ

ಛ

ಜ

ಝ

ಞ

ಟ

ಠ

ಡ

ಢ

ಣ

ತ

ಥ

ದ

ಧ

ನ

ಪ

ಫ

ಬ

ಭ

ಮ

ಯ

ರ

ಱ

ಲ

ಳ

ವ

ಶ

ಷ

ಸ

ಹ

$ ಼

ಽ

$ಾ

$ಿ

$ೀ

$ು

$ೂ

$ೃ

$ೄ

$ೆ

$ೇ

$ೈ

$ೊ

$ೋ

$ೌ

$್

$ೕ

$ೖ

ೞ

ೠ

ೡ

$ೢ

$ೣ

೦

೧

೨

೩

೪

೫

೬

೭

೮

೯

ೱ

ೲ

0C80

0C81

0C82

0C83

0C85

0C86

0C87

0C88

0C89

0C8A

0C8B

0C8C

0C8E

0C8F

0C90

0C92

0C93

0C94

0C95

0C96

0C97

0C98

0C99

0C9A

0C9B

0C9C

0C9D

0C9E

0C9F

0CA0

0CA1

0CA2

0CA3

0CA4

0CA5

0CA6

0CA7

0CA8

0CAA

0CAB

0CAC

0CAD

0CAE

0CAF

0CB0

0CB1

0CB2

0CB3

0CB5

0CB6

0CB7

0CB8

0CB9

0CBC

0CBD

0CBE

0CBF

0CC0

0CC1

0CC2

0CC3

0CC4

0CC6

0CC7

0CC8

0CCA

0CCB

0CCC

0CCD

0CD5

0CD6

0CDE

0CE0

0CE1

0CE2

0CE3

0CE6

0CE7

0CE8

0CE9

0CEA

0CEB

0CEC

0CED

0CEE

0CEF

0CF1

0CF2

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Chapter 2 Page 014-040.indd 27 3/24/2020 12:03:07 PM

28

Appendix
American Standard Code for Information Interchange (ASCII)

(Few specific characters only)
Alphabets

Alphabets
Decimal
number

Binary number
(8 bit)

Octal
number

Hexadecimal
number

A 65 01000001 101 41
B 66 01000010 102 42
C 67 01000011 103 43
D 68 01000100 104 44
E 69 01000101 105 45
F 70 01000110 106 46
G 71 01000111 107 47
H 72 01001000 110 48
I 73 01001001 111 49
J 74 01001010 112 4A
K 75 01001011 113 4B
L 76 01001100 114 4C
M 77 01001101 115 4D
N 78 01001110 116 4E
O 79 01001111 117 4F
P 80 01010000 120 50
Q 81 01010001 121 51
R 82 01010010 122 52
S 83 01010011 123 53
T 84 01010100 124 54
U 85 01010101 125 55
V 86 01010110 126 56
W 87 01010111 127 57
X 88 01011000 130 58
Y 89 01011001 131 59
Z 90 01011010 132 5A
a 97 01100001 141 61
b 98 01100010 142 62
c 99 01100011 143 63
d 100 01100100 144 64
e 101 01100101 145 65

Chapter 2 Page 014-040.indd 28 3/24/2020 12:03:08 PM

29

f 102 01100110 146 66
g 103 01100111 147 67
h 104 01101000 150 68
i 105 01101001 151 69
j 106 01101010 152 6A
k 107 01101011 153 6B
l 108 01101100 154 6C

m 109 01101101 155 6D
n 110 01101110 156 6E
o 111 01101111 157 6F
p 112 01110000 160 70
q 113 01110001 161 71
r 114 01110010 162 72
s 115 01110011 163 73
t 116 01110100 164 74
u 117 01110101 165 75
v 118 01110110 166 76
w 119 01110111 167 77
x 120 01111000 170 78
y 121 01111001 171 79
z 122 01111010 172 7A

Numerals

Alphabets
Decimal
number

Binary number
(8 bit)

Octal
number

Hexadecimal
number

0 48 00110000 60 30
1 49 00110001 61 31
2 50 00110010 62 32
3 51 00110011 63 33
4 52 00110100 64 34
5 53 00110101 65 35
6 54 00110110 66 36
7 55 00110111 67 37
8 56 00111000 70 38
9 57 00111001 71 39

Chapter 2 Page 014-040.indd 29 3/24/2020 12:03:08 PM

30

Special Characters

Special
symbols

Decimal
number

Binary number
(8 bit)

Octal
number

Hexadecimal
number

Blank 32 00100000 40 20
! 33 00100001 41 21
" 34 00100010 42 22
35 00100011 43 23
$ 36 00100100 44 24
% 37 00100101 45 25
& 38 00100110 46 26
' 39 00100111 47 27
(40 00101000 50 28
) 41 00101001 51 29
* 42 00101010 52 2A
+ 43 00101011 53 2B
, 44 00101100 54 2C
- 45 00101101 55 2D
. 46 00101110 56 2E
/ 47 00101111 57 2F
: 58 00111010 72 3A
; 59 00111011 73 3B
< 60 00111100 74 3C
= 61 00111101 75 3D
> 62 00111110 76 3E
? 63 00111111 77 3F
@ 64 01000000 100 40
[91 01011011 133 5B
\ 92 01011100 134 5C
] 93 01011101 135 5D
^ 94 01011110 136 5E
_ 95 01011111 137 5F
` 96 01100000 140 60
{ 123 01111011 173 7B
| 124 01111100 174 7C
} 125 01111101 175 7D
~ 126 01111110 176 7E

Chapter 2 Page 014-040.indd 30 3/24/2020 12:03:08 PM

31

Evaluation

SECTION – A
Choose the correct answer:
1. Which refers to the number of bits processed by a computer’s CPU?
 A) Byte B) Nibble C) Word length D) Bit
2. How many bytes does 1 KiloByte contain?
 A) 1000 B) 8 C) 4 D) 1024
3. Expansion for ASCII
 A) American School Code for Information Interchange
 B) American Standard Code for Information Interchange
 C) All Standard Code for Information Interchange
 D) American Society Code for Information Interchange
4. 2^50 is referred as
 A) Kilo B) Tera C) Peta D) Zetta
5. How many characters can be handled in Binary Coded Decimal System?
 A) 64 B) 255 C) 256 D) 128
6. For 11012 the equalent Hexadecimal equivalent is?
 A) F B) E C) D D) B
7. What is the 1’s complement of 00100110?
 A) 00100110 B) 11011001 C) 11010001 D) 00101001
8. Which amongst this is not an Octal number?
 A) 645 B) 234 C) 876 D) 123

SECTION-B
Very Short Answers
1. What is data?
2. Write the 1’s complement procedure.
3. Convert (46)10 into Binary number
4. We cannot find 1’s complement for (28)10. State reason.
5. List the encoding systems that represents characters in memory.

SECTION-C
Short Answers
1. What is radix of a number system? Give example
2. Write note on binary number system.
3. Convert (150)10 into Binary, then convert that Binary number to Octal
4. Write short note on ISCII
5. Add a) -2210+1510 b) 2010+2510

SECTION - D
Explain in detail
1. a) Write the procedure to convert fractional Decimal to Binary
 b) Convert (98.46)10 to Binary
2. Find 1’s Complement and 2’s Complement for the following Decimal number
 a) -98 b) -135
3. a) Add 11010102+1011012 b) Subtract 11010112 - 1110102

Chapter 2 Page 014-040.indd 31 3/24/2020 12:03:08 PM

32

2.8 Introduction

 Boolean algebra is a mathematical
discipline that is used for designing digital
circuits in a digital computer. It describes
the relation between inputs and outputs
of a digital circuit. The name Boolean
algebra has been given in honor of an
English mathematician George Boole who
proposed the basic principles of this algebra.

 George Boole (1815-1864)
was born
to a low
c l a s s

family and only
received an
elementary school
education. Despite that, he taught himself
highly advanced mathematics and
different languages as a teenager without
any assistance. He started teaching at
age sixteen, and started his own school
at age nineteen. By his mid-twenties,
he had mastered most of the important
mathematical principles in his day.

2.8.1 Binary valued quantities:

 Every day we have to make logical
decisions:

1. Should I carry Computer Science
book every day? Yes / No

2. 8-10 = 10 is this answer correct? Yes /
No

3. Chennai is capital of India? Yes / No

4. What did I say yesterday?

 The first three questions thrown
above, the answer may be True (Yes)
or False (No). But the fourth one, we
cannot be answer as True or False. Thus,
sentences which can be determined
to be True or False are called “Logical
Statement” or “Truth Functions”. The
results True or False are called “Truth
Values”. The truth values depicted by
logical constant 1 and 0; 1 means True
and 0 means False. The variable which can
store these truth values are called “Logical
variable” or “Binary valued variables” or
“Boolean Variables” as these can store
one of the two values of True or False.

2.8.2 Logical Operations:

 Boolean algebra makes use of
variables and operations (functions). The
basic logical operations are AND, OR and
NOT, which are symbolically represented
by dot (.), plus (+), and by over bar / single
apostrophe respectively. These symbols
are also called as “Logical Operators”.

2.8.3 Truth Table:

 A truth table represents all the
possible values of logical variable or
statements along with all the possible
results of given combination of truth values.

2.8.4 AND operator

The AND operator is defined in Boolean
algebra by the use of the dot (.) operator. It is
similar to multiplication in ordinary algebra.
The AND operator combines two or more
input variables so that the output is true only
if all the inputs are true. The truth table for a
2-input AND operator is shown as follows:

Part - II - Boolean Algebra

Chapter 2 Page 014-040.indd 32 3/24/2020 12:03:08 PM

33

 The NOT operator is represented
algebraically by the Boolean expression:
Y = A

Example:

 Consider the Boolean equation:

 D = A + (B . C)

 D is equal to 1 (true) if A is 1 or if
(B . C) is 1, that is, B = 0 and C = 1.

 Otherwise D is equal to 0 (false).

 The basic logic functions AND, OR,
and NOT can also be combined to make
other logic operators such as NAND and
NOR

2.8.7 NAND operator

 The NAND is the combination of
NOT and AND. The NAND is generated by
inverting the output of an AND operator.
The algebraic expression of the NAND
function is:

 Y = A . B

 The NAND function truth table is
shown below:

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A NAND B = NOT (A AND B)

2.8.8 NOR operator

 The NOR is the combination of
NOT and OR. The NOR is generated by
inverting the output of an OR operator.
The algebraic expression of the NOR
function is:

 Y = A . B

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

 The above 2-input AND operation is
expressed as: Y = A . B

2.8.5 OR operator

 The plus sign is
used to indicate the OR
operator. The OR operator
combines two or more
input variables so that the
output is true if at least
one input is true. The truth table for a
2-input OR operator is shown as follows:

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

 The above 2-input OR operation is
expressed as: Y = A + B

2.8.6 NOT operator

 The NOT operator has one input and
one output. The input is either true or false,
and the output is always the opposite, that is,
the NOT operator inverts the input. The truth
table for a NOT operator where A is the input
variable and Y is the output is shown below:

A Y
0 1
1 0

Chapter 2 Page 014-040.indd 33 3/24/2020 12:03:08 PM

34

The NOR function truth table is shown
below:

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A NOR B = NOT (A OR B)
2.9 Basic Logic Gates:
 A gate is a basic electronic circuit
which operates on one or more signals to
produce an output signal. There are three
fundamental gates namely AND, OR and
NOT. The other logic gates like NAND,
NOR, XOR and XNOR are derived gates
which are derived from the fundamental
gates. NAND and NOR gates are called
Universal gates, because the fundamental
logic gates can be realized through them.
2.9.1 AND Gate
 The AND gate can have two or
more input signals and produce an output
signal.
 The output is "true" only when both
inputs are "true", otherwise, the output is
"false". In other words the output will be 1
if and only if both inputs are 1; otherwise
the output is 0. The output of the AND gate
is represented by avariable say C, where A
and B are two boolean variables. In boolean
algebra, a variable can take either of the
values '0' or '1'. The logical symobl of the
AND gate is

A
C=AB

B

Fig. 2.4 Logic symbol of AND Gate

 One way to symbolize the action
of an AND gate is by writing the boolean
function.

C = A AND B
 In boolean algebra the multiplication
sign stands for the AND operation.
Therefore, the output of the AND gate is
 C = A . B or
simply C = AB
 Read this as "C equals A AND B".
Since there are two input variables here, the
truth table has four entries, because there
are four possible inputs : 00, 01, 10 and 11.
For instance if both inputs are 0,
 C = A . B
 = 0 . 0
 = 0
The truth table for AND Gate is

Input Output
A B C
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.7 Truth Table for AND Gate
2.9.2 OR Gate
 The OR gate gets its name from its
behaviour like the logical inclusive "OR".
The output is "true" if either or both of the
inputs are "true". If both inputs are "false"
then the output is "false". In otherwords the
output will be 1 if and only if one or both
inputs are 1; otherwise, the output is 0. The
logical symbol of the OR gate is

A

B
C=A+B

Fig. 2.5 Logic symbol of OR Gate

Chapter 2 Page 014-040.indd 34 3/24/2020 12:03:08 PM

35

The OR gate output is

 C = A OR B

We use the + sign to denote the OR function.
Therefore,

 C = A + B

Read this as "C equals A OR B".

For instance, if both the inputs are 1

 C = A + B = 1 + 1 = 1

The truth table for OR gate is

Input Output
A B C
0 0 0
0 1 1
1 0 1
1 1 1

Table 2.8 Truth Table for OR Gate

2.9.3 NOT Gate

 The NOT gate, called a logical
inverter, has only one input. It reverses the
logical state. In other words the output C
is always the complement of the input. The
logical symbol of the NOT gate is

A C = A

Fig. 2.6 Logic symbol of NOT Gate

The boolean function of NOT gate is

 C = NOT A

In boolean algerbra, the overbar stands for
NOT operation. Therefore,

 C = A

Read this as "C equals NOT A" or "C equals
the complement of A".

 If A is 0,

 C = 0 = 1

 On the otherhand, if A is 1,

 C = 1 = 0

The truth table for NOT gate is

Input Output
A C
1 0
0 1

Table 2.9 Truth Table for NOT Gate
2.9.4 NOR Gate
 The NOR gate circuit is an OR
gate followed by an inverter. Its output is
"true" if both inputs are "false" Otherwise,
the output is "false". In other words, the
only way to get '1' as output is to have
both inputs '0'. Otherwise the output is 0.
The logic circuit of the NOR gateis

A
B

A+B C=A+B

Fig. 2.7 Logic Circuit of NOR Gate

A
B

C

Fig. 2.8 Logic symbol of NOR Gate
The output of NOR gate is

 C = (A + B)

 Read this as "C equals NOT of A OR
B" or "C equals the complement of A OR B".
For example if both the inputs are 0,

 C = (0 + 0) = 0 = 1

The truth table for NOR gate is

Input Output
A B C
0 0 1
0 1 0
1 0 0
1 1 0

Table 2.10 Truth Table for NOR Gate

Chapter 2 Page 014-040.indd 35 3/24/2020 12:03:08 PM

36

2.9.5 Bubbled AND Gate

 The Logic Circuit of Bubbled AND
Gate

A

B

A

C=A.B

B

Fig. 2.9 Logic circuit of Bubbled AND Gate

 In the above circuit, invertors on the
input lines of the AND gate gives the output
as

 C = (A . B)

 This circuit can be redrawn as the
bubbles on the inputs, where the bubbles
represent inversion.

A

B
C

Fig. 2.10 Logic Symbol of Bubbled AND
Gate

 We refer this as bubbled AND gate.
Let us analyse this logic circuit for all input
possiblities.

If A = 0 and B = 0 C=(0.0) = 1.1 = 1

If A = 0 and B = 1 C=(0.1) = 1.0 = 0

If A = 1 and B = 0 C=(1.0) = 0.1 = 0

If A = 1 and B = 1 C=(1.1) = 0.0 = 0

Here the truth table is

Input Output
A B C
0 0 1
0 1 0

1 0 0
1 1 0

You can see that, a bubbled AND gate
produces the same output as a NOR gate. So,
You can replace each NOR gate by a bubbled
AND gate. In other words the circuits are
interchangeable.

Therefore
(A + B) = A . B

Which establishes the De Morgan's first
theorem.

2.9.6 NAND Gate

 The NAND gate operates an AND
gate followed by a NOT gate. It acts in the
manner of the logical operation "AND"
followed by inversion. The output is "false"
if both inputs are "true", otherwise, the
output is "true". In otherwords the output
of the NAND gate is 0 if and only if both
the inputs are 1, otherwise the output is 1.
The logic circuit of NAND gate is

A

A.B C=A.B
B

Fig. 2.11 Logic Circuit of NAND Gate

The logical symbol of NAND gate is
A

B
C

Fig. 2.12 Logic Symbol of NAND Gate

 The output of the NAND gate is

C = (A . B)

 Read this as "C" equals NOT of A
AND B" or "C" equals the complement of A
AND B".

For example if both the inputs are 1

Chapter 2 Page 014-040.indd 36 3/24/2020 12:03:08 PM

37

C = (1 . 1)= 1 = 0

The truth table for NAND gate is

Input Output
A B C
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.11 Truth Table for NAND Gate

2.9.7 Bubbled OR Gate

 The logic circuit of bubbled OR gate
is

A A

B B

C=A + B

Fig. 2.13 Logic Circuit of Bubbled OR Gate

 The output of this circuit can be
written as C = A + B

 The above circuit can be redrawn as
the bubbles on the input, where the bubbles
represents the inversion.

A

B
C

Fig. 2.14 Logic Symbol of Bubbled OR Gate

We refer this as bubbled OR gate. The truth
table for the bubbled OR is

Input Output
A B C
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.12 Truth Table for Bubbled OR Gate

 If we compare the truth tables of the
bubbled OR gate with NAND gate, they are
identical. So the circuits are interchangeable.

Therefore,
(A . B) = A + B

Which establishes the De Morgan's second
theorem.

2.9.8 XOR Gate

 The XOR (exclusive - OR) gate acts
in the same way as the logical "either/or."
The output is "true" if either, but not both,
of the inputs are "true". The output is "false"
if both inputs are "false" or if both inputs are
"true." Another way of looking at this circuit
is to observe that the output is 1 if the inputs
are different, but 0 if the inputs are the same.
The logic circuit of XOR gate is
A

B

A

C = A.B+ A.B

A A.B

B A.BB

Fig. 2.15 Logic Circuit of XOR Gate

 The output of the XOR gate is

 The truth table for XOR gate is

Input Output
A B C
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.13 Truth Table for XOR Gate

In boolean algebra. exclusive - OR operator
⊕ or "encircled plus".

Hence C = A ⊕B

 The logical symbol of XOR gate is

Chapter 2 Page 014-040.indd 37 3/24/2020 12:03:08 PM

38

A

B
C

Fig. 2.16 Logic Symbol of XOR Gate

2.9.9 XNOR Gate
 The XNOR (exclusive - NOR) gate
is a combination XOR gate followed by an
inverter. Its output is "true" if the inputs
are the same, and "false" if the inputs are
different. In simple words, the output is 1 if
the input are the same, otherwise the output
is 0. The logic circuit of XNOR gate is
A A ≈ B
B

C = A ≈ B

Fig. 2.17 Logic Circuit of XNOR Gate
 The output of the XNOR is NOT of
XOR

C = A ⊕ B

 = A . B + A . B

 = AB + A B

(Using De Morgan's Theorem)
In boolean algebra, ⊙ or "included dot"
stands for the XNOR.
Therefore, C = A ⊙ B
The logical symbol is

A C=A ⊙ B
B

Fig. 2.18 Logic Symbol of XNOR Gate
The truth table for XNOR Gate is

Input Output
A B C
0 0 1
0 1 0
1 0 0
1 1 1

Table 2.14 Truth Table for XNOR Gate
 Using combination of logic gates,
complex operations can be performed. In
theory, there is no limit to the number of
gates that can be arranged together in a single
device. But in practice, there is a limit to the
number of gates that can be packed into a
given physical space. Arrays of logic gates
are found in digital integrated circuits.

Identity
 A + 0 = A
 A . 1 = A
Complement
 A + A = 1
 A . A = 0
Commutative
 A + B = B + A
 A . B = B . A
Associative
 A + (B + C) = (A + B) + C
 A . (B . C) = (A . B) . C
Distributive
 A . (B + C) = A . B + A . C
 A + (B . C) = (A + B) . (A + C)
Null Element
 A + 1 = 1
 A . 0 = 0

Theorems of
Boolean Algebra

Involution

 (A) = A
Idempotence
 A + A = A
 A . A = A
Absorption
 A + (A . B) = A
 A . (A + B) = A

3rd Distributive
 A + A . B = A + B

De Morgan’s
 A + B = A . B
 (A . B) = A + B

Chapter 2 Page 014-040.indd 38 3/24/2020 12:03:08 PM

39

Logical Gates Symbol Truth Table

AND

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

OR

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

NOT
A A
0 1
1 0

NAND

A B A B
0 0 1
0 1 1
1 0 1
1 1 0

NOR

A B A + B
0 0 1
0 1 0
1 0 0
1 1 0

XOR

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

XNOR

A B A⊕B
0 0 1
0 1 0
1 0 0
1 1 1

Table 2. 15
Logic Gates and their corresponding Truth Tables

Chapter 2 Page 014-040.indd 39 3/24/2020 12:03:08 PM

40

)Evaluation

SECTION – A
Choose the correct answer
1. Which is a basic electronic circuit which operates on one or more signals?
 (A) Boolean algebra (B) Gate
 (C) Fundamental gates (D) Derived gates
2. Which gate is called as the logical inverter?
 (A) AND (B) OR
 (C) NOT (D) XNOR
3. A + A = ?
 (A) A (B) O
 (C) 1 (D) A
4. NOR is a combination of ?
 (A) NOT(OR) (B)NOT(AND)
 (C) NOT(NOT) (D) NOT(NOR)
5. NAND is called as …… Gate
 (A) Fundamental Gate (B) Derived Gate
 (C) Logical Gate (D) Universal gate

SECTION-B

Very Short Answers

1. What is Boolean Algebra?
2. Write a short note on NAND Gate.
3. Draw the truth table for XOR gate.
4. Write the associative laws?
5. What are derived gates?

SECTION-C
Short Answers

1. Write the truth table of fundamental gates.
2. Write a short note on XNOR gate.
3. Reason out why the NAND an NOR are called universal gates?
4. Give the truth table of XOR gate.
5. Write the De Morgan’s law.

SECTION - D

Explain in detail

1. Explain the fundamental gates with expression and truth table.
2. How AND and OR can be realized using NAND and NOR gate.
3. Explain the Derived gates with expression and truth table.

Chapter 2 Page 014-040.indd 40 3/24/2020 12:03:08 PM

41

Learning Objectives

• To know the
organisation of
the computer
components and their
interconnections.

• To know the
processors and their characteristics.

• To know the importance of memory
devices and their roles in a computer.

• To explore RAM, ROM and
differentiate each of them.

• To know about cache memory and
how it improves the performance of
a computer

• To know the secondary devices and
their usage

• To know about the ports and
interfaces so that external devices
can be connected

3.1 Introduction
 Computer organisation deals with
the hardware components of a computer
system. It includes Input / Output devices,
the Central Processing Unit, storage devices
and primary memory. It is concerned with
how the various components of computer
hardware operate. It also deals with how
they are interconnected to implement
an architectural specification. The term
computer organisation looks similar to
the term computer architecture. But,
computer architecture deals with the

engineering considerations involved in
designing a computer. On the other hand,
Computer Organisation deals with the
hardware components that are transparent
to the programmer.

3.2. Basics of Microprocessors
 The CPU is the major component of
a computer, which performs all tasks. This
is realized by the microprocessor which
is an Integrated Circuit. Microprocessors
were first introduced in early 1970s. The
first general purpose microprocessor,
4004 was developed by Intel Inc.
 The microprocessor is a
programmable multipurpose silicon chip.
It is driven by clock pulses. It accepts input
as a binary data and after processing,
it provides the output data as per the
instructions stored in the memory. A
block diagram of a microprocessor based
system is shown in Figure 3.1.

Input Microprocessor Output

Memory

Figure 3.1 A Microprocessor - Based System
 The microprocessor is made up of 3
main units. They are:
• Arithmetic and Logic unit (ALU):

To perform arithmetic and logical
instructions based on computer
instructions.

CHAPTER 3Unit I Fundamentals of Computers

Computer Organisation

Chapter 3 Page 041-049.indd 41 3/24/2020 9:11:39 AM

42

• Control unit: To control the overall
operations of the computer through
signals.

• Registers (Internal Memory): They are
used to hold the instruction and data
for the execution of the processor.

Characteristics of Microprocessors
 A Microprocessor’s performance
depends on the following characteristics:
a) Clock speed
b) Instruction set
c) Word size

a) Clock Speed
 Every microprocessor has an
internal clock that regulates the speed at
which it executes instructions. The speed
at which the microprocessor executes
instructions is called the clock speed.
Clock speed is measured in MHz (Mega
Hertz) or in GHz (Giga Hertz).
b) Instruction Set
 A command which is given to
a computer to perform an operation
on data is called an instruction. Basic
set of machine level instructions that a

Speed Measurement
Hertz – abbreviated as Hz is the standard unit of measurement used for measuring
frequency. Since frequency is measured in cycles per second, one hertz equals one
cycle per second.

 Hertz is commonly used to measure wave frequencies, such as sound waves, light waves,
and radio waves. For example, the average human ear can detect sound waves between 20 and
20,000 Hz. Sound waves close to 20 Hz have a low pitch and are called "bass" frequencies.
Sound waves above 5,000 Hz have a high pitch and are called "treble" frequencies.
 While hertz can be used to measure wave frequencies, it is also used to measure the
speed of computer processors. For example, each CPU is rated at a specific clock speed. This
number indicates how many instruction cycles the processor can perform in every second.
Since modern processors can perform millions or even billions of instructions per second,
clock speeds are typically measured in megahertz or gigahertz.

microprocessor is designed to execute
is called as an instruction set. This
instruction set carries out the following
types of operations:
• Data transfer
• Arithmetic operations
• Logical operations
• Control flow
• Input/output

c) Word Size
• The number of bits that can be processed

by a processor in a single instruction

is called its word size. Word size
determines the amount of RAM that
can be accessed by a microprocessor.

3.3 Data communication between
CPU and memory

 The Central Processing Unit(CPU)
has a Memory Data Register (MDR) and
a Memory Address Register (MAR). The
Memory Data Register (MDR) keeps the data
which is transferred between the Memory
 and the CPU. The Program Counter (PC)
is a special register in the CPU which always
keeps the address of the next instruction to be

Chapter 3 Page 041-049.indd 42 3/24/2020 9:11:39 AM

43

executed. The Arithmetic and Logic unit of
CPU places the address of the memory to be
fetched, into the Memory Address Register.

 A bus is a collection of wires used
for communication between the internal
components of a computer.

 The word in the RAM has the same
size (no. of bits) as the Memory Data
Register (MDR). If the processor is an
8-bit processor like Intel 8085, its MDR
and the word in the RAM both have 8 bits.

 The read operation transfers the
data(bits) from word to Memory Data
Register. The write operation transfers the
data(bits) from Memory Data Register to
word.

If 5V is applied at one end of
a wire, the other end also can
receive 5V. In the same way,
the buses are wires, and the

binary data are voltages (5V as 1 and
0V as 0), and these buses can simply
pass the data as voltages from one end
to other.

3.4 Types of Microprocessors

 Microprocessors can be classified
based on the following criteria:

• The width of data that can be processed

• The instruction set

3.4.1 Classification of Microprocessors
based on the Data Width

Depending on the data width,
microprocessors can process instructions.
The microprocessors can be classified as

follows:

• 8-bit microprocessor

• 16-bit microprocessor

• 32-bit microprocessor

• 64-bit microprocessor

3.4.2 Classification of Microprocessors
based on Instruction Set

 The size of the instruction set
is important consideration while
categorizing microprocessors.There are
two types of microprocessors based on
their instruction sets.

• Reduced Instruction Set Computers
(RISC)

• Complex Instruction Set Computers
(CISC)

 Examples of RISC processors are
Pentium IV, Intel P6, AMD K6 and K7.

 Examples of CISC processors are Intel
386 & 486, Pentium, Pentium II and III,
and Motorola 68000.

3.5 Memory Devices

 A memory is just like a human
brain. It is used to store data and
instructions. Computer memory is the
storage space in the computer, where data
and instructions are stored. There are two
types of accessing methods to access (read
or write) the memory. They are sequential
access and random access. In sequential
access, the memory is accessed in an

Chapter 3 Page 041-049.indd 43 3/24/2020 9:11:39 AM

44

technology they use to hold data. Dynamic
RAM being a common type needs to be
refreshed frequently. Static RAM needs
to be refreshed less often, which makes
it faster. Hence, Static RAM is more
expensive than Dynamic RAM.

3.5.3 Read Only Memory (ROM)
 Read Only Memory refers to special
memory in a computer with pre-recorded
data at manufacturing time which cannot
be modified. The stored programs that start
the computer and perform diagnostics are
available in ROMs. ROM stores critical
programs such as the program that boots
the computer. Once the data has been
written onto a ROM chip, it cannot be
modified or removed and can only be
read. ROM retains its contents even when
the computer is turned off. So, ROM is
called as a non-volatile memory.

3.5.3.1Programmable Read Only Memory
(PROM)
 Programmable read only memory is
also a non-volatile memory on which data
can be written only once. Once a program
has been written onto a PROM, it remains
there forever. Unlike the main memory,
PROMs retain their contents even when
the computer is turned off.
 The PROM differs from ROM.
PROM is manufactured as a blank
memory, whereas a ROM is programmed
during the manufacturing process itself.
PROM programmer or a PROM burner is
used to write data to a PROM chip. The
process of programming a PROM is called
burning the PROM.

3.5.3.2 Erasable Programmable Read
Only Memory (EPROM)
 Erasable Programmable Read Only
Memory is a special type of memory which

orderly manner from starting to end. But,
in random access, any byte of memory can
be accessed directly without navigating
through previous bytes. Different
memory devices are arranged according
to the capacity, speed and cost as shown in
Figure 3.6.

Main Memory

Hard DiskSm
all

er
 ca

pa
cit

y,
fas

ter

ac
ce

ss
tim

e a
nd

 hi
gh

er
 co

st

larger capacity,slower

access tim
e and Lower cost

Cache
Memory

Figure 3.6 Memory Hierarchy

3.5.1 Random-Access Memory (RAM)
 The main memory is otherwise
called as Random Access Memory. This
is available in computers in the form of
Integrated Circuits (ICs). It is the place in
a computer where the Operating System,
Application Programs and the data in
current use are kept temporarily so that
they can be accessed by the computer’s
processor. The smallest unit of information
that can be stored in the memory is called
as a bit. The memory can be accessed by
a collection of 8 bits which is called as a
byte.
 RAM is a volatile memory, which
means that the information stored in it is
not permanent. As soon as the power is
turned off, whatever data that resides in
RAM is lost. It allows both read and write
operations.
3.5.2 Types of RAM
There are two basic types of RAM
• Dynamic RAM (DRAM)
• Static RAM (SRAM)
 These two types differ in the

Chapter 3 Page 041-049.indd 44 3/24/2020 9:11:39 AM

45

up the memory retrieval process. Due to its
higher cost, the CPU comes with a smaller
size of cache memory compared with the size
of the main memory. Without cache memory,
every time the CPU requests the data, it has to
be fetched from the main memory which will
consume more time. The idea of introducing
a cache is that, this extremely fast memory
would store data that is frequently accessed
and if possible, the data that is closer to it.
This helps to achieve the fast response time,
Where response Time, (Access Time) refers
to how quickly the memory can respond to
a read / write request. Figure 3.8 shows the
arrangement of cache memory between the
CPU and the main memory.

CPU Cache Main
Memory

Fast Slow

Figure 3.8 Cache Memory Arrangement
3.6 Secondary Storage Devices

A computer generally has limited amount of
main memory which is expensive and volatile.
To store data and programs permanently,
secondary storage devices are used. Secondary
storage devices serve as a supportive storage
to main memory and they are non-volatile
in nature, secondary storage is also called as
Backup storage
3.6.1 Hard Disks
 Hard disk is a magnetic disk on which
you can store data. The hard disk has the
stacked arrangement of disks accessed by a
pair of heads for each of the disks. The hard
disks come with a single or double sided disk.
3.6.2 Compact Disc (CD)
 A CD or CD-ROM is made from 1.2
millimeters thick, polycarbonate plastic
material. A thin layer of aluminium or
gold is applied to the surface. CD data is
represented as tiny indentations known as

serves as a PROM, but the content can
be erased using ultraviolet rays. EPROM
retains its contents until it is exposed to
ultraviolet light. The ultraviolet light
clears its contents, making it possible to
reprogram the memory.
 An EPROM differs from a PROM,
PROM can be written only once and
cannot be erased. EPROMs are used
widely in personal computers because
they enable the manufacturer to change
the contents of the PROM to replace with
updated versions or erase the contents
before the computer is delivered.

Figure 3.7 Erasable Programmable Read
Only Memory

Most of the EPROM chips
have a transparent area at the
top surface which is covered

by stickers. If it gets removed, the
ultraviolet light in the sunlight may
erase the contents.

3.5.3.3 Electrically Erasable Programmable
Read Only Memory (EEPROM)
 Electrically Erasable Programmable
Read Only Memory is a special type of
PROM that can be erased by exposing it
to an electrical charge. Like other types of
PROM, EEPROM retains its contents even
when the power is turned off. Comparing
with all other types of ROM, EEPROM is
slower in performance.
3.5.4 Cache Memory
 The cache memory is a very high speed
and expensive memory, which is used to speed

Chapter 3 Page 041-049.indd 45 3/24/2020 9:11:40 AM

46

"pits", encoded in a spiral track moulded
into the top of the polycarbonate layer. The
areas between pits are known as "lands".
A motor within the CD player rotates the
disk. The capacity of an ordinary CD-
ROM is 700MB.

Fig 3.9 Compact Disc

3.6.3 Digital Versatile Disc (DVD)
 A DVD (Digital Versatile Disc or
Digital Video Disc) is an optical disc capable
of storing up to 4.7 GB of data, more than six
times what a CD can hold. DVDs are oft en
used to store movies at a better quality. Like
CDs, DVDs are read with a laser.
 Th e disc can have one or two sides,
and one or two layers of data per side; the
number of sides and layers determines how
much it can hold. Double-layered sides are
usually gold-coloured, while single-layered
sides are usually silver-coloured, like a CD.

Fig 3.10 Digital Versatile Disc
3.6.4 Flash Memory Devices
 Flash memory is an electronic
(solid-state) non-volatile computer storage
medium that can be electrically erased and
reprogrammed. Th ey are either EEPROM or
EPROM. Examples for Flash memories are
pendrives, memory cards etc. Flash memories
can be used in personal computers, Personal
Digital Assistants (PDA), digital audio

players, digital cameras and mobile phones.
Flash memory off ers fast access times. Th e
time taken to read or write a character in
memory is called access time. Th e capacity
of the fl ash memories vary from 1 Gigabytes
(GB) to 2 Terabytes (TB). A sample of fl ash
memory is shown in Figure 3.11.

Figure 3.11 Flash Memory
3.6.5 Blu-Ray Disc
 Blu-Ray Disc is a high-density optical
disc similar to DVD. Blu-ray is the type
of disc used for PlayStation games and for
playing High-Defi nition (HD) movies. A
double-layer Blu-Ray disc can store up to
50GB (gigabytes) of data. DVD uses a red
laser to read and write data. But, Blu-ray uses
a blue-violet laser to write. Hence, it is called
as Blu-Ray.

Fig 3.12 Blu- Ray Disc
3.7 Ports and Interfaces

 The Motherboard of a computer
has many I/O sockets that are connected
to the ports and interfaces found on the
rear side of a computer (Figure 3.13). The
external devices can be connected to the
ports and interfaces. The various types of
ports are given below:

Chapter 3 Page 041-049.indd 46 3/24/2020 9:11:40 AM

47

Serial Port: To connect the external
devices, found in old computers.
Parallel Port: To connect the printers,
found in old computers.
USB Ports: To connect external devices
like cameras, scanners, mobile phones,
external hard disks and printers to the
computer.
USB 3.0 is the third major version of the
Universal Serial Bus (USB) standard to
connect computers with other electronic
gadgets as shown in Figure 3.13. USB 3.0
can transfer data up to 5 Giga byte/second.
USB3.1 and USB 3.2 are also released.

Figure 3.13 USB 3.0 Ports

VGA Connector: To connect a monitor or
any display device like LCD projector.
Audio Plugs: To connect sound speakers,
microphone and headphones.
PS/2 Port: To connect mouse and
keyboard to PC.
SCSI Port: To connect the hard disk
drives and network connectors.

Mouse Port

Keyboard Port

VGA
Port

HDMI Port

USB Port
Network Port

Serial
Port Power Supply

Fig 3.14 Ports and Interfaces
High Definition Multimedia Interface
(HDMI)
 High-Definition Multimedia
Interface is an audio/video interface
which transfers the uncompressed video
and audio data from a video controller,
to a compatible computer monitor, LCD
projector, digital television etc.

Micro HDMI HDMI
Figure 3.15 HDMI Ports

Activity

Student Activity
• Identify the components of a computer

• Connecting external devices like
printer/LCD projector.

Teacher Activity
• Show the components of a computer

• Display different ROM ICs

• Display the flash memory

• Demonstrate various ports and their
usage

Chapter 3 Page 041-049.indd 47 3/24/2020 9:11:41 AM

48

SECTION – A
Choose the correct answer
1. Which of the following is said to be

the brain of a computer?
 (a) Input devices
 (b) Output devices
 (c) Memory device
 (d) Microprocessor
2. Which of the following is not the

part of a microprocessor unit?
 (a) ALU (b) Control unit
 (c) Cache memory (d) register
3. How many bits constitute a word?
 (a) 8
 (b) 16
 (c) 32
 (d) determined by the processor

used.
4. Which of the following device

identifies the location when address
is placed in the memory address
register?

 (a) Locator (b) encoder
 (c) decoder (d) multiplexer
5. Which of the following is a CISC

processor?
 (a) Intel P6 (b) AMD K6
 (c) Pentium III (d) Pentium IV
6. Which is the fastest memory?
 (a) Hard disk
 (b) Main memory
 (c) Cache memory
 (d) Blue-Ray disc

7. How many memory locations are
identified by a processor with 8 bits
address bus at a time?

 (a) 28 (b) 1024
 (c) 256 (d) 8000
8. What is the capacity of 12cm

diameter DVD with single sided
and single layer?

 (a) 4.7 GB (b) 5.5 GB
 (c) 7.8GB (d) 2.2 GB
9. What is the smallest size of data

represented in a CD?
 (a) blocks (b) sectors
 (c) pits (d) tracks
10. Display devices are connected to

the computer through.
 (a) USB port
 (b) Ps/2 port
 (c) SCSI port
 (d) VGA connector

SECTION-B
Very Short Answers
(1) What are the parameters which

influence the characteristics of a
microprocessor?

(2) What is an instruction?
(3) What is a program counter?
(4) What is HDMI?
(5) Which source is used to erase the

content of a EPROM?
SECTION-C

Short Answers

(1) Differentiate Computer
Organisation from Computer
Architecture.

Evaluation

Chapter 3 Page 041-049.indd 48 3/24/2020 9:11:41 AM

49

(2) Classify the microprocessor based
on the size of the data.

(3) Write down the classifications
of microprocessors based on the
instruction set.

(4) Differentiate PROM and EPROM.
(5) Write down the interfaces and ports

available in a computer.
(6) Differentiate CD and DVD
(7) How will you differentiate a flash

memory and an EEPROM?

SECTION - D
Explain in detail
(1) Explain the characteristics of a

microprocessor.
(2) How the read and write operations

are performed by a processor?
Explain.

(3) Arrange the memory devices in
ascending order based on the access
time.

(4) Explain the types of ROM.

Computer hardware
The physical parts or components of a computer, such as
the CPU, mother board, monitor, keyboard, etc.

Intel

Intel Corporation is an American multinational
corporation and technology company involving in
hardware manufacturing, especially mother board and
processors

Silicon chip
Silicon chip is an integrated , set of electronic circuits on
one small flat piece of semiconductor material, silicon.

Multipurpose Multipurpose is several purpose

Address bus
Address bus is a collection of wires that carry the address
as bits

Data bus Data bus is a collection of wires to carry data in bits

Control bus
Control bus is a control line/collection of wires to control
the operations/functions

Arithmetic operations
Arithmetic operations are the mathematical operations on
data like add, subtract etc

Data Transfer
Data Transfer means moving data from one component to
another

Logical operations
Logical operations are the operations on binary/Boolean
data like AND, OR , NOT

Bidirectional Bidirectional means both the directions/ways
Unidirectional Unidirectional means only one direction

Access time
Access time is the time delay or latency between a request
to an electronic system, and the access being completed or
the requested data returned

Chapter 3 Page 041-049.indd 49 3/24/2020 9:11:41 AM

50

 Theoretical concepts of Operating System

Learning objectives

 To know the concept of Operating
Systems and their types.

 To acquire the basic Knowledge of
Operating Systems and its functions.

4.1 Introduction to Software
 A soft ware is set of instructions that
perform specifi c task. It interacts basically with
the hardware to generate the desired output.
4.1.1 Types of Software
Software is classified into two types:
1) Application Software
2) System Software
Application Software:
 Application software
is a set of programs to
perform specific task.
For example MS-word is an application
software to create text document and VLC
player is familiar application software to
play audio, video files and many more.
System Software:
 System software is a type of
computer program that is designed to run
the computer’s hardware and application
programs. Example Operating System and
Language Processor

4.2 Introduction to Operating
System (OS):

 An Operating System (OS) is
a system software which serves as an
interface between a user and a computer.

 This controls input, output and
other peripheral devices such as disk
drives, printers and electronic gadgets.
The functions of an Operating System
include file management, memory
management, process management and
device management and many more.

Operating
System

APPS

Printer Keyboard

Mouse

Monitor
Hard drive

Figure: 4.1 Operating System

 Without an Operating System, a
computer cannot eff ectively manage all the
resources. When a computer is switched
on, the operating system is loaded in to the
memory automatically.

 Some of the popular Operating
Systems used in personal computers and
laptops are Windows, UNIX and Linux.
The mobile devices mostly use Android
and ioS as mobile OS.

CHAPTER 4Unit I Fundamentals of Computers

Chapter 4 Page 050-056.indd 50 3/24/2020 9:12:06 AM

51

 .

Application
Software

Operating
System

Hardware

User

Figure: 4.2 Interaction of Operating system
and user

 Uses of Operating Systems
The following are few uses of Operating
System
The main use of Operating System is

 � to ensure that a computer can be used
to extract what the user wants it do.

 � Easy interaction between the users
and computers.

 � Starting computer operation
automatically when power is turned
on (Booting).

 � Controlling Input and Output Devices
 � Manage the utilisation of main

memory.
 � Providing security to user programs.

4.3 Types of Operating System

 Operating System are classified into
the following types depending on their
processing capabilities.

4.3.1 Single User Operating Systems

 An operating system allows only a
single user to perform a task at a time. It
is called as a Single user and single Task
operating system.MS-DOS is an example
for a single user and single task Operating
System.

4.3.2 Multi-user Operating Systems

 It is used in computers and laptops
that allow same data and applications to
be accessed by multiple users at the same
time. The users can also communicate with
each other. Windows, Linux and UNIX
are examples for multi-user Operating
System.

4.4 Key features of the Operating
System

The various key features are given below

User

Interface

M
em

ory
M

anagem
ent

Fault

Tolerance
Key

Features of
Operating

System

File
Management

Pr
oc

ess

M
an

ag
em

en
t

Se
cu

rit
y

M
an

ag
em

en
t

Figure: 4.3 Key Features of the Operating
System

4.4.1 User Interface (UI)

 User interface is one of the
significant feature in Operating System.
The only way that user can make
interaction with a computer. This is a main
reason for key success of GUI (Graphical
User Interface) based Operating System.
The GUI is a window based system with a
pointing device to direct I/O, choose from
menus, make selections and a keyboard
to enter text.Its vibrant colours attract the
user very easily.

Chapter 4 Page 050-056.indd 51 3/24/2020 9:12:06 AM

52

• Keeping track of which portion of
memory are currently being used and
who is using them.

• Determining which processes (or
parts of processes) and data to move
in and out of memory.

• Allocation and de-allocation of
memory blocks as needed by the
program in main memory. (Garbage
Collection)

4.4.3 Process management

 Process management is function
that includes creating and deleting
processes(program) and providing
mechanisms for processes to communicate
and synchronize with each other.
 . A system task, such as sending
output to a printer or screen, can also be
called as a Process.
 A computer consists of a collection
of processes, they are classified as two
categories:
• Operating System processes which is

executed by system code
• User Processes which is execute by

user code
 All these processes can potentially
execute concurrently on a single CPU.
 The following algorithms are
mainly used to allocate the job (process)
to the processor.
1. FIFO 2. SJF 3. Round Robin

4. Based on Priority

FIFO (First In First Out)Scheduling:

 This algorithm is based on queuing
technique. Assume that a student is

 Now Linux distribution is also
available as GUI based Operating System.
The following points are considered
when User Interface is designed for an
application.

1. The user interface should enable the
user to retain this expertise for a
longer time.

2. The user interface should also satisfy
the customer based on their needs.

3.The user interface should save user’s
precious time.

4. The ultimate aim of any product is to
satisfy the customer. The User Interface
is also to satisfy the customer.

5. The user interface should reduce number
of errors committed by the user

4.4.2 Memory Management

 Memory Management is the
process of controlling and coordinating
computer’s main memory and assigning
memory block (space) to various running
programs to optimize overall computer
performance. The Memory management
involves the allocation of specific memory
blocks to individual programs based on
user demands.

 The objective of Memory
Management process is to improve both
the utilization of the CPU and the speed
of the computer’s response to its users
via main memory. For these reasons the
computers must keep several programs in
main memory that associates with many
different Memory Management schemes.

 The Operating System is responsible
for the following activities in connection
with memory management:

Chapter 4 Page 050-056.indd 52 3/24/2020 9:12:07 AM

53

standing in a queue (Row) to get grade
sheet from his/her teacher. The other
student who stands first in the queue gets
his/her grade sheet first and leaves from
the queue (Row). Followed by the next
student in the queue gets it corrected and
so on. This is the basic logic of the FIFO
algorithm.

 Technically, the process that enters
the queue first is executed first by the
CPU, followed by the next and so on. The
processes are executed in the order of the
queue (row).

SJF (Shortest Job First)Scheduling:

 This algorithm works based on the
size of the job being executed by the CPU.

 Consider two jobs A and B.

1) A = 6 kilo bytes 2) B = 9 kilo bytes

 First the job “A” will be assigned
and then job “B” gets its turn.

Round RobinScheduling

 The Round Robin (RR) scheduling
algorithm is designed especially for time
sharing systems. Jobs (processes) are
assigned and processor time in a circular
method. For example take three jobs A, B,
C. First the job A is assigned to CPU then
job B and job C and then again A, B and C
and so on.

Based On Priority

 The given job (process) is assigned
based on a Priority. The job which has
higher priority is more important than
other jobs. Take two jobs A and B. Let the
priority of A be 5 and priority B be 7.

 Job B is assigned to the processor
before job A.

4.4.4 Security Management

 The major challenge in computer
and software industry is to protect
user’s legitimate data from hackers. The
Operating System provides three levels of
securities to the user end. They are

(1) File access level

(2) System level

(3) Network level

 In order to access the files created
by other people, you should have the
access permission. Permissions can either
be granted by the creator of the file or
bythe administrator of the system.

 System level security is offered by
the password in a multi-user environment.

 Both windows and Linux offer the
password facility.

 Network security is an indefinable
one. So people from all over the world try
to provide such a security.

 All the above levels of security
features are provided only by the Operating
System.

4.4.5 Fault Tolerance

 The Operating Systems should be
robust. When there is a fault, the Operating
System should not crash, instead the
Operating System have fault tolerance
capabilities and retain the existing state of
system.

Chapter 4 Page 050-056.indd 53 3/24/2020 9:12:07 AM

54

4.4.6 File Management

 File management is an important
function of OS which handles the data
storage techniques. The operating
System manages the files, folders and
directory systems on a computer.The
FAT(File Allocation Table) stores general
information about files like filename, type
(text or binary), size, starting address
and access mode.The file manager of the
operating system helps to create, edit,
copy, allocate memory to the files and
also updates the FAT. There are few other
file management techniques available like
Next Generation File System (NTFS) and
ext2(Linux).

4.4.7 Multi-Processing

 This is a one of the features of
Operating System. It has two or more
processors for a single running process
(job). Processing takes place in parallel
is known as parallel processing.Since
the execution takes place in parallel, this
feature is used for high speed execution
which increases the power of computing.

4.4.8 Time-sharing

 This is a one of the features of
Operating Systems. It allows execution of
multiple tasks or processes concurrently.
For each task a fixed time is allocated. This
division of time is called Time- sharing.
The processor switches rapidly between
various processes after a time is elapsed or
the process is completed.

 For example assume that there are
three processes called P1, P2, P3 and time
allocated for each process 30, 40, 50 minutes

respectively. If the process P1 completes
within 20 minutes then processor takes
the next process P2 for the execution. If
the process P2 could not complete within
40 minutes, then the current process P2
will be paused and switch over to the next
process P3.

4.4.9 Distributed Operating Systems

 The Distributed Operating System
is used to access shared data and files
that reside in any machine around the
world using internet/intranet.The users
can access as if it is available on their own
computer.

 The advantages of distributed
Operating System are as follows:

• A user at one location can make use of
all the resources available at another
location over the network.

• Many computer resources can be
added easily in the network

• Improves the interaction with the
customers and clients.

• Reduces the load on the host computer.

Figure: 4.4 Distributed Operating Systems

Chapter 4 Page 050-056.indd 54 3/24/2020 9:12:07 AM

55

4.5 Prominent Operating Systems

Prominent OS are as follows:
• UNIX
• Microsoft Windows
• Linux
• iOS
• Android
 Modern operating systems use a
Graphical User Interface(GUI). A GUI lets
use to your mouse to click icons, buttons,
menus and everything, is clearly displayed
on the screen using a combination of
graphics and text elements.
Student Activity
Activity 1: Draw a line between the
operating system logo and the correct
description.
A command-line operating
system is an example of Open
Source software development
and Free Operating System
A popular Operating System
for mobile phone technology
which is not linked with
Apple products.

Used with Apple computers
and works well with cloud
computing.

Designed to be used for the
Apple iPhone

Is an Operating System that is
very popular in universities,
companies, big enterprises etc

The most popular GUI
Operating System for personal
computers.

Evaluation

SECTION – A
Choose the correct answer
1) Operating system is a

 A) Application
Software

 B) Hardware
 C)System Software
 D)Component
2) Identify the usage of

Operating Systems

 A) Easy interaction between the
human and computer

 B) Controlling input & output
Devices

 C) Managing use of main memory
 D) All the above
3) Which of the following is not a

function of an Operating System?

 A) Process Management
 B)Memory Management
 C)Security management
 D)Complier Environment
4) Which of the following OS is a

Commercially licensed Operating
system?

 A)Windows B)UBUNTU

 C)FEDORA D)REDHAT

5) Which of the following Operating
systems support Mobile Devices?

 A)Windows 7 B)Linux
 C)BOSS D)iOS
6) File Management manages
 A) Files
 B) Folders
 C) Directory systems
 D) All the Above

Chapter 4 Page 050-056.indd 55 3/24/2020 9:12:08 AM

56

7) Interactive Operating System
provides

 A)Graphics User Interface (GUI)

 B)Data Distribution

 C)Security Management

 D)Real Time Processing

8) An example for single task operating
system is

 A)Linux

 B) Windows

 C)MS-DOS

 D) Unix

9) The File management system used
by Linux is

 A) ext2

 B) NTFS

 C) FAT

 D) NFTS
SECTION-B

Very Short Answers

1) List out any two uses of Operating
System?

2) What is multi-user Operating system?
3) What is a GUI?
4) What are the security management

features available in Operating System ?
5) What is multi-processing?
6) What are the different Operating

Systems used in computer?

SECTION-C
Short Answers

1) What are the advantages and
disadvantages of Time-sharing
features?

2) List out the key features of Operating
system

3) Write a note on Multiprocessing
SECTION - D

Explain in detail
1) Explain the concept of a Distributed

Operating System along with its
advantages.

2) List out the points to be noted while
creating a user interface for an
Operating system.

3) Explain the process manangement
algorithms in Operating System.

References

1) Silberschatz, galvin gagne, Operating
System concepts – john wiley&sons,inc

2) Andrew s. Tanenbaum, modern
Operating Systems – pearson
publication

3) Andrew s. Tanenbaum , Operating
Systems design and implementation,
prentice hall publication

4) Tom anderson, Operating Systems:
principles and practice, recursive
books

5) Thomas w. Doeppner, Operating
Systems in depth: design and
programming, john wiley & sons, inc

Chapter 4 Page 050-056.indd 56 3/24/2020 9:12:08 AM

57

Learning Objectives

 After learning the concepts in this
chapter, the students will be able
• To know the concepts of Operating

System.
• To know the versions of the windows

operating system.
• To know the concepts like desktop

and the elements of window.
• To explore the document window.
• To compare the different types of icons.
• To explore the windows directory

structure.
• To practice creating files and folders

in specific drives.
• To manage the files

and folders.
• To know the procedure

to start and shutdown
the computer.

5.1. Introduction to
Operating System

 An Operating System (OS) is
a system software (Figure 5.1) that
enables the hardware to communicate
and operate with other software. It also
acts as an interface between the user and
the hardware and controls the overall
execution of the computer.

 Following are some of the important
functions of an Operating System as
discussed in the previous chapter:

• Memory Management

• Process Management

• Device Management

• File Management

• Security Management
• Control overall system performance

User 1 User 2 User n

Software

System
Softwares

Application
Softwares

Operating System

Hardware CPU RAM I/O

Figure 5.1. Overview of an Operating
System

5.2. Introduction to Windows Operating
System

 Every computer needs an Operating
System to function. Microsoft Windows is
one of the most popular Graphical User
Interface (GUI). Multiple applications can
execute simultaneously in Windows, and
this is known as “Multitasking”.

 Windows Operating System uses
both Keyboard and mouse as input
devices. Mouse is used to interact with
Windows by clicking its icons. Keyboard
is used to enter alphabets, numerals and
special characters.

Working with Windows Operating
System

CHAPTER 5Unit I Fundamentals of Computers

Chapter 5 Page 057-075.indd 57 3/24/2020 9:13:25 AM

58

5.3. Various versions of Windows

Some of the functions of Windows
Operating System are:
• Access applications (programs) on the

computer (word processing, games,
spread sheets, calculators and so on).

• Load any new program on the computer.
• Manage hardware such as printers,

scanners, mouse, digital cameras etc.,
• File management activities (For

example creating, modifying, saving,
deleting files and folders).

• Change computer settings such as
colour scheme, screen savers of your
monitor, etc.

With reference to the Table 5.1, let us see the
versions of Windows Operating System.
5.4. Handling the mouse

Before learning Window Operating System,
you should know more about mouse and its
actions.

Versions Logo Year Specific features

Windows
1.x

1985

• Introduction of GUI in 16 - bit. processor
• Mouse was introduced as an input device.

Windows
2.x

1987
• Supports to minimize or maximize windows.
• Control panel feature was introduced with various

system settings and customising options.

Windows
3.x

1992

• Introduced the concept of multitasking.
• Supported 256 colours which brought a more modern,

colourful look to the interface.

Windows
95

1995

• Introduced Start button, the taskbar, Windows Explorer
and Start menu.

• Introduced 32 - bit processor and focused more on
multitasking.

Windows
98

1998

• Integration of the Web browser (Internet Explorer) with
the Operating System.

• DOS gaming began to disappear as Windows based
games improved.

• Plug and play feature was introduced.

Windows
NT

• Designed to act as servers in network.

Windows
Me

2000
• It introduced automated system diagnostics and

recovery tools.

Chapter 5 Page 057-075.indd 58 3/24/2020 9:13:27 AM

59

Right Click

Left Click

Figure 5.2.Mouse actions

The following are the mouse actions:
Action Reaction

Point to
an item

Move the mouse pointer over the
item.

Click
Point to the item on the screen,
press and release the left mouse
button.

Right
click

Point to the item on the screen,
press and release the right mouse
button. Clicking the right mouse
button displays a pop up menu
with various options.

Double-
click

Point to the item on the screen,
quickly press twice the left mouse
button.

Windows
2000

2000

• Served as an Operating System for business desktop and
laptop systems.

• Four versions of Windows 2000 were released: Professional
(for business desktop and laptop systems), Server (both a
Web server and an office server), Advanced Server (for
line-of-business applications) and Data Centre Server
(for high-traffic computer networks).

Windows
XP

2001
• Introduced 64-bit Processor.
• Improved Windows appearance with themes and

offered a stable version.

Windows
Vista

2006 • Updated the look and feel of Windows.

Windows
7 2009

• Booting time was improved, introduced new user
interfaces like Aero Peek, pinning programs to taskbar,
handwriting recognition etc. and Internet Explorer 8.

Windows
8 2012

• Windows 8 is faster than previous versions of Windows.
• Start button was removed.
• Windows 8 takes better advantage of multi-core

processing, solid state drives (SSD), touch screens and
other alternate input methods.

• Served as common platform for mobile and computer.

Windows
10 2015

• Start Button was added again.
• Multiple desktop.
• Central Notification Center for App notification and

quick actions.
• Cortana voice activated personal assistant.

Table 5.1 Versions of Windows Operating System.

Chapter 5 Page 057-075.indd 59 3/24/2020 9:13:27 AM

60

Drag and
drop

Point to an item then hold the left
mouse button as you move the
pointer press and you have reached
the desired position, release the
mouse button.

5.5. Windows Desktop
 The opening screen of Windows is
called “Desktop”.
 The desktop of your computer may
look different from what is seen in Figure 5.3.
 This is because Windows allows you
to change the appearance of the desktop.
 In Figure 5.3, the desktop shows
the Start button, Taskbar, Notification
Area and date and time.

Icons

Task bar

Noti�cation AreaStart Button

Gadgets

Figure 5.3. Microsoft Windows 7 Desktop

5.5.1. The Icons

 Icon is a graphic symbol
representing the window elements like

files, folders, shortcuts etc., Icons play a
vital role in GUI based applications.

5.5.1.1.Standard Icons

 The icons which are available
on desktop by default while installing
Windows OS are called standard icons. The
standard icons available in all Windows
OS are My Computer, Documents and
Recycle Bin.

Aero peek button
Figure 5.4. Aero peek button

5.5.1.2. Shortcut Icons:
 Shortcut icons can be created for
any application or file or folder. By double
clicking the icon, the related application
or file or folder will open.

(Figure5.5)

Application Icon

Folder Icon

Figure 5.5.The types of Icons

Various Disk drive
icons

Hard disk drives with
total and remaining

space available

Removable Storage (pen drive)
Figure 5.6.Disk drive Icons

Chapter 5 Page 057-075.indd 60 3/24/2020 9:13:28 AM

61

5.5.1.3. Disk drive icons:

 The disk drive icons graphically
represent five disk drive options. (i) Hard
disk (ii) CD-ROM/DVD Drive (iii) Pen
drive (iv) Other removable storage such
as mobile, smart phone, tablet etc., (v)
Network drives if your system is connected
with other system.

You can move to the Desktop
any time by pressing the Winkey
+ D or using Aero Peek while
working in any application.

You can see Figure 5.4 to know where
Aero peek lies in the Taskbar.

5.6. The Window
 Window is a typical rectangular area
in an application or a document. It is an area
on the screen that displays information for a
specific program.

5.7. Application Window
 It is an area on a computer screen
with defined boundaries, and within which
information is displayed. Such windows
can be resized, maximised, minimised,
placed side by side, overlap, and so on.

 An Application Window contains
an open application i.e. current application
such as Word or Paint. When two or more
windows are opened, only one of them is
active and the rest are inactive. Figures 5.6
and 5.7 display the Application Window
of OpenOffice Writer and the appearance
of the Multiple Windows opened
(overlapped) in the Desktop.

5.8. Document Window

 A document window is a section of
the screen used to display the contents of
a document. Figure 5.8 is an example of a
document window.

Note

 When you open any
application, such as OpenOffice Writer,
OpenOffice Impress or OpenOffice Calc
etc., you will find two Windows on the
screen. The larger Window is called
the Application Window. This Window
helps the user to communicate with
the Application program. The smaller
window, which is inside the Application
Window, is called the Document
window. This Window is used for typing,
editing, drawing, and formatting the text
and graphics.

Application work area

Title bar with title of the document

Tools bar

Scroll bars

Menu bar

W
indow

 C
ontrol buttons

Figure 5.6. Application Window

Figure 5.7. Multiple Windows
opened in Desktop

Chapter 5 Page 057-075.indd 61 3/24/2020 9:13:28 AM

62

Application Window

Document Area

Document window
Ruler

 Figure 5.8.Document Window

5.9. Elements of a window

 Figure 5.9 helps to understand the
elements of a window.

5.9.1. Title Bar – The title bar will display
the name of the application and the name
of the document opened. It will also contain
minimize, maximize and close button.

Corners

Corners Corners

Scroll Bar

Workspace

Menu Bar

Corners
Title Bar

Borders

Borders

Borders

Figure 5.9 The elements of a window.

5.9.2 Menu Bar

The menu bar is seen under the title bar.
Menus in the menu bar can be accessed by
pressing Alt key and the letter that appears
underlined in the menu title. Additionally,
pressing Alt or F10 brings the focus on the
first menu of the menu bar.

 In Windows 7, in the absence of the
menu bar, click Organise and from the
drop down menu, click the Layout option
and select the desired item from that list.

Figure 5.10. To display Menu Bar

Figure 5.10 helps to understand how to
make menu bar visible in its absence.

5.9.3. The Workspace

 The workspace is the area in the
document window to enter or type the text
of your document. Figure 5.10 Shows the
workspace area in the document window.

5.9.4. Scroll bars - The scroll bars are used
to scroll the workspace horizontally or
vertically. Figure 5.9 shows the Scroll bars.

5.9.5. Corners and borders

The corners and borders of the window
helps to drag and resize the windows. The
mouse pointer changes to a double headed
arrow when positioned over a border or a
corner. Drag the border or corner in the
direction indicated by the double headed
arrow to the desired size as shown in Figure
5.9. The window canbe resized by dragging
the corners diagonally across the screen.

Chapter 5 Page 057-075.indd 62 3/24/2020 9:13:29 AM

63

5.10.1. Start Menu

 In the lower left-hand corner of the windows screen is the Start button. When you
click on the button, the Start menu will appear. Using the start menu, you can start any
application.

 This symbol
indicates
Sub menu is
attached to this
option
Modify system

Settings

Add / Modify
devices and

Printer settings

Get Help

Log off / Restart /
Shutdown

View a list of
installed

Programs

Search Box

Start
Button

Figure 5.11 - Start Menu

Taskbar

 At the bottom of the screen is a horizontal bar called the taskbar. This bar contains
(from left to right) the Start button, shortcuts to various programs, minimised programs
and in the extreme right corner you can see the system tray which consist of volume
control, network, date and time etc. Next to the Start button is the quick Launch Toolbar
which contains task for frequently used applications.

5.10.2. Computer Icon

 By clicking this icon, the user can see the disk drivers mounted in the system. In
windows XP, Vista, this icon is called "My computer" in Windows 8 and 10, it is called "This
PC". The functionality of computer icon remains the same in all versions of windows as shown
in Figure 5.13.

Chapter 5 Page 057-075.indd 63 3/24/2020 9:13:29 AM

64

Start Button

Minimised program /
Folders show

hidden icons

Default
Language

Network
icon

Volume
Adjustment

Time and
Date

Aero peek
button

Figure 5.12.Taskbar

Figure 5.13. Computer icon in versions of Windows OS

5.10.3. Starting and Closing Applications

 Most of the applications installed
on your computer are available through
the start menu. Depending on the system
setup, the applications in the Start menu
varies. To start an application:
1. Click the Start

button and then
point to All
Programs. The
Program menu
appears.(Figure
5 . 1 4)

2. Point to the group
that contains the
application you
want to start, and
then click the
application name.

3. You can also open an application by
clicking Run on the Start menu, and the
name of the application. (Figure 5.15)

Figure 5.15.Starting a program using Run
option

4. To quit an application, click the Close
button in the upper right corner of the
application window. (Figure 5.16)

1. Start the application Wordpad
using Start menu and Run option.

 Close the Wordpad application
using File menu.

Workshop

Figure 5. 14.Starting
a applicatioin using

Start menu

Chapter 5 Page 057-075.indd 64 3/24/2020 9:13:29 AM

65

Close button

Exit Option

Figure 5.16. Closing the application using
Close button and Exit option

5. You can also quit an application by
clicking on File → Exit and File → Close
option in Windows 7. (Figure 5.16)

5.11. Managing Files and Folders
 In Windows 7, you can Organise
your documents and programs in the
form of files and folders. You can move,
copy, rename, delete and search the files
and folders.
5.11.1. Creating files and Folders
5.11.1.1 Creating Folders

 You can store your files in many
locations – on the hard disk or in other
devices. To better organise your files, you
can store them in folders.

There are two ways in which you can
create a new folder:
Method I:
Step 1: Open Computer Icon.
Step 2: Open any drive where you want to

create a new folder. (For example
select D:)

Step 3: Click on File → New → Folder.
Step 4: A new folder is created with the

default name “New folder”. (Figure
5.19)

Step 5: Type in the folder name and press
Enter key. (Figure 5.20 shows the
newly created Folder named “Test
Folder ").

Figure 5.17. Creating a Folder using File
menu

Figure 5.18. New Folder created with the default name

Chapter 5 Page 057-075.indd 65 3/24/2020 9:13:29 AM

66

Figure 5.19. Renaming the new Folder

Method II:
 In order to create a folder in the
d e s k t o p :
Step 1: In the Desktop, right click → New

→ Folder. (Figure 5.20 Shown the
procedure)

Step 2: A Folder appears with the default
name “New folder” and it will be
highlighted as shown in the Figure
5.22.

Step 3: Type the name you want and press
Enter Key.

Step 4: The name of the folder will change.

2. Create a Folder in My Documents
with your name using any one of the
methods discussed.

Workshop

5.11.1.2 Creating Files (Wordpad)
Wordpad is an in-built word processor
application in Windows OS to create and
manipulate text documents.
 In order to create files in wordpad
you need to follow the steps given below.
1. Click Start → All Programs →

Accessories → Wordpad or Run →
type Wordpad, click OK. Wordpad
window will be opened as shown in
Figure 5.22.

2. Type the contents in the workspace
and save the file using File → Save or
Ctrl + S.

3. Save As dialog box will be opened.
4. In the dialog box, select the location

where you want to save the file by
using look in drop down list box.

5. Type the name of the file in the file
name text box.

6. Click save button.

Figure 5.20. Creating a folder
in the desktop

3. Open the Wordpad application and
save it under a folder created with
your name in My Documents.

Workshop

Chapter 5 Page 057-075.indd 66 3/24/2020 9:13:29 AM

67

Figure 5.21 New folder icon on the dektop

5.11.2. Finding Files and Folders

 You can use the search box on the
Start menu to quickly search a particular
folder or file in the computer or in a
specific drive.

To find a file or folder:

1. Click the Start button, the search
box appears at the bottom of the
start menu.

2. Type the name of the file or the
folder you want to search. Even if
you give the part of the file or folder
name, it will display the list of files
or folders starting with the specified
name. (Figure 5.23)

3. The files or the folders with the
specified names will appear, if you

click that file, it will directly open
that file or the folder.

Figure 5.22. Wordpad - Word Processor
application

4. There is another option called “See
more results” which appears above
the search box.

5. If you click it, it will lead you to a
Search Results dialog box where you
can click and open that file or the
folder.

Searching Files or folders using
Computer icon

1. Click Computer Icon from desktop or
from Start menu.

2. The Computer disk drive screen will
appear and at the
top right corner of
that screen, there
is a search box
option. (Figure
5.24)

3. Type the name
of the file or the
folder you want
to search. Even
if you give the
part of the file or
folder name, it
will display the list
of files or folders
starting with the
specified name.

Figure 5.23. Finding
a File/Folder using

Start button

Chapter 5 Page 057-075.indd 67 3/24/2020 9:13:30 AM

68

Figure 5.24. Finding a File/Folder in the Computer icon screen

4. Just click and open that file or the
folder.

4. Find the file created in Workshop-3
using the above procedure

Workshop

5.11.3. Opening existing Files or Folders
The most common way of opening a file
or a Folder is to double click on it.

5.11.4. Renaming Files or Folders
There are number of ways to rename files

or folders. You can rename using the File
menu, left mouse button or right mouse
button.
Method 1
Using the FILE Menu
1. Select the File or Folder you wish to

Rename.
2. Click File→ Rename.
3. Type in the new name.
4. To finalise the renaming operation,

press Enter as in Figure 5.25.

Figure 5.25. Renaming File/Folders using
the File menu

Figure 5.26.Folder renamed
Figure 5.26, you can see that the folder is

renamed as SCERT-DPI from SCERT.
Method 2
Using the Right Mouse Button
1. Select the file or folder you wish to

rename.
2. Click the right mouse button over the

file or folder. (Figure 5.27)
3. Select Rename from the pop-up menu.

Chapter 5 Page 057-075.indd 68 3/24/2020 9:13:30 AM

69

4. Type in the new name.
5. To finalise the renaming operation,

press Enter.
6. Figure 5.29. Shows that the folder "New

Folder" is renamed as C++.

Figure 5.27. Renaming File/Folders using
the Right Mouse Button

Figure 5.28. New Folder is renamed as C++

Method 3
Using the Left Mouse Button
1. Select the file or folder you wish to rename.

2. Press F2 or click over the file or folder.
A surrounding rectangle will appear
around the name.

3. Type in the new name.
4. To finalise the renaming operation,

press Enter.

5. Rename the file created by you using
the File menu, left mouse button or
right mouse button.

Workshop

5.11.5. Moving/Copying Files and
Fo l d e r s
You can move your files or folders to other
areas using variety of methods.
Moving Files and Folders
Method I-CUT and PASTE
 To move a file or folder, first select the

file or folder and then choose one of
the following:

• Click on the Edit → Cut or Ctrl + X
Or right click → cut from the pop-up
menu.

• To move the file(s) or folder(s) in the
new location, navigate to the new
location and paste it using Click Edit
→ Paste from edit menu or Ctrl + V
using keyboard.

• Or Right click → Paste from the pop-
up menu. The file will be pasted in the
new location.

Method II – Drag and Drop
 In the disk drive window, we have two

panes called left and right panes. In
the left pane, the files or folders are
displayed like a tree structure. In the
right pane, the files inside the specific
folders in the left pane are displayed
with various options.

Chapter 5 Page 057-075.indd 69 3/24/2020 9:13:30 AM

70

• In the right pane of the Disk drive
window, select the file or folder you
want to move.

• Click and drag the selected file or folder
from the right pane, to the folder list
on the left pane.

• Release the mouse button when the
target folder is highlighted (active).

• Your file or folder will now appear in
the new area. Figrue 5.29 shows how
to move files or folders using drag and
drop method.

Figure 5.29.Moving the File/
Folder using drag and drop

Copying Files and Folders
 There are variety of ways to copy files

and folders:

Method I - COPY and PASTE
 To copy a file or folder, first select the

file or folder and then choose one of
the following:

• Click Edit → Copy or Ctrl + C or right
click→ Copy from the pop-up menu.

• To paste the file(s) or folder(s) in the
new location, navigate to the target
location then do one of the following:

• Click Edit → Paste or Ctrl + V.

• Or Right click → Paste from the
pop-up menu.

Method II – Drag and Drop

• In the RIGHT pane, select the file or
folder you want to copy.

• Click and drag the selected file and/or
folder to the folder list on the left, and
drop it where you want to copy the file
and/or folder.

• Your file(s) and folder(s) will now
appear in the new area.

Note
If you want to select multiple files
or folders, use Ctrl + Click.

5.11.6. Copying Files and Folders to
removable disk

 There are several methods of
transferring files to or from a removable
d i s k .

• Copy and Paste

• Send To

METHOD I - Copy and Paste

• Plug the USB flash drive directly into
an available USB port.

• If the USB flash drive or external drive
folder does NOT open automatically,
follow these steps:

• Click Start→Computer. (Figure 5.31)

Chapter 5 Page 057-075.indd 70 3/24/2020 9:13:30 AM

71

Figure 5.30. Selecting Computer
option from Start menu

• Double-click on the Removable Disk
associated with the USB flash drive.
(Figure 5.31)

Figure 5.31. Double Clicking
Removable Disk

• Navigate to the folders in your
computer containing files you want to
transfer.

Right-click on the file you want to copy,
then select Copy. (Figure 5.32)

Figure 5.32. Copying File using right click

• Return to the Removable Disk window,
right-click within the window, then
select Paste. (Figure 5.33)

Figure 5.33. Pasting File using right click

METHOD II - Send To

• Plug the USB flash drive directly into an
available USB port.

• Navigate to the folders in your computer
containing files you want to transfer.

• Right-click on the file you want to
transfer to your removable disk.

• Click Send To and select the Removable
Disk associated with the USB flash drive.
(Figure 5.34)

Chapter 5 Page 057-075.indd 71 3/24/2020 9:13:30 AM

72

6. Move the file created by you in My
Documents to Drive D:.

 Copy the file created by you from
drive D: to a removable disk.

Workshop

5.11.7. Deleting Files and Folders

• When you delete a file or folder, it will

move into the Recycle Bin.

To delete a file or folder:

Select the file or folder you wish to delete.

Removable disk

Figure 5.34. Copying File using Send to
option

1. Right- click the file or folder, select

Delete option from the po-pup menu or

Click File → Delete or press Delete key

from the keyboard.

2. The file will be deleted and moved to the

Recycle bin.

7. Delete the file created by you after
duplicating the same under My
Documents .

Workshop

Note
To permanently delete a file or folder
(i.e. to avoid sending a file or folder to
the Recycle Bin), hold down the SHIFT
key, and press delete on the keyboard.

Recycle Bin
 Recycle bin is a special folder to keep
the files or folders deleted by the user, which
means you still have an opportunity to recover
them. The user cannot access the files or folders
available in the Recycle bin without restoring
it. To restore file or folder from the Recycle Bin
• Open Recycle bin.
• Right click on a file or folder to be

restored and select Restore option from
the pop-up menu.

• To restore multiple files or folders, select
Restore all items.

• To delete all files in the Recycle bin, select
Empty the Recycle Bin.

5.12. Creating Shortcuts on the Desktop
 Shortcuts to your most often used
folders and files may be created and placed
on the Desktop to help automate your work.
• Select the file or folder that you wish to

have as a shortcut on the Desktop.
• Right click on the file or folder.
• Select Send to from the shortcut menu,

then select Desktop (create shortcut)
from the sub-menu.

• A shortcut for the file or folder will now
appear on your desktop and you can
open it from the desktop in the same
way as any other icon. Figure 5.36.

Chapter 5 Page 057-075.indd 72 3/24/2020 9:13:30 AM

73

Figure 5.35 Creating Shortcut
5.13. Shutting down or Logging off a Computer
Once you have closed all open applications, you can either log off your computer or shut down
the computer.

Log Off
To Log off/Shut down the computer:

Figure 5.36. Log off option

Chapter 5 Page 057-075.indd 73 3/24/2020 9:13:31 AM

74

• Click start → log off (click the arrow
next to Shut down) or Start →
Shutdown . (Figure 5.37.)

• If you have any open programs, then
you will be asked to close them or
windows will Force shut down, you
will lose any un-saved information if
you do this.

• Switch User: Switch to another user
account on the computer without
closing your open programs and
Windows processes.

• Log Off: Switch to another user
account on the computer after closing
all your open programs and Windows
processes.

• Lock: Lock the computer while you're
away from it.

• Restart: Reboot the computer. (This
option is often required as part of
installing new software or Windows
update.)

• Sleep: Puts the computer into a low-
power mode that retains all running
programs and open Windows in
computer memory for a super-quick
restart.

• Hibernate (found only on laptop
computers): Puts the computer into
a low-power mode after saving all
running programs and open Windows
on the machine's hard drive for a quick
restart.

Activity

Student Activity

1. Create files and folders using Windows
and Ubuntu and compare them.

2. Create a File/Folder in Windows 7,
Windows 8 and Windows 10. Prepare
a report on the differences you face
while creating the same.

Evaluation

SECTION – A
Choose the correct answer

1. From the options
given below, choose
the operations
managed by the
operating system.

 a. Memory
 b. Processes
 c. Disks and I/O devices
 d. all of the above
2. Which is the default folder for many

Windows Applications to save your
file?

 a. My Document
 b. My Pictures
 c. Documents and Settings
 d. My Computer

3. Under which of the following
OS, the option Shift + Delete –
permanently deletes a file or folder?

 a. Windows 7 b. MS-DOS
 c. Linux d. Android OS

4. What is the meaning of "Hibernate"
in Windows XP/Windows 7?

 a. Restart the Computer in safe
m o d e

 b. Restart the Computer in hibernate
m o d e

 c. Shutdown the Computer
terminating all the running
a p p l i c a t i o n s

 d. Shutdown the Computer without
closing the running applications

5. The shortcut key used to rename a
file in windows

 a. F2 b.F4
 c.F5 d. F6

Chapter 5 Page 057-075.indd 74 3/24/2020 9:13:31 AM

75

SECTION-B
Very Short Answers
1. what is known as Multitasking?
2. What are called standard icons
3. Differentiate Files and Folders.
4. Differentiate Save and save As

o p t i o n .
5. How will you Rename a File?

SECTION-C
Short Answers
1. What are the functions of Windows

Operating system.
2. Write a note on Recycle bin.

3. Write a note on the elements of a
w i n d o w.

4. Write the two ways to create a new
folder.

5. Differentiate copy and move
SECTION - D

Explain in detail

1. Explain the versions of Windows
Operating System.

2. Explain the different ways of
finding a file or Folder

3. Write the procedure to create
shortcut in Windows OS.

Operating System (OS)
System software that enables the harware to communicate
and operate with other software.

Mouse
Handheld hardware input device that control a cursor
in a GUI and can move and slect text, icons, files, and
folders.

Windows Familer operating system developed by Microsoft corpn.

Desktop Opening screen of windows operating system.

Icon Tiny image represent a command.

Folder Container of files

Linux An operating system.

Chapter 5 Page 057-075.indd 75 3/24/2020 9:13:31 AM

76

Specification and Abstraction

 A problem is specified by given input
data, desired output data and a relation
between the input and the output data. An
algorithm starts execution with the input
data, executes the statements, and finishes
execution with the output data. When it
finishes execution, the specified relation
between the input data and the output
data should be satisfied. Only then has the
algorithm solved the given problem.

G Polya was a Hungarian
mathematician. He made
fundamental contributions to
combinatorics, number theory,

numerical analysis and probability theory.
He is also noted for his work in heuristics
and mathematics education, identifying
systematic methods of problem solving
to further discovery and invention in
mathematics for students and teachers.
In "How to Solve It", he
suggests the following
steps when solving a
mathematical problem: 1.
Understand the problem.
2. Devise a plan. 3. Carry
out the plan. 4. Review
your work.

 An algorithm is a step by step sequence
of statements intended to solve a problem.
When executed with input data, it generates
a computational process, and ends with
output data, satisfying the specified relation
between the input data and the output data.

CHAPTER 6Unit II Algorithmic Problem
Solving

Learning Objectives
 After learning the concepts in this
chapter, the students will be able
• To understand the concept of

algorithmic problem solving.
• To apply the knowledge of algorithmic

technique in problem solving.
A number of processes performed in our
daily life follow the step-by-step execution
of a sequence of instructions. Getting ready
to school in the morning, drawing "kolams",
cooking a dish, adding two numbers are
examples of processes. Pro-cesses are
generated by executing algorithms. In this
chapter, we will see how algorithms are
specified and how elements of a process are
abstracted in algorithms.

6.1 Algorithms

 An algorithm is a sequence of
instructions to accomplish a task or solve a
problem. An instruction describes an action.
When the instructions are executed, a process
evolves, which accomplishes the intended
task or solves the given problem. We can
compare an algorithm to a recipe, and the
resulting process to cooking.
 We are interested in executing our
algorithms in a computer. A computer can
only execute instructions in a programming
language. Instructions of a computer are also
known as statements.Therefore, ultimately,
algorithms must be expressed using
statements of a programming language.

Chapter 6 Page 076-087.indd 76 3/24/2020 9:14:09 AM

77

Example 6.1. Add two numbers: To add
two numbers, we proceed by adding the
right most digits of the two numbers, then
the next right most digits together with
carry that resulted from the previous (right)
position, and so on. The computational
process for adding 2586 and 9237 is
illustrated in Table 6.1.

Step 5 4 3 2 1

Carry 1 0 1 1 -

Number 1 2 5 8 6

Number 2 9 2 3 7

Sum 1 1 8 2 3

Table 6.1: The process for adding two
numbers

6.2 Algorithmic Problems
 There are some principles and
techniques for constructing algorithms. We
usually say that a problem is algorithmic
in nature when its solution involves the
construction of an algorithm. Some types of
problems can be immediately recognized as
algorithmic.

Example 6.2. Consider the well-known
Goat, grass and wolf problem: A farmer
wishes to take a goat, a grass bundle and a
wolf across a river. However, his boat can take
only one of them at a time. So several trips are
necessary to across the river. Moreover, the
goat should not be left alone with the grass
(otherwise, the goat would eat the grass), and
the wolf should not be left alone with the goat
(otherwise, the wolf would eat the goat). How
can the farmer achieve the task? Initially, we
assume that all the four are at the same side of
the river, and finally, all the four must be in the
opposite side. The farmer must be in the boat
when crossing the river. A solution consists
of a sequence of instructions indicating who

or what should cross. Therefore, this is an
algorithmic problem. Instructions may be
like
Let the farmer cross with
the wolf.
or
Let the farmer cross alone.
 However, some algorithmic problems
do not require us to construct algorithms.
Instead, an algorithm is provided and we are
required to prove some of its properties.

Example 6.3. Consider The Chameleons
of Chromeland problem: On the island
of Chromeland there are three different
types of chameleons: red chameleons,
green chameleons, and blue chameleons.
Whenever two chameleons of different
colors meet, they both change color to the
third color. For which number of red, green
and blue chameleons it is possible to arrange
a series of meetings that results in all the
chameleons displaying the same color? This
is an algorithmic problem, because there is
an algorithm to arrange meetings between
chameleons. Using some properties of the
algorithm, we can find out for which initial
number of chameleons, the goal is possible.

6.3 Building Blocks of Algorithms
 We construct algorithms using basic
building blocks such as
• Data
• Variables
• Control flow
• Functions

6.3.1 Data
 Algorithms take input data,
process the data, and produce output data.
Computers provide instructions to perform
operations on data. For example, there are

Chapter 6 Page 076-087.indd 77 3/24/2020 9:14:09 AM

78

instructions for doing arithmetic operations
on numbers, such as add, subtract, multiply
and divide. There are different kinds of data
such as numbers and text.

6.3.2 Variables
 Variables are named boxes for
storing data. When we do operations
on data, we need to store the results in
variables. The data stored in a variable is
also known as the value of the variable. We
can store a value in a variable or change
the value of variable, using an assignment
statement.
 Computational processes in the
real-world have state. As a process evolves,
the state changes. How do we represent the
state of a process and the change of state,
in an algorithm? The state of a process
can be represented by a set of variables
in an algorithm. The state at any point
of execution is simply the values of the
variables at that point. As the values of the
variables are changed, the state changes.

Example 6.4. State: A traffic signal may
be in one of the three states: green, amber,
or red. The state is changed to allow a
smooth flow of traffic. The state may be
represented by a single variable signal
which can have one of the three values:
green, amber, or red.

6.3.3 Control flow
 An algorithm is a sequence of
statements. However, after executing
a statement, the next statement to be
executed need not be the next statement
in the algorithm. The statement to be
executed next may depend on the state of
the process. Thus, the order in which the
statements are executed may differ from
the order in which they are written in

the algorithm. This order of execution of
statements is known as the control flow.
 There are three important control
flow statements to alter the control flow
depending on the state.
• In sequential control flow, a sequence

of statements are executed one after
another in the same order as they are
written.

• In alternative control flow, a condition
of the state is tested, and if the condition
is true, one statement is executed; if
the condition is false, an alternative
statement is executed.

• In iterative control flow, a condition of
the state is tested, and if the condition
is true, a statement is executed. The
two steps of testing the condition and
executing the statement are repeated
until the condition becomes false.

6.3.4 Functions
 Algorithms can become very
complex. The variables of an algorithm
and dependencies among the variables
may be too many. Then, it is difficult
to build algorithms correctly. In such
situations, we break an algorithm into
parts, construct each part separately, and
then integrate the parts to the complete
algorithm.

 The parts of an algorithm are
known as functions. A function is like
a sub algorithm. It takes an input, and
produces an output, satisfying a desired
input output relation.

Example 6.5. Suppose we want to calculate
the surface area of a cylinder of radius r
and height h.

A = 2πr2 + 2πrh

Chapter 6 Page 076-087.indd 78 3/24/2020 9:14:09 AM

79

 We can identify two functions, one
for calculating the area of a circle and the
other for the circumference of the circle.
If we abstract the two functions as circle_
area(r) and circle_circumference(r), then
cylinder_area(r, h) can be solved as

cylinder_area (r,h) = 2 X circle_area (r) +
circle_circumference (r) X h

6.4 Algorithm Design Techniques

 There are a few basic principles and
techniques for designing algorithms.

1. Specification: The first step in problem
solving is to state the problem precisely.
A problem is specified in terms of the
input given and the output desired. The
specification must also state the properties
of the given input, and the relation
between the input and the output.

2. Abstraction: A problem can involve a
lot of details. Several of these details are
unnecessary for solving the problem.
Only a few details are essential. Ignoring
or hiding unnecessary details and
modeling an entity only by its essential
properties is known as abstraction.
For example, when we represent the
state of a process, we select only the
variables essential to the problem and
ignore inessential details.

3. Composition: An algorithm is
composed of assignment and control
flow statements. A control flow
statement tests a condition of the state
and, depending on the value of the
condition, decides the next statement
to be executed.

4. Decomposition: We divide the main
algorithm into functions. We construct
each function independently of the

main algorithm and other functions.
Finally, we construct the main
algorithm using the functions. When
we use the functions, it is enough to
know the specification of the function.
It is not necessary to know how the
function is implemented.

6.5 Specification

 To solve a problem, first we must
state the problem clearly and precisely. A
problem is specified by the given input and
the desired output. To design an algorithm
for solving a problem, we should know
the properties of the given input and the
properties of the desired output. The goal
of the algorithm is to establish the relation
between the input and the desired output.

Inputs

Algorithm

Outputs
Figure 6.1: Input-output relation

 An algorithm is specified by the
properties of the given input and the relation
between the input and the desired output. In
simple words, specification of an algorithm
is the desired input-output relation.

 The inputs and outputs are passed
between an algorithm and the user through
variables. The values of the variables when
the algorithm starts is known as the initial
state, and the values of the variables when
the algorithm finishes is known as the final
state.
 Let P be the required property of the
inputs and Q the property of the desired
outputs. Then the algorithm S is specified as

Chapter 6 Page 076-087.indd 79 3/24/2020 9:14:09 AM

80

1. algorithm_name (inputs)
2. -- inputs : P
3. -- outputs: Q
This specification means that if the algorithm
starts with inputs satisfying P, then it will
finish with the outputs satisfying Q.
 A double dash -- indicates that the
rest of the line is a comment. Comments
are statements which are used to annotate
a program for the human readers and not
executed by the computer. Comments at
crucial points of flow are useful, and even
necessary, to understand the algorithm. In
our algorithmic notation, we use double
dashes (—) to start a comment line. (In
C++, a double slash // indicates that the rest
of the line is a comment).
Example 6.6. Write the specification of
an algorithm to compute the quotient and
remainder after dividing an integer A by
another integer B. For example,

divide (22, 5) = 4, 2
divide (15, 3) = 5 , 0

 Let A and B be the input variables.
We will store the quotient in a variable q and
the remainder in a variable r. So q and r are
the output variables.

 What are the properties of the inputs
A and B?

1. A should be an integer. Remainder is
meaningful only for integer division, and

2. B should not be 0, since division by 0 is
not allowed.

 We will specify the properties of the
inputs as

— inputs: A is an integer and B ≠ 0

 What is the desired relation between
the inputs A and B, and the outputs q and r?

1. The two outputs q (quotient) and r
(remainder) should satisfy the property

 A = q X B + r, and
2. The remainder r should be less than the

divisor B,
 0 ≤ r < B
 Combining these requirements, we
will specify the desired input-output relation
as
— outputs: A = q X B + r and 0 < r < B.

The comment that starts with — inputs:
actually is the property of the given inputs.
The comment that starts with — outputs:
is the desired relation between the inputs
and the outputs. The specification of the
algorithm is

1. divide (A , B)
2. -- inputs: A is an integer and B ≠ 0
3. -- outputs : A = q X B + r and 0 ≤ r < B

Specification format: We can write the
specification in a standard three part format:

• The name of the algorithm and the
inputs.

• Input: the property of the inputs.
• Output: the desired input-output

relation.

 The first part is the name of the
algorithm and the inputs. The second part
is the property of the inputs. It is written
as a comment which starts with — inputs:
The third part is the desired input-output
relation. It is written as a comment which
starts with — outputs:. The input and
output can be written using English and
mathematical notation.

Example 6.7. Write the specification of an
algorithm for computing the square root of
a number.

Chapter 6 Page 076-087.indd 80 3/24/2020 9:14:09 AM

81

1. Let us name the algorithm square_root.
2. It takes the number as the input. Let

us name the input n. n should not be
negative.

3. It produces the square root of n as the
output. Let us name the output y. Then n
should be the square of y.

 Now the specification of the
algorithm is

square_root(n)

-- inputs: n is a real number, n ≥ 0.

-- outputs: y is a real number such that
y 2= n.

6.5.1 Specification as contract
 Specification of an algorithm
serves as a contract between the designer
of the algorithm and the users of the
algorithm, because it defines the rights and
responsibilities of the designer and the user.

 Ensuring that the inputs satisfy the
required properties is the responsibility
of the user, but the right of the designer.
The desired input-output relation is the
responsibility of the designer and the right
of the user. Importantly, if the user fails
to satisfy the properties of the inputs, the
designer is free from his obligation to satisfy
the desired input-output relation.

Right

User

Input - output
relationship

Responsibility

Algorithm (designer)

Property of
inputs

Responsibility Right

Figure 6.2: Input property and the input-
output relation as rights and responsibilities

Example 6.8. Consider the specification of
the algorithm square_root.

square_root(n)

-- inputs: n is a real number, n ≥ 0.

-- outputs : y is a real number such that
y2 = n.

 The algorithm designer can assume
that the given number is non-negative, and
construct the algorithm. The user can expect
the output to be the square root of the given
number.

 The output could be the negative
square root of the given number. The
specification did not commit that the output
is the positive square root. If the user passes
a negative number as the input, then the
output need not be the square root of the
number.

6.6 Abstraction

 To ride a bicycle, it is sufficient to
understand the functioning of the pedal,
handlebar, brakes and bell. As a rider, we
model a bicycle by these four features. A
bicycle has a lot more details, which the
rider can ignore. Those details are irrelevant
for the purpose of riding a bicycle.

 A problem can involve a lot of
details. Several of these details are irrelevant
for solving the problem. Only a few details
are essential. Abstraction is the process of
ignoring or hiding irrelevant details and
modeling a problem only by its essential
features. In our everyday life, we use
abstractions unconsciously to handle
complexity. Abstraction is the most effective
mental tool used for managing complexity.
If we do not abstract a problem adequately,
we may deal with unnecessary details and
complicate the solution.

Chapter 6 Page 076-087.indd 81 3/24/2020 9:14:09 AM

82

Example 6.9. A map is an abstraction of
the things we find on the ground. We do
not represent every detail on the ground.
The map-maker picks out the details that
we need to know. Different maps are drawn
for different purposes and so use different
abstractions, i.e., they hide or represent
different features. A road map is designed
for drivers. They do not usually worry
about hills so most hills are ignored on a
road map. A walker's map is not interested
in whether a road is a one-way street, so
such details are ignored.

Example 6.10. In medicine, different
specialists work with different abstractions
of human body. An orthopaedician works
with the abstraction of skeletal system, while
a gastroenterologist works with digestive
system. A physiotherapist abstracts the
human body by its muscular system.

 We use abstraction in a variety of
ways while constructing algorithms — in the
specification of problems, representing state
by variables, and decomposing an algorithm
to functions. An algorithm designer has to
be trained to recognize which features are
essential to solve the problem, and which
details are unnecessary. If we include
unnecessary details, it makes the problem
and its solution over-complicated.

 Specification abstracts a problem by
the properties of the inputs and the desired
input-output relation. We recognize the
properties essential for solving the problem,
and ignore the unnecessary details.

State: In algorithms, the state of a
computation is abstracted by a set of
variables.
Functions: When an algorithm is very
complex, we can decompose it into

functions and abstract each function by its
specification.

6.6.1 State
 State is a basic and important
abstraction. Computational processes have
state. A computational process starts with
an initial state. As actions are performed,
its state changes. It ends with a final state.
State of a process is abstracted by a set of
variables in the algorithm. The state at any
point of execution is simply the values of the
variables at that point.

Example 6.11. Chocolate Bars: A
rectangular chocolate bar is divided into
squares by horizontal and vertical grooves.
We wish to break the bar into individual
squares.
 To start with, we have the whole of
the bar as a single piece. A cut is made by
choosing a piece and breaking it along one
of its grooves. Thus a cut divides a piece into
two pieces. How many cuts are needed to
break the bar into its individual squares?

 In this example, we will abstract the
essential variables of the problem. We solve
the problem in Example 8.6.

Essential variables: The number of pieces
and the number of cuts are the essential
variables of the problem. We will represent
them by two variables, p and c, respectively.
Thus, the state of the process is abstracted by
two variables p and c.

Irrelevant details:

1. The problem could be cutting a chocolate
bar into individual pieces or cutting a
sheet of postage stamps into individual
stamps. It is irrelevant. The problem
is simply cutting a grid of squares into
individual squares.

Chapter 6 Page 076-087.indd 82 3/24/2020 9:14:10 AM

83

2. The sequence of cuts that have been made
and the shapes and sizes of the resulting
pieces are irrelevant too. From p and c,
we cannot reconstruct the sizes of the
individual pieces. But, that is irrelevant
to solving the problem.

Example 6.12. Consider Example 6.2, Goat,
grass and wolf problem. In this example,

we will write a specification of the problem.
We will solve it in Example 7.1. The problem
involves four individuals, and each is at one
of the two sides of the river. This means that
we can represent the state by four variables,
and each of them has one of the two values.
Let us name the variables as farmer, goat,
grass and wolf, and their possible values
L and R. A value of L means "at the left
side". A value of R means "at the right side".
Since the boat is always with the farmer, it
is not important to introduce a variable to
represent its position.

 In the initial state, all four variables
farmer, goat, grass, wolf have the value L.

farmer, goat, grass, wolf = L, L, L, L

 In the final state, all four variables
should have the value R.

farmer, goat, grass, wolf = R, R, R, R

The specification of the problem is

cross_river

-- inputs: farmer, goat, grass, wolf = L, L,
L, L

-- outputs: farmer, goat, grass, wolf = R, R,
R, R

subject to the two constraints that

1. the goat cannot be left alone with the
grass:

if goat = grass then farmer = goat

2. the goat cannot be left alone with the
wolf:

if goat = wolf then farmer = goat

6.6.2 Assignment statement
Variables are named boxes to store values.
Assignment statement is used to store a
value in a variable. It is written with the
variable on the left side of the assignment
operator and a value on the right side.

 variable := value

 When this assignment is executed,
the value on the right side is stored in the
variable on the left side. The assignment

 m := 2

stores value 2 in variable m.
m

2

 If the variable already has a value
stored in it, assignment changes its value to
the value on the right side. The old value of
the variable is lost.

 The right side of an assignment can
be an expression.
 variable := expression

 In this case, the expression is
evaluated and the value of the expression is
stored in the variable. If the variable exists
in the expression, the current value of the
variable is used in evaluating the expression,
and then the variable is updated. For
example, the assignment

 m := m + 3

Chapter 6 Page 076-087.indd 83 3/24/2020 9:14:10 AM

84

 evaluates the expression m + 3 using
the current value of m.
 m + 3
 = 2 + 3
 = 5

and stores the value 5 in the variable m.
m

5

 The two sides of an assignment
statement are separated by the symbol :=,
known as assignment operator, and read as
"becomes" or "is assigned". The assignment
statement
 v := e
is read as v "becomes" e. Note that assignment
operator is not equality operator1. The
meanings of v := e and v = e are different.
Assignment does not state a mathematical
equality of a variable, but changes the value
of a variable. The assignment m := m +
3 does not state that m is equal to m + 3.
Rather, it changes the value of the variable m
to the value of the expression m + 3.
 An assignment statement can
change the values of multiple variables
simultaneously. In that case, the number
of variables on the left side should match
the number of expressions on the right
side. For example, if we wish to assign to
three variables v1, v2 and v3, we need 3
expressions, say, el, e2, e3.
 vl, v2, v3 := el, e2 , e3

 The left side is a comma-separated
list of variables. The right side is a comma-
separated list of expressions. To execute

^Unfortunately, several programming languages,
including C++, use the symbol = as assignment
operator, and therefore, another symbol, == as
equality operator.

an assignment statement, first evaluate all
the expressions on the right side using the
current values of the variables, and then
store them in the corresponding variables
on the left side.

Example 6.13. What are the values of
variables m and n after the assignments in

line (1) and line (3)?

1. m, n := 2 , 5

2. -- m, n = ? , ?

3. m,n:=m+3,n-1

4. -- m, n = ? , ?

The assignment in line (1) stores 2 in variable
m, and 5 in variable n.

m n
2 5

The assignment in line (3) evaluates the
expressions m + 3 and n - 1 using the current
values of m and n as

 m + 3 , n - 1

 =2+3,5-1

 = 5,4

and stores the values 5 and 4 in the variables
m and n, respectively.

m n
5 4

1. m, n := 2,5
2. -- m, n = 2 , 5
3. m, n := m + 3, n - 1
4. -- m, n = 2 + 3, 5-1 = 5, 4

Values of the variables after the two
assignments are shown in in line (2) and
line(4).

Example 6.14. In Example 6.11, we
abstracted the state of the process by two

Chapter 6 Page 076-087.indd 84 3/24/2020 9:14:10 AM

85

variables p and c. The next step is to model
the process of cutting the chocolate bar.
When we make a single cut of a piece, the
number of pieces (p) and the number of cuts

(c) both increase by 1. We can model it by an
assignment statement.

 p, c := p + 1, c+1

Points to Remember:

which is read as p and c "become" p + 1 and
c + 1, respectively.
• A programming language provides

basic statements and a notation for
composing compound statements.

• An algorithm is a step-by-step sequence
of statements to solve a problem.

• As an algorithm is executed, a process
evolves which solves the problem.

• Algorithmic problem solving involves
construction of algorithms as well as
proving properties of algorithms.

• The specification of an algorithm
consists of the name of the algorithm
(together with its inputs), the input

property, and the desired input-output
relation.

• Specification of an algorithm is a
contract between the designer and
users of the algorithm.

• Abstraction is the process of hiding or
ignoring the details irrelevant to the
task so as to model a problem only by
its essential features.

• Specification abstracts a problem by the
essential variables of the problem.

• The values of the variables in an
algorithm define the state of the process.

• Assignment statement changes the
values of variables, and hence the state.

Evaluation

SECTION – A
Choose the correct answer
1. Which of the following activities is algorithmic in nature?

 (a) Assemble a bicycle. (b) Describe a bicycle.
 (c) Label the parts of a bicycle. (d) Explain how a bicycle works.

2. Which of the following activities is not algorithmic in nature?

 (a) Multiply two numbers. (b) Draw a kolam.
 (c) Walk in the park. (d) Swaping of two numbers.

3. Omitting details inessential to the task and representing only the essential
 features of the task is known as
 (a) specification (b) abstraction (c) composition (d) decomposition

4. Stating the input property and the input-output relation a problem is known
 (a) specification (b) statement (c) algorithm (d) definition

Chapter 6 Page 076-087.indd 85 3/24/2020 9:14:10 AM

86

5. Ensuring the input-output relation is
 (a) the responsibility of the algorithm and the right of the user.
 (b) the responsibility of the user and the right of the algorithm.
 (c) the responsibility of the algorithm but not the right of the user.
 (d) the responsibility of both the user and the algorithm.

6. If i = 5 before the assignment i := i-1 after the assignment, the value of i is

 (a) 5 (b) 4 (c) 3 (d) 2

7. If 0 < i before the assignment i := i-1 after the assignment, we can conclude that
 (a) 0 < i (b) 0 ≤ i (c) i = 0 (d) 0 ≥i

SECTION-B

Very Short Answers

1. Define an algorithm.

2. Distinguish between an algorithm and a process.

3. Initially,

 farmer, goat, grass, wolf = L, L, L, L

 and the farmer crosses the river with goat. Model the action with an assignment
statement.

4. Specify a function to find the minimum of two numbers.

5. If √2 = 1.414, and the square_root() function returns -1.414, does it violate the
following specification?

 -- square_root (x)
 -- inputs: x is a real number , x ≥ 0
 -- outputs: y is a real number such that y2=x

SECTION-C
Short Answers

1. When do you say that a problem is algorithmic in nature?
2. What is the format of the specification of an algorithm?
3. What is abstraction?
4. How is state represented in algorithms?
5. What is the form and meaning of assignment statement?
6. What is the difference between assignment operator and equality operator?

Chapter 6 Page 076-087.indd 86 3/24/2020 9:14:10 AM

87

SECTION - D

Explain in detail

1. Write the specification of an algorithm hypotenuse whose inputs are the lengths of the
two shorter sides of a right angled triangle, and the output is the length of the third side.

2. Suppose you want to solve the quadratic equation ax2 + bx + c = 0 by an algorithm.

 quadratic_solve (a, b, c)

 -- inputs : ?

 -- outputs: ?

 You intend to use the formula and you are prepared to handle only real number roots.
Write a suitable specification.

x =
 — b ± √b2 — 4ac

 2a

3. Exchange the contents: Given two glasses marked A and B. Glass A is full of apple
drink and glass B is full of grape drink. For exchanging the contents of glasses A and B,
represent the state by suitable variables, and write the specification of the algorithm.

Books

1. Roland Backhouse, Algorithmic Problem Solving, John Wiley & Sons Ltd, 2011.

2. Krysia Broda, Susan Eisenbach, Hessam Khoshnevisan, Steve Vickers, Reasoned
Programming, Prentice Hall, 1994

Chapter 6 Page 076-087.indd 87 3/24/2020 9:14:10 AM

88

Composition and Decomposition

 In Chapter 1, we saw that algorithms
are composed of statements. Statements can
be grouped into compound statements, giving
rise to a hierarchical structure of algorithms.
Decomposition is one of the elementary
problem-solving techniques.An algorithm
may be broken into parts, expressing only high
level details. Then, each part may be refined
into smaller parts, expressing finer details, or
each part may be abstracted as a function.

7.1 Notations for Algorithms

 We need a notation to represent
algorithms. There are mainly three different
notations for representing algorithms.
• A programming language is a notation

for expressing algorithms to be executed
by computers.

• Pseudo code is a notation similar to
programming languages. Algorithms
expressed in pseudo code are not
intended to be executed by computers,
but for communication among people.

• Flowchart is a diagrammatic notation
for representing algorithms. They give

a visual intuition of the flow of control,
when the algorithm is executed.

7.1.1 Programming language
 A programming
language is a notation for
expressing algorithms
so that a computer can
execute the algorithm.
An algorithm expressed
in a programming language is called a
program. C, C++ and Python are examples
of programming languages. Programming
language is formal. Programs must obey
the grammar of the programming language
exactly. Even punctuation symbols must be
exact. They do not allow the informal style of
natural languages such as English or Tamil.
There is a translator which translates the
program into instructions executable by the
computer. If our program has grammatical
errors, this translator will not be able to do
the translation.

7.1.2 Pseudo-code
 Pseudo code is a mix of programming-
language-like constructs and plain English.
This notation is not formal nor exact. It uses
the same building blocks as programs, such
as variables and control flow. But, it allows
the use of natural English for statements
and conditions. An algorithm expressed
as pseudo code is not for computers to
execute directly, but for human readers
to understand. Therefore, there is no need
to follow the rules of the grammar of a

CHAPTER 7Unit II Algorithmic Problem
Solving

Learning Objectives

 After learning the concepts in this
chapter, the students will be able
• To know the notations used in algorithmic

techniques.
• To understand Composition and

Decomposition in algorithmic techniques.

Chapter 7 Page 088-101.indd 88 3/24/2020 9:14:50 AM

89

programming language. However, even
pseudo code must be rigorous and correct.
Pseudo code is the most widely used
notation to represent algorithms.

7.1.3 Flowcharts
 Flowchart is a diagrammatic notation
for representing algorithms. They show the
control flow of algorithms using diagrams in a
visual manner. In flowcharts, rectangular boxes
represent simple statements, diamond-shaped
boxes represent conditions, and arrows describe
how the control flows during the execution of
the algorithm. A flowchart is a collection of
boxes containing statements and conditions
which are connected by arrows showing the
order in which the boxes are to be executed.
1. A statement is contained in a rectangular

box with a single outgoing arrow,which
points to the box to be executed next.

S

2. A condition is contained in a diamond-
shaped box with two outgoing arrows,
labeled true and false. The true arrow
points to the box to be executed next if
the condition is true, and the false arrow
points to the box to be executed next if the
condition is false.

C true

false

3. Parallelogram boxes represent inputs given
and outputs produced.

Inputs Outputs

4. Special boxes marked Start and the End are
used to indicate the start and the end of an
execution:

Start End

 The flowchart of an algorithm to
compute the quotient and remainder after
dividing an integer A by another integer B is
shown in Figure 7.1, illustrating the different
boxes such as input, output, condition, and
assignment, and the control flow between the
boxes. The algorithm is explained in Example
7.4.

Enter

A,B

q,r:=q+1,r-B

q,r:=0,A

r > B
true

false

r,q

Exit

Figure 7.1: Flowchart for integer division

Flowcharts also have disadvantages.
(1) Flowcharts are less compact
than representation of algorithms in
programming language or pseudo code.
(2) They obscure the basic hierarchical
structure of the algorithms. (3) Alternative
statements and loops are disciplined
control flow structures. Flowcharts do
not restrict us to disciplined control flow
structures.

Chapter 7 Page 088-101.indd 89 3/24/2020 9:14:50 AM

90

7.2 Composition

A statement is a phrase that commands
the computer to do an action. We have
already seen assignment statement. It is
a simple statement, used to change the
values of variables. Statements may be
composed of other statements, leading
to hierarchical structure of algorithms.
Statements composed of other statements
are known as compound statements.
 Control flow statements are
compound statements. They are used
to alter the control flow of the process
depending on the state of the process.
There are three important control flow
statements:
• Sequential
• Alternative
• Iterative

 When a control flow statement is
executed, the state of the process is tested,
and depending on the result, a statement
is selected for execution.

7.2.1 Sequential statement

 A sequential statement is composed
of a sequence of statements. The statements
in the sequence are executed one after
another, in the same order as they are
written in the algorithm, and the control
flow is said to be sequential. Let S1 and
S2 be statements. A sequential statement
composed of S1 and S2 is written as

 S1
 S2

In order to execute the sequential
statement, first do S1 and then do S2.
 The sequential statement given
above can be represented in a flowchart as

shown in in Figure 7.2. The arrow from
S1 to S2 indicates that S1 is executed, and
after that, S2 is executed.

S1

S2

Figure 7.2: Sequential control flow

 Let the input property be P, and the
input-output relation be Q, for a problem.
If statement S solves the problem, it is
written as
1. -- P
2. S
3. -- Q

If we decompose the problem into two
components, we need to compose S as a
sequence of two statements S1 and S2 such
that the input-output relation of S1, say R,
is the input property of S2.

1. -- P
2. S1
3. -- R
4. S2
5. -- Q

Example 7.1. Let us solve the Farmer,
Goat, Grass, and Wolf problem of Example
6.12. We decided to represent the state
of the process by four variables farmer,
goat, grass, and wolf, representing the
sides of the farmer, goat, grass and wolf,
respectively. In the initial state, all four
variables have the value L (Left side). In
the final state, all four variables should
have the value R (Right side). The goal is
to construct a statement S so as to move
from the initial state to the final state.

Chapter 7 Page 088-101.indd 90 3/24/2020 9:14:50 AM

91

1. -- farmer, goat, grass, wolf = L, L, L,
L

2. S
3. -- farmer , goat , grass , wolf = R, R,

R, R
 We have to compose S as a sequence
of assignment statements such that in
none of the intermediate states
1. goat and wolf have the same value but

farmer has the opposite value, or
2. goat and grass have the same value but

farmer has the opposite value.Subject
to these constraints, a sequence of
assignments and the state after each
assignment are shown in Figure 7.3.

1. -- farmer, goat, grass, wolf = L, L, L, L

2. farmer, goat := R, R

3. -- farmer , goat , grass , wolf = R, R, L, L

4. farmer := L

5. farmer, goat, grass, wolf = L, R, L, L

6. farmer, grass := R, R

7. -- farmer , goat , grass , wolf = R, R, R, L

8. farmer, goat := L, L

9. -- farmer, goat, grass, wolf = L, L, R, L

10. farmer, wolf := R, R

11. -- farmer , goat , grass , wolf = R, L, R, R

12. farmer : = L

13. -- farmer , goat , grass , wolf = L, L, R, R

14. farmer , goat : = R, R

15. -- farmer , goat , grass , wolf = R, R, R, R

Figure 7.3: Sequence of assignments for
goat, grass and wolf problem

 Other than lines (1) and (15), in
line (7), goat and grass have the same
value, but farmer also has the same value
as they. In line (9), goat and wolf have the

same value, but farmer also has the same
value as they. Thus, the sequence has
achieved the goal state, without violating
the constraints.

7.2.2 Alternative statement
 A condition is a phrase that
describes a test of the state. If C is a
condition and both

S1 and S2 are statements, then

 if C
 S1
 else
 S2

is a statement, called an alternative
statement, that describes the following
action:

1. Test whether C is true or false.

2. If C is true, then do S1; otherwise do
S2.

In pseudo code, the two alternatives S1
and S2 are indicated by indenting them
from the keywords if and else, respectively.
Alternative control flow is depicted in the
flowchart of Figure 2.4. Condition C has
two outgoing arrows, labeled true and false.
The true arrow points to the S1 box. The
false arrow points to the S2 box. Out going
arrows of S1 and S2 point to the same box,
the box after the alternative statement.

C S1true

false

S2

Figure 7.4: Alternative control flow

Chapter 7 Page 088-101.indd 91 3/24/2020 9:14:50 AM

92

Conditional statement: Sometimes we
need to execute a statement only if a
condition is true and do nothing if the
condition is false. This is equivalent to the
alternative statement in which the else-
clause is empty. This variant of alternative
statement is called a conditional statement.
If C is a condition and S is a statement,
then

 if C
 S

is a statement, called a conditional
statement, that describes the following
action:
1. Test whether C is true or false.
2. If C is true then do S; otherwise do

nothing.
The conditional control flow is depicted
in the flowchart of Figure 2.5.

C Strue

false

Figure 7.5: Conditional control flow

Example 7.2. Minimum of two numbers:
Given two numbers a and b, we want to
find the minimum of the two using the
alternative statement. Let us store the
minimum in a variable named result. Let
a ↓ b denote the minimum of a and b (for
instance, 4 ↓ 2 = 2, —5 ↓ 6 = -5). Then,
the specification of algorithm minimum is

 minimum(a, b)
 -- input s : a , b
 -- outputs: result = a ↓ b
Algorithm minimum can be defined as

1. minimum(a, b)
2. -- a, b
3. if a < b
4. result : = a
5. else
6. result = b
7. -- result = a ↓ b

7.2.3 Case analysis

 Alternative statement analyses the
problem into two cases. Case analysis
statement generalizes it to multiple cases.
Case analysis splits the problem into an
exhaustive set of disjoint cases. For each
case, the problem is solved independently.
If C1, C2, and C3 are conditions, and S1,
S2, S3 and S4 are statements, a 4-case
analysis statement has the form,

1. case C1
2. S1
3. case C2
4. S2
5. case C3
6. S3
7. else
8. S4

 The conditions C1, C2, and C3 are
evaluated in turn. For the first condition
that evaluates to true, the corresponding
statement is executed, and the case analysis
statement ends. If none of the conditions
evaluates to true, then the default case S4
is executed.

1. The cases are exhaustive: at least one
of the cases is true. If all conditions are
false, the default case is true.

2. The cases are disjoint: only one of the
cases is true. Though it is possible for

Chapter 7 Page 088-101.indd 92 3/24/2020 9:14:50 AM

93

more than one condition to be true, the
case analysis always executes only one
case, the first one that is true. If the three
conditions are disjoint, then the four
cases are (1) C1, (2) C2, (3) C3, (4) (not
C1) and (not C2) and (not C3).

Example 7.3. We want an algorithm that
compares two numbers and produces the
result as

compare (a, b) =
1-
0
1

if a < b
if a = b
if a > b

We can split the state into an exhaustive
set of 3 disjoint cases: a < b, a = b, and a>
b. Then we can define compare() using a
case analysis.
1. compare(a, b)
2. case a < b
3. result := -1
4. case a = b
5. result := 0
6. else -- a > b
7. result : = 1

7.2.4 Iterative statement
 An iterative process executes
the same action repeatedly, subject to a
condition C. If C is a condition and S is a
statement, then
 while C
 S
is a statement, called an iterative statement,
that describes the following action:
1. Test whether C is true or false.
2. If C is true, then do S and go back to step

1; otherwise do nothing.
The iterative statement is commonly
known as a loop. These two steps, testing

{

C and executing S, are repeated until C
becomes false. When C becomes false, the
loop ends, and the control flows to the
statement next to the iterative statement.
The condition C and the statement S
are called the loop condition and the
loop body, respectively. Testing the loop
condition and executing the loop body
once is called an iteration. not C is known
as the termination condition.
 Iterative control flow is depicted in
the flowchart of Figure 7.6. Condition C
has two outgoing arrows, true and false.
The true arrow points to S box. If C is true,
S box is executed and control flows back
to C box. The false arrow points to the box
after the iterative statement (dotted box).
If C is false, the loop ends and the control
flows to the next box after the loop.

C Strue

false

Figure 7.6: Iterative control flow

Example 7.4. Construct an iterative
algorithm to compute the quotient and
remainder after dividing an integer A by
another integer B.
 We formulated the specification of
the algorithm in Example 6.6 as
divide (A , B)
-- inputs: A is an integer and B ≠ 0
-- outputs : q and r such that A = q X B

+ r and
-- 0 ≤ r < B

 Now we can construct an iterative
algorithm that satisfies the specification.

Chapter 7 Page 088-101.indd 93 3/24/2020 9:14:50 AM

94

 divide (A , B)
-- inputs: A is an integer and B ≠ 0
-- outputs : q and r such that A = q X B

+ r and
-- 0 < r < B
 q, r : = 0, A
 while r ≥ B
 q, r := q + 1, r - B

 The algorithm is presented as a
flowchart in Figure 7.1.

 We can execute the algorithm step-
by-step for a test input, say, (A, B) = (22, 5).
Each row of Table 7.1 shows one iteration
— the evaluation of the expressions and
the values of the variables at the end of an
iteration. Note that the evaluation of the
expression uses the values of the variables
from the previous row. Output variables q
and r change their values in each iteration.
Input variables A and B do not change
their values. Iteration 0 shows the values
just before the loop starts. At the end of
iteration 4, condition (r ≥ B) = (2 ≥ 5) is
false, and hence the loop ends with (q, r)
= (4, 2).

iteration q q+1 r r-B A B
0 0 22 22 5
1 1 0+1 17 22-5
2 2 1 + 1 12 17-5
3 3 2+1 7 12-5
4 4 3+1 2 7-5

Table 7.1: Step by step execution of divide
(22, 5)

Example 7.5. In the Chameleons of
Chromeland problem of Example 1.3,
suppose two types of chameleons are equal
in number. Construct an algorithm that
arranges meetings between these two types

so that they change their color to the third
type. In the end, all should display the same
color.

 Let us represent the number of
chameleons of each type by variables a, b
and c, and their initial values by A, B and C,
respectively. Let a = b be the input property.
The input-output relation is a = b = 0 and
c = A+B+C. Let us name the algorithm
monochromatize. The algorithm can be
specified as

 monochromatize(a, b, c)

 -- inputs: a=A, b=B, c=C, a=b

 -- outputs : a = b = 0 , c = A+B+C

 In each iterative step, two chameleons
of the two types (equal in number) meet
and change their colors to the third one. For
example, if A, B, C = 4, 4, 6, then the series
of meetings will result in

iteration a b c
0 4 4 6
1 3 3 8
2 2 2 10
3 1 1 12
4 0 0 14

Table 7.2: Series of meetings between two
types of chameleons equal in number.

In each meeting, a and b each decreases by 1, and
c increases by 2. The solution can be expressed
as an iterative algorithm.

monochromatize(a, b, c)

 -- inputs: a=A, b=B, c=C, a=b

 -- outputs: a = b = 0, c = A+B+C

 while a > 0

 a, b, c := a-1, b-1, c+2

The algorithm is depicted in the flowchart of
Figure 7.7.

Chapter 7 Page 088-101.indd 94 3/24/2020 9:14:50 AM

95

a,b,c

a, b, c,: = a-1, b-1, c+2a > 0
True

False
a= b = 0, c = A + B + C

a=b, a=A, b=B, c=C

a,b,c

Figure 7.7: Algorithm monochromatize

7.3 Decomposition

 Problem decomposition is one of the
elementary problem-solving techniques.
It involves breaking down a problem into
smaller and more manageable problems,
and combining the solutions of the smaller
problems to solve the original problem.
Often, problems have structure. We can
exploit the structure of the problem and
break it into smaller problems. Then, the
smaller problems can be further broken until
they become sufficiently small to be solved
by other simpler means. Their solutions
are then combined together to construct a
solution to the original problem.

7.3.1 Refinement
 After decomposing a problem into
smaller subproblems, the next step is either
to refine the subproblem or to abstract the
subproblem.
1. Each subproblem can be expanded into

more detailed steps. Each step can be
further expanded to still finer steps, and
so on. This is known as refinement.

2. We can also abstract the subproblem.
We specify each subproblem by its input
property and the input-output relation.
While solving the main problem, we
only need to know the specification of
the subproblems. We do not need to

know how the subproblems are solved.

Example 7.6. Consider a school goer's action
in the morning. The action can be written as

1 Get ready for school

 We can decompose this action into
smaller, more manageable action steps
which she takes in sequence:

1 Eat breakfast

2 Put on clothes

3 Leave home

 We have refined one action into a
detailed sequence of actions. However, each
of these actions can be expanded into a
sequence of actions at a more detailed level,
and this expansion can be repeated. The
action "Eat breakfast" can be expanded as

1 -- Eat breakfast

2 Eat idlis

3 Eat eggs

4 Eat bananas

 The action "Put on clothes" can be
expanded as

1 -- Put on clothes

2 Put on blue dress

3 Put on socks and shoes

4 Wear ID card

and "Leave home" expanded as

1 -- Leave home

2 Take the bicycle out

3 Ride the bicycle away

Thus, the entire action of "Get ready for
school" has been refined as
1 -- Eat breakfast
2 Eat idlis
3 Eat eggs
4 Eat bananas

Chapter 7 Page 088-101.indd 95 3/24/2020 9:14:50 AM

96

5
6 -- Put on clothes
7 Put on blue dress
8 Put on socks and shoes
9 Wear ID card
10
11 -- Leave home
12 Take the bicycle out
13 Ride the bicycle away
 Refinement is not always a sequence
of actions. What the student does may
depend upon the environment. How she
eats breakfast depends upon how hungry
she is and what is on the table; what clothes
she puts on depends upon the day of the
week. We can refine the behaviour which
depends on environment, using conditional
and iterative statements.
1 -- Eat breakfast
2 if hungry and idlis on the table
3 Eat idlis
4 if hungry and eggs on the table
5 Eat eggs

6 if hungry and bananas on the table
7 Eat bananas
8
8 -- Put on clothes
10 if Wednesday
11 Put on blue dress
12 else
13 Put on white dress
14 Put on socks and shoes
15 Wear the ID card
16
17 -- Leave home
18 Take the bicycle out
19 Ride the bicycle away
The action "Eat idlis" can be further refined
as an iterative action:
1 -- Eat idlis
2 Put idlis on the plate
3 Add chutney
4 while idlis in plate
5 Eat a bite of idli
How "Get ready for school" is refined in
successive levels is illustrated in Figure 2.8.

Gross Detailed More detailed
Eat breakfast

Put on clothes

Leave home

Eat idlis

Eat eggs

Eat bananas

Put on blue dress

Put on socks and shoes

Wear ID card

Take the bicycle out

Ride the bicycle away

Figure 7.8: Refinement at various
levels of details

Put idlis on plate

Add chutney

Eat a bite of idli

Eat a bite of idli

Eat a bite of idli

Chapter 7 Page 088-101.indd 96 3/24/2020 9:14:50 AM

97

The action "Eat breakfast" is depicted in a
flowchart shown in Figure 2.9.

Enter

Put idlis
on plate

hungry
and

idlis on
table

true

false

Exit

Add
chutney

Idli in
plate?

Eat a bite
of idli

false

false

Eat
bananas

Eat eggs

true

false

true

true

hungry
and

eggs on
table

hungry
and

banabas
on table

Figure 7.9: Flowchart for Eat breakfast

Note that the flowchart does not show the
hierarchical structure of refinement.

7.3.2 Functions
 After an algorithmic problem is
decomposed into subproblems, we can abstract
the subproblems as functions. A function is
like a sub-algorithm. Similar to an algorithm,
a function is specified by the input property,
and the desired input-output relation.

Main
algorithm

Function
(sub-

algorithm)outputs

inputs

Figure 7.10: Function definition

 To use a function in the main
algorithm, the user need to know only the
specification of the function — the function
name, the input property, and the input-
output relation. The user must ensure that
the inputs passed to the function will satisfy
the specified property and can assume
that the outputs from the function satisfy
the input-output relation. Thus, users of
the function need only to know what the
function does, and not how it is done by
the function. The function can be used a a
"black box" in solving other problems.

 Ultimately, someone implements the
function using an algorithm. However, users
of the function need not know about the
algorithm used to implement the function.
It is hidden from the users. There is no need
for the users to know how the function is
implemented in order to use it.

 An algorithm used to implement a
function may maintain its own variables.
These variables are local to the function in the
sense that they are not visible to the user of
the function. Consequently, the user has fewer
variables to maintain in the main algorithm,
reducing the clutter of the main algorithm.

Example 7.7. Consider the problem of
testing whether a triangle is right-angled,
given its three sides a, b, c, where c is the
longest side. The triangle is right-angled, if
 c2 = a2 + b2

 We can identify a subproblem of
squaring a number. Suppose we have a
function square(), specified as

square(y)

-- inputs : y

-- outputs : y2

Chapter 7 Page 088-101.indd 97 3/24/2020 9:14:50 AM

98

 we can use this function three times
to test whether a triangle is right-angled.
square() is a "black box" — we need not know
how the function computes the square. We
only need to know its specification.

y

Square

y2

Figure 7.11: square function

Points to Remember

• Compound statements are composed
of sequential, alternative and iterative
control flow statements.

• The value of a condition is true or
false, depending on the values of the
variables.

• Alternative statement selects and
executes exactly one of the two
statements,depending on the value of
the condition.

• Conditional statement is executed only
if the condition is true. Otherwise,
nothing is done.

• Iterative statement repeatedly evaluates
a condition and executes a statement
as long as the condition is true.

• Programming language, pseudo
code, and flowchart are notations for
expressing algorithms.

• Decomposition breaks down a
problem into smaller subproblems and
combine their solutions to solve the
original problem.

• A function is an abstraction of a
subproblem, and specified by its input
property, and its input-output relation.

• Users of function need to know only
what the function does, and not how
it is done.

• In refinement, starting from high level,
each statement is repeatedly expanded
into more detailed statements in the
subsequent levels.

Evaluation

SECTION – A
Choose the correct answer
1. Suppose u, v = 10 ,5 before the assignment. What are the values of u and v after the

sequence of assignments?

 1 u := v

 2 v := u

1 right_angled(a, b, c)
2 -- inputs: c ≥ a, c ≥ b
3 -- outputs: result = true if c2 = a2 + b2;
4 -- result = false , otherwise
5 if square (c) = square (a) + square (b)
6 result := true
7 else
8 result := false

Chapter 7 Page 088-101.indd 98 3/24/2020 9:14:50 AM

99

 (a) u, v = 5 ,5 (c) u, v = 10 ,5
 (b) u, v = 5 ,10 (d) u, v = 10 ,10

2. Which of the following properties is true after the assignment (at line 3?

 1 --i, j = 0, 0
 2 i, j := i+1, j-1
 3 -- ?
 (a) i+j >0 (b) i+j < 0 (c) i+j =0 (d) i = j

3. If C1 is false and C2 is true, the compound statement

 1 if C1
 2 S1
 3 else
 4 if C2
 5 S2
 6 else
 7 S3
 executes
 (a) S1 (b) S2 (c) S3 (d) none

4. If C is false just before the loop, the control flows through

 1 S1
 2 while C
 3 S2
 4 S3
 (a) S1 ; S3 (b) S1 ; S2 ; S3
 (c)S1 ; S2 ; S2 ; S3 (d) S1 ; S2 ; S2 ; S2 ; S3
5. If C is true, S1 is executed in both the flowcharts, but S2 is executed in

C S1true

false

S2

C S1true

false

S2

 (1) (2)

 (a) (1) only (b) (2) only
 (c) both (1) and (2) (d) neither (1) nor (2)

Chapter 7 Page 088-101.indd 99 3/24/2020 9:14:50 AM

100

6. How many times the loop is iterated?

 i := 0

 while i ≠ 5

 i := i + 1

 (a) 4 (b) 5 (c) 6 (d) 0
SECTION-B

Very Short Answers

1. Distinguish between a condition and a statement.

2. Draw a flowchart for conditional statement.

3. Both conditional statement and iterative statement have a condition and a

 statement. How do they differ?

4. What is the difference between an algorithm and a program?

5. Why is function an abstraction?

6. How do we refine a statement?
SECTION-C

Short Answers

1. For the given two flowcharts write the pseudo code.

C S1true

false

S2

C S1true

false

S2

2. If C is false in line 2, trace the control flow in this algorithm.

 1 S1

 2 -- C is false

 3 if C

 4 S2

 5 else

 6 S3

 7 S4

Chapter 7 Page 088-101.indd 100 3/24/2020 9:14:51 AM

101

3. What is case analysis?

4. Draw a flowchart for -3case analysis using alternative statements.

5. Define a function to double a number in two different ways: (1) n + n, (2) 2 x n
SECTION - D

Explain in detail

1. Exchange the contents: Given two glasses marked A and B. Glass A is full of apple drink
and glass B is full of grape drink. Write the specification for exchanging the contents of
glasses A and B, and write a sequence of assignments to satisfy the specification.

2. Circulate the contents: Write the specification and construct an algorithm to circulate the
contents of the variables A, B and C as shown below: The arrows indicate that B gets the
value of A, C gets the value of B and A gets the value of C.

 A B C

3. Decanting problem. You are given three bottles of capacities 5 ,8, and 3 litres. The 8L bottle
is filled with oil, while the other two are empty. Divide the oil in 8L bottle into two equal
quantities. Represent the state of the process by appropriate variables. What are the initial
and final states of the process? Model the decanting of oil from one bottle to another by
assignment. Write a sequence of assignments to achieve the final state.

4. Trace the step-by-step execution of the algorithm for factorial(4).

 factorial(n)

 -- inputs : n is an integer , n ≥ 0

 -- outputs : f = n!

 f, i := 1 ,1

 while i ≤ n

 f, i := f × i, i+1

Chapter 7 Page 088-101.indd 101 3/24/2020 9:14:51 AM

102

 There are several problems which can
be solved by doing the same action repeatedly.
Both iteration and recursion are algorithm
design techniques to execute the same action
repeatedly. What is the use of repeating the
same action again and again? Even though the
action is the same, the state in which the action
is executed is not the same. Each time we
execute the action, the state changes. Therefore,
the same action is repeatedly executed, but
in different states. The state changes in such a
way that the process progresses to achieve the
desired input-output relation.

Iteration: In iteration, the loop body is
repeatedly executed as long as the loop condition
is true. Each time the loop body is executed,
the variables are updated. However, there is
also a property of the variables which remains
unchanged by the execution of the loop body.
This unchanging property is called the loop
invariant. Loop invariant is the key to construct
and to reason about iterative algorithms.

Recursion: Recursion is another algorithm
design technique, closely related to iteration,
but more powerful.Using recursion, we solve

a problem with a given input, by solving the
same problem with a part of the input, and
constructing a solution to the original problem
from the solution to the partial input.

8.1 Invariants

Example 8.1. Suppose the following
assignment is executed with (u, v) =
(20,15). We can annotate before and after
the assignment.

 -- before: u, v = 20, 15

 u, v :=u+5,v-5

 -- after: u, v = 25, 10

 After assignment (u, v) = (25, 10).
But what do you observe about the value
of the function u + v?

Iteration and recursion

CHAPTER 8Unit II Algorithmic Problem
Solving

Learning Objectives

 After learning the
concepts in this chapter, the
students will be able
• To know the concepts of

variants and invariants
used in algorithmic techniques.

• Apply algorithmic techniques in
iteration and recursion process.

E W Dijkstra was one of the most
influential pioneers of Computing
Science. He made fundamental
contributions in diverse areas such

as programming language design, operating
systems, and program design. He coined the
phrase "structured programming" which
helped lay the foundations for the discipline
of software engineering. In 1972, he was
awarded ACM Turing Award, considered
the highest distinction in
computer science. Dijkstra
is attributed to have said
"Computer science is no
more about computers
than astronomy is about
telescopes."

Chapter 8 Page 102-114.indd 102 3/24/2020 9:15:11 AM

103

 before: u + v = 20 + 15 = 35

 after: u + v = 25 + 10 = 35

 The assignment has not changed
the value of u + v. We say that u + v is
an invariant of the assignment. We can
annotate before and after the assignment
with the invariant expression.

 -- before: u + v = 35

 u, v : = u + 5, v - 5

 -- after : u + v = 35

 We can say, u + v is an invariant: it
is 35 before and after. Or we can say u +
v =35 is an invariant: it is true before and
after.

Example 8.2. If we execute the following
assignment with (p, c = 10, 9), after the
assignment, (p, c) = (11, 10).

 -- before : p, c = 10 , 9

 p, c := p + 1, c+1

 -- after: p, c = 11 , 10

Can you discover an invariant? What is
the value of p - c before and after?

 before: p — c = 10 — 9 = 1

 after: p — c = 11 — 10 = 1

We find that p - c = 1 is an invariant.

 In general, if an expression of the
variables has the same value before and
after an assignment, it is an invariant of the
assignment. Let P(u, v) be an expression
involving variables u and v. P(u, v)[u, v:= el,
e2] is obtained from P(u, v) by replacing u
by el and v by e2 simultaneously. P(u, v) is
an invariant of assignment u, v := el, e2 if

 P(u,v) [u,v := el, e2] = P(u,v)

Example 8.3. Show that p - c is an invariant
of the assignment

 p, c := p + 1, c + 1

Let P(p, c) = p - c. Then

 P (p, c) [p, c := p + 1, c + l]

 = p — c [p, c := p + 1, c + l]

 = (p + 1) — (c + 1)

 = p — c

 = P(P , c)

Since (p - c)[p, c := p+l, c+l] = p - c, p - c
is an invariant of the assignment
 p, c := p + 1, c + 1.

Example 8.4. Consider two variables m
and n under the assignment

 m, n := m + 3, n - 1

Is the expression m + 3n an invariant?

 Let P(m, n) = m + 3n. Then

 P(m, n) [m, n := m + 3, n — l]

 = m + 3n [m, n := m + 3, n — l]

 = (m + 3) + 3(n — l)

 = m + 3 + 3n — 3

 = m + 3n

 = P(m, n)

Since (m + 3n) [m, n : = m + 3, n -
1] = m + 3n, m + 3n is an invariant of the
assignment m, n := m + 3, n - l.

8.2 Loop invariant

 In a loop, if L is an invariant of the
loop body B, then L is known as a loop
invariant.

 while C

 -- L

 B

 -- L

Chapter 8 Page 102-114.indd 103 3/24/2020 9:15:11 AM

104

 The loop invariant is true before
the loop body and after the loop body,
each time. Since L is true at the start of
the first iteration, L is true at the start of
the loop also (just before the loop). Since
L is true at the end of the last iteration, L
is true when the loop ends also (just after
the loop). Thus, if L is a loop variant, then
it is true at four important points in the
algorithm, as annotated in the algorithm
and shown in Figure 3.1.

1. at the start of the loop (just before the
loop)

2. at the start of each iteration (before
loop body)

3. at the end of each iteration (after loop
body)

4. at the end of the loop (just after the
loop)

1. -- L, start of loop
 while
 C
2. -- L, start of iteration
 B
3. -- L, end of iteration
4. -- L, end of loop

inputs

3 end of iteration

C

2 start of iteration

1 start of loop

outputs

L

L

L 4 end of loop

B
L

Figure 8.1: The points where the loop
invariant is true

To construct a loop,

1. Establish the loop invariant at the start
of the loop.

2. The loop body should update the
variables, so as to progress toward the
end, and maintain the loop invariant,
at the same time.

3. When the loop ends, the termination
condition and the loop invariant should
establish the input-output relation.

8.3 Invariants — Examples

 The loop invariant is true in four
crucial points in a loop. Using the loop
invariant, we can construct the loop
and reason about the properties of the
variables at these points.

Example 8.5. Design an iterative algorithm
to compute an. Let us name the algorithm
power(a, n). For example,
 power(10, 4) = 10000
 power (5, 3) = 125
 power (2, 5) = 32

 Algorithm power(a, n) computes an
by multiplying a cumulatively n times.

{an = ax ax ... x a

n times

 The specification and the loop
invariant are shown as comments.
 power (a, n)
 -- inputs: n is a positive integer
 -- outputs: p = an

 p, i := 1, 0
 while i ≠ n
 -- loop invariant: p = ai

 p, i :=p X a, i+1

Chapter 8 Page 102-114.indd 104 3/24/2020 9:15:11 AM

105

 The step by step execution of power
(2, 5) is shown in Table 8.1. Each row
shows the values of the two variables p and
i at the end of an iteration, and how they
are calculated. We see that p = ai is true at
the start of the loop, and remains true in
each row. Therefore, it is a loop invariant.

iteration p p x a i i+1 ai

0 1 0 20

1 2 1x2 1 0 + 1 21

2 4 2x2 2 1 + 1 22

3 8 4x2 3 2 + 1 23

4 16 8x2 4 3 + 1 24

5 32 16x2 5 4+1 25

Table 8.1: Trace of power (2, 5)

 When the loop ends, p = a1 is
still true, but i = 5. Therefore, p = a5. In
general, when the loop ends, p = an. Thus,
we have verified that power(a, n) satisfies
its specification.

Example 8.6. Recall the Chocolate bar
problem of Example 6.11. How many
cuts are needed to break the bar into its
individual squares?

 We decided to represent the
number of pieces and the number of
cuts by variables p and c respectively.
Whenever a cut is made, the number of
cuts increases by one and the number of
pieces also increases by one. We decided
to model it by an assignment.
 p, c := p + 1, c+1
 The process of cutting the bar can
be modeled by a loop. We start with one
piece and zero cuts, p = 1 and c = 0. Let n be
the number of individual squares. When
the number of pieces p equals the number
of individual squares n, the process ends.

 p, c : = 1 , 0

 while p ≠ n

 p, c := p + 1, c+1

 We have observed (in Example 8.2)
that p - c is an invariant of the assignment
p, c := p + 1, c + 1. Let p - c = k, where k
is a constant. The points in the algorithm
where p - c = k is true are shown in the
algorithm below, and in the flowchart of
Figure 8.2.

 p, c : = 1 , 0

1. -- p - c = k

 while p ≠ n

2. -- p - c = k

 p, c := p+1, c+1

3. -- p - c = k

4. --p-c=k,p=n

 The loop invariant p- c = k is True
at the start of the loop (line 1). Moreover,
at the start of the loop, p- c = 1. Therefore,
k = 1, and the loop invariant is p - c = 1

3 end of iteration

2 start of iteration

1 start of loop

p,c

4 end of loop

p,c : =1,0
p-c : = k

p-c = k

p-c = k
p-c = k

p ≠ n

p, c: =p + 1, c+ 1

Figure 8.2: The points where the loop
invariant is true

 When the loop ends (line 4), the
loop invariant is still true (p - c = 1).
Moreover, the loop condition is false (p =
n). From p - c = 1 and p = n,

Chapter 8 Page 102-114.indd 105 3/24/2020 9:15:11 AM

106

1. p — c = 1 loop invariant
2. p = n end of the loop
3. n — c = 1 from 1, 2
4. c = n — 1 from 3

 When the process ends, the number
of cuts is one less than the number of
squares.

Example 8.7. There are 6 equally spaced
trees and 6 sparrows sitting on these
trees,one sparrow on each tree. If a sparrow
flies from one tree to another, then at the
same time, another sparrow flies from its
tree to some other tree the same distance
away, but in the opposite direction. Is it
possible for all the sparrows to gather on
one tree?

 Let us index the trees from 1 to
6. The index of a sparrow is the index of
the tree it is currently sitting on. A pair
of sparrows flying can be modeled as an
iterative step of a loop. When a sparrow at
tree i flies to tree i + d, another sparrow at
tree j flies to tree j — d. Thus, after each
iterative step, the sum S of the indices of
the sparrows remains invariant. Moreover,
a loop invariant is true at the start and at
the end of the loop.

 At the start of the loop, the value of
the invariant is

 S = 1 + 2 + 3 + 4 + 5 + 6 = 21

 When the loop ends, the loop
invariant has the same value. However,
when the loop ends, if all the sparrows
were on the same tree, say k, then S = 6k.

S = 21, loop invariant at the start of
the loop

S = 6k, loop invariant at end of the
loop

6k= 21, loop invariant has the same
value at the start and the end

21 is a multiple of 6

It is not possible — 21 is not a multiple
of 6. The desired final values of the
sparrow indices is not possible with the
loop invariant. Therefore, all the sparrows
cannot gather on one tree.

Example 8.8. Consider the Chameleons
of Chromeland of Example 6.3. There are
13 red, 15 green, and 17 blue chameleons
on Chromeland. When two chameleons
of different colors meet they both change
their color to the third one (for example,
if a red and a green meet, both become
blue). Is it possible to arrange meetings
that result in all chameleons displaying
blue color?
 Let r, g, and b be the numbers of
red, green and blue chameleons. We can
model the meetings of two types as an
iterative process. A meeting changes (r, g,
b) into (r-1, g-1, b+2) or (r-1, g+2, b-1) or
(r+2, g-1, b-1). Consider, for example, the
meeting of a red and a green chameleon.
 r, g, b := r-1, g-1, b+2
 The difference in the numbers of
any two types either do not change or
changes by 3. This is an invariant.
 r - 1 - (g - 1) = r - g
 r - 1 - (b + 2) = (r - b) - 3
 g - 1 - (b + 2) = (g - b) - 3
 This is true for all three cases. If any
two types differ in number by a multiple
of 3 at the start of the iterative process,
the difference can be reduced in steps of
3, to 0, when the iterative process ends.
However, at the start,
 r - g = 13 - 15 = -2

Chapter 8 Page 102-114.indd 106 3/24/2020 9:15:11 AM

107

 g - b = 15 - 17 = -2
 b - r = 17 - 13 = 4

 No two colors differ in number
by a multiple of 3. Therefore, all the
chameleons cannot be changed to a single
color.

Example 8.9. Jar of marbles: You are
given a jar full of two kinds of marbles,
white and black, and asked to play this
game. Randomly select two marbles from
the jar. If they are the same color, throw
them out, but put another black marble
in (you may assume that you have an
endless supply of spare marbles). If they
are different colors, place the white one
back into the jar and throw the black one
away. If you knew the original numbers of
white and black marbles, what is the color
of the last marble in the jar?

BB BW
WW

Figure 8.3: State changes in the jar marbles

The number of white and black marbles in
the jar can be represented by two variables
w and b. In each iterative step, b and w
change depending on the colors of the
two marbles taken out: Black Black, Black
White or White White. It is illustrated in
Figure 8.3 and annotated in the algorithm
below.

1 while at least two marbles in jar
2 -- b , w
3 take out any two marbles

4 case both are black -- BB
5 throw away both the marbles
6 put a black marble back
7 -- b = b '-1, w = w', b+w = b'+w' -1
8 case both are white --WW
9 throw away both the marbles
10 put a black marble back
11 --b = b'+1, w = w'-2, --b+w = b'+w'-1
12 else --BW
13 throw away the black one
14 put the white one back
15 -- b = b'-1, w = w', b+w = b'+w'-1

 For each case, how b, w and b+w
change is shown in the algorithm, where
b' and w' are values of the variables before
taking out two marbles. Notice the way
w changes. Either it does not change, or
decreases by 2. This means that the parity
of w, whether it is odd or even, does not
change. The parity of w is invariant.
 Suppose, at the start of the game,
w is even. When the game ends, w is still
even. Moreover, only one marble is left,
w+b = 1.

1 w + b = 1 end of the loop
2 w = 0orw = 1 from 1
3 w is even loop invariant
4 w = 0 from 2,3
5 b = 1 from 1,4

 Last marble must be black. Similarly,
if at the start of the game, there is an odd
number of whites, the last marble must be
white.

 One last question: do we ever reach
a state with only one marble? Yes, because
the total number of marbles b+w always
decreases by one at each step, it will
eventually become 1.

Chapter 8 Page 102-114.indd 107 3/24/2020 9:15:11 AM

108

8.4 Recursion

 Recursion is an algorithm design
technique, closely related to induction. It
is similar to iteration, but more powerful.
Using recursion, we can solve a problem
with a given input, by solving the instances
of the problem with a part of the input.

Example 8.10. Customers are waiting in a
line at a counter. The man at the counter
wants to know how many customers are
waiting in the line.

Length? Length? Length? Length? Length?

1 + 4 1 + 3 1 + 2 1 + 1 1
A B C D E

Figure 8.4: Length of a line

 Instead of counting the length
himself, he asks customer A for the length
of the line with him at the head, customer
A asks customer B for the length of the line
with customer B at the head, and so on.
When the query reaches the last customer
in the line, E, since there is no one behind
him, he replies 1 to D who asked him. D
replies 1+1 = 2 to C, C replies 1+2 = 3 to B,
B replies 1+3 = 4 to A, and A replies 1+4=
5 to the man in the counter

8.4.1 Recursive process

Example 8.10 illustrates a recursive
process. Let us represent the sequence of
5 customers A, B, C, D and E as
 [A,B,C,D,E]
 The problem is to calculate the
length of the sequence [A,B,C,D,E]. Let
us name our solver length. If we pass a
sequence as input, the solver length should
output the length of the sequence.
 length [A,B,C,D,E] = 5
 Solver length breaks the sequence

[A,B,C,D,E] into its first customer and the
rest of the sequence.
 first [A ,B,C,D,E] = A
 rest [A ,B,C,D,E] = [B ,C,D,E]
 To solve a problem recursively,
solver length passes the reduced sequence
[B,C,D,E] as input to a sub-solver, which
is another instance of length. The solver
assumes that the sub-solver outputs the
length of [B,C,D,E], adds 1, and outputs it
as the length of [A,B,C,D,E].
 length [A,B,C,D,E] = 1 + length
[B,C,D,E]
Each solver
1. receives an input,
2. passes an input of reduced size to a

sub-solver,
3. receives the solution to the reduced

input from the sub-solver, and produces
the solution for the given input

as illustrated in Figure 8.5.
solution for the input

reduced input solution for the reduced
input

solver
1

Inputs

2 3

4

Figure 8.5: One instance of a solver in a
recursive process

Figure 8.6 shows the input received and
the solution produced by each
solver for Example 8.10. Each solver
reduces the size of the input by one and
passes it on to a sub-solver, resulting in
5 solvers. This continues until the input
received by a solver is small enough to
output the solution directly. The last
solver received [E] as the input. Since [E]
is small enough, the solver outputs the

Chapter 8 Page 102-114.indd 108 3/24/2020 9:15:11 AM

109

 To solve a problem recursively, the
solver reduces the problem to sub-problems,
and calls another instance of the solver,
known as sub-solver, to solve the sub-
problem. The input size to a sub-problem
is smaller than the input size to the original
problem. When the solver calls a sub-solver,
it is known as recursive call. The magic of
recursion allows the solver to assume that
the sub-solver (recursive call) outputs the
solution to the sub-problem. Then, from
the solution to the sub-problem, the solver
constructs the solution to the given problem.
 As the sub-solvers go on reducing
the problem into sub-problems of smaller

length of [E] as 1 immediately, and the
recursion stops.

1+4

 1+3

1+2

1+1

1

Length

Length

Length

Length

Length

[A, B, C, D, E]

[B, C, D, E]

[C, D, E]

[D, E]

[E]

Figure 8.6: Recursive process with solvers
and sub-solvers

The recursive process for length
[A,B,C,D,E] is shown in Figure 8.7.

1 length [A,B,C,D,E]
2 = 1 + length [B,C,D,E]
3 = 1 +1 + length [C,D,E]

4 = 1 + 1+ 1 + length [D,E]
5 = 1 + 1+ 1 + 1 + length [E]
6 = 1 + 1 + 1 + 1 +1
7 = 1 +1 +1 + 2
8 = 1 + 1 + 3
9 = 1 + 4
10 = 5

Figure 8.7: Recursive process for computing
the length of a sequence

8.4.2 Recursive problem solving

 Each solver should test the size of
the input. If the size is small enough, the
solver should output the solution to the
problem directly. If the size is not small
enough, the solver should reduce the size
of the input and call a sub-solver to solve
the problem with the reduced input. For
Example 8.10, solver's algorithm can be
expressed as

1 if sequence has only one customer

1 + length of tail, otherwise
length of sequence = {

sizes, eventually the sub-problem becomes
small enough to be solved directly, without
recursion. Therefore, a recursive solver
has two cases:
1. Base case: The problem size is small

enough to be solved directly. Output
the solution. There must be at least one
base case.

2. Recursion step: The problem size is
not small enough. Deconstruct the
problem into a sub-problem, strictly
smaller in size than the given problem.
Call a sub-solver to solve the sub-
problem. Assume that the sub-solver
outputs the solution to the sub-

Chapter 8 Page 102-114.indd 109 3/24/2020 9:15:11 AM

110

problem. Construct the solution to the
given problem.

This outline of recursive problem solving
technique is shown below.
 solver (input)
 if input is small enough
 construct solution
 else
 find sub_problems of reduced
 input
 solutions to sub_problems =
 solver for each sub_problem
 construct solution to the
 problem from
 solutions to the sub_problems
Whenever we solve a problem using
recursion, we have to ensure these two
cases: In the recursion step, the size of
the input to the recursive call is strictly
smaller than the size of the given input,
and there is at least one base case.

8.4.3 Recursion — Examples

Example 8.11. The recursive algorithm
for length of a sequence can be written as
 length (s)
 -- inputs : s
 -- outputs : length of s
 if s has one customer -- base case
 1
 else
 1 + length(tail(s)) -- recursion step
Example 8.12. Design a recursive
algorithm to compute an. We constructed
an iterative algorithm to compute an in
Example 8.5. an can be defined recursively
as

{an = 1 if n = 0
a × a n - 1 otherwise

 The recursive definition can
be expressed as a recursive solver for
computing power(a, n).
 power (a, n)
 -- inputs: n is an integer , n ≥ 0
 -- outputs : an

 if n = 0 -- base case
 1
 else --recursion step
 a × power (a, n-1)
 The recursive process with solvers
for calculating power(2, 5) is shown in
Figure 8.8.

n = 5

n = 4

n = 3

n = 2

n = 1

n = 0

2 × 16

2 × 8

2 × 4

2 × 2

2 × 1

1
Power

Power

Power

Power

Power

Power

Figure 8.8: Recursive process with solvers
for calculating power(2, 5)

 The recursive process resulting
from power(2, 5) is shown in Figure 8.9.

power (2,5)
= 2 × power (2,4)
= 2 × 2 × power(2,3)
= 2 × 2 × 2 × power(2, 2)
= 2 × 2 × 2 × 2 × power (2,1)
= 2 × 2 × 2 × 2 × 2 × power (2,0)
= 2 × 2 × 2 × 2 × 2 × 1
= 2 × 2 × 2 × 2 × 2
= 2 × 2 × 2 × 4
= 2 × 2 × 8
= 2 × 16
= 32

Figure 8.9: Recursive process for power(2, 5)

2, 5

2, 4

2, 3

2, 2

2, 1

2, 0

Chapter 8 Page 102-114.indd 110 3/24/2020 9:15:11 AM

111

Example 8.13. A corner-covered board is a
board of 2n × 2n squares in which the square
at one corner is covered with a single square
tile. A triominoe is a L-shaped tile formed
with three adjacent squares (see Figure
8.10). Cover the corner-covered board with
the L-shaped triominoes without overlap.
Triominoes can be rotated as needed.

Figure 8.10: Corner-covered board and triominoe

 The size of the problem is n (board
of size 2n × 2n). We can solve the problem
by recursion. The base case is n = 1. It is a
2 × 2 corner-covered board. We can cover it
with one triominoe and solve the problem.
In the recursion step, divide the corner-
covered board of size 2n × 2n into 4 sub-
boards, each of size 2n-1 × 2n-1, by drawing
horizontal and vertical lines through the
centre of the board. Place a triominoe at the
center of the entire board so as to not cover
the corner-covered sub-board, as shown in

the left-most board of Figure 8.11. Now, we
have four corner-covered boards, each of
size 2n-1 × 2n-1.

Figure 8.11: Recursive process of covering a
corner-covered board of size 2 x 23

Chapter 8 Page 102-114.indd 111 3/24/2020 9:15:11 AM

112

 We have 4 sub-problems whose size
is strictly smaller than the size of the given
problem. We can solve each of the sub-
problems recursively.

 tile corner_covered board of size n

 if n = 1 -- base case

• Iteration repeats the two steps of
evaluating a condition and executing
a statement, as long as the condition is
true.

• An expression involving variables,
which remains unchanged by an
assignment to one of these variables, is
called an invariant of the assignment.

• An invariant for the loop body is known
as a loop invariant.

• A loop invariant is true.

• (a) at the start of the loop (just before
the loop)

• (b) at the start of each iteration (before
loop body)

• (c) at the end of each iteration (after
loop body)

Points to Remember

• (d) at the end of the loop (just after the
loop)

• When a loop ends, the loop invariant
is true. In addition, the termination
condition is also true.

• Recursion must have at least one base
case.

• Recursion step breaks the problem into
sub-problems of smaller size, assumes
solutions for sub-problems are given by
recursive calls, and constructs solution
to the given problem.

• In recursion, the size of input to a sub-
problem must be strictly smaller than
the size of the given input.

 cover the 3 squares with one
triominoe

else -- recursion step

 divide board into 4 sub_boards of
size n-1

 place a triominoe at centre of board ,

 leaving out the corner_covered sub
-board

 tile each sub_board of size n-1

 The resulting recursive process for
covering a 23 x 23 corner-covered board is
illustrated in Figure 8.11.

Chapter 8 Page 102-114.indd 112 3/24/2020 9:15:11 AM

113

Evaluation

SECTION – A
Choose the correct answer
1. A loop invariant need not be true

 (a) at the start of the loop. (b) at the start of each iteration
 (c) at the end of each iteration (d) at the start of the algorithm

2. We wish to cover a chessboard with dominoes, the number of black squares and
 the number of white squares covered by dominoes, respectively, placing a domino can
 be modeled by
 (a) b := b + 2 (b) w := w + 2 (c) b, w := b+1, w+1 (d) b := w

3. If m x a + n x b is an invariant for the assignment a, b : = a + 8, b + 7, the values of m
and n are

 (a) m = 8, n = 7 (b) m = 7, n = -8 (c) m = 7, n = 8 (d) m = 8, n = -7

4. Which of the following is not an invariant of the assignment?
 m, n := m+2, n+3
 (a) m mod 2 (b) n mod 3 (c) 3 X m - 2 X n (d) 2 X m - 3 X n

5. If Fibonacci number is defined recursively as

{F (n)=
0 n = 0
1 n = 1
F(n — 1) + F(n — 2) otherwise

 to evaluate F(4), how many times F() is applied?
 (a) 3 (b) 4 (c) 8 (d) 9

6. Using this recursive definition

{a n=
1 if n = 0
a x an -1 otherwise

 how many multiplications are needed to calculate a10?
 (a) 11 (b) 10 (c) 9 d) 8

SECTION-B

Very Short Answers

1. What is an invariant?

2. Define a loop invariant.

3. Does testing the loop condition affect the loop invariant? Why?

4. What is the relationship between loop invariant, loop condition and the input- output
recursively

Chapter 8 Page 102-114.indd 113 3/24/2020 9:15:11 AM

114

5. What is recursive problem solving?

6. Define factorial of a natural number recursively.

SECTION-C
Short Answers

1. There are 7 tumblers on a table, all standing upside down. You are allowed to turn any
2 tumblers simultaneously in one move. Is it possible to reach a situation when all the
tumblers are right side up? (Hint: The parity of the number of upside down tumblers is
invariant.)

2. A knockout tournament is a series of games. Two players compete in each game; the
loser is knocked out (i.e. does not play any more), the winner carries on. The winner of
the tournament is the player that is left after all other players have been knocked out.
Suppose there are 1234 players in a tournament. How many games are played before the
tournament winner is decided?

3. King Vikramaditya has two magic swords. With one, he can cut off 19 heads of a dragon,
but after that the dragon grows 13 heads. With the other sword, he can cut off 7 heads, but
22 new heads grow. If all heads are cut off, the dragon dies. If the dragon has originally
1000 heads, can it ever die? (Hint:The number of heads mod 3 is invariant.)

SECTION - D

Explain in detail

1. Assume an 8 × 8 chessboard with the usual coloring. "Recoloring" operation changes the
color of all squares of a row or a column. You can recolor re-peatedly. The goal is to attain
just one black square. Show that you cannot achieve the goal. (Hint: If a row or column
has b black squares, it changes by (|8 - b) - b|).

2. Power can also be defined recursively as

{a n=
1 if n = 0
a × an -1 if n is odd
a n/2 × a n/2 if n is even

 Construct a recursive algorithm using this definition. How many multiplications are
needed to calculate a10?

3. A single-square-covered board is a board of 2n x 2n squares in which one square is covered
with a single square tile. Show that it is possible to cover the this board with triominoes
without overlap.

Chapter 8 Page 102-114.indd 114 3/24/2020 9:15:11 AM

PB 115

Learning Objectives
After the completion of this chapter, the
student will be able to
• Understand the basic building blocks of

C++ programming language
• Able to construct simple C++ programs
• Execute and debug C++programs

CHAPTER 9Introduction to C++

Introduction to C++

Unit III

9.1 Introduction

 C++ is one of the most popular
programming language which supports
both procedural and Object Oriented
Programming paradigms. Thus, C++
is called as a hybrid language. C++ is a
superset (extension) of its predecessor C
language. Bjarne Stroustrup named his
new language as “C with Classes”. The
name C++ was coined by Rick Mascitti
where ++ is the C language increment
operator.

 Bjarne is a Danish Computer Scientist born on 30th
December 1950. He has a Master degree in Mathematics and
Computer Science in 1975 from Aarhus University, Denmark
and Ph.D in Computer Science in 1979 from the University of
Cambridge, England.

Bjarne Stroustrup
Inventor of C++ Programming Language

History of C++
 C++ was developed by Bjarne
Stroustrup at AT & T Bell Laboratory
during 1979. C++ is originally derived
from C language and influenced by many
languages like Simula, BCPL, Ada, ML,
CLU and ALGOL 68. Till 1983, it was
referred “New C” and “C with Classes”. In
1983, the name was changed as C++ by
Rick Mascitti.
Benefits of learning C++
• C++ is a highly portable language and is

often the language of choice for multi-
device, multi-platform app development.

• C++ is an object-oriented programming
language and includes classes,
inheritance, polymorphism, data
abstraction and encapsulation.

• C++ has a rich function library.
• C++ allows exception handling,

inheritance and function overloading
which are not possible in C.

• C++ is a powerful, efficient and fast
language. It finds a wide range of
applications – from GUI applications
to 3D graphics for games to real-time
mathematical simulations.

Chapter 9 Page 115-151.indd 115 3/24/2020 9:21:03 AM

116 117

9.2 Character set

 Character set is a set of characters
which are used to write a C++ program. A
character represents any alphabet, number
or any other symbol (special characters)
mostly available in the keyboard. C++
accepts the following characters.

Alphabets A …. Z, a ….. z

Numeric 0 …. 9

Special
Characters

+ - * / ~ ! @ # $ % ^& [] () { } = ><
_ \ | ? . , : ‘ “ ;

White space
Blank space, Horizontal tab (→),
Carriage return (), Newline,
Form feed

Other
characters

C++ can process any of the 256
ASCII characters as data.

9.3 Lexical Units (Tokens):

 C++ program statements are
constructed by many different small
elements such as commands, variables,
constants and many more symbols called
as operators and punctuators. These
individual elements are collectively called
as Lexical units or Lexical elements or
Tokens. C++ has the following tokens:

• Keywords • Identifiers
• Literals • Operators
• Punctuators

TOKEN:

The smallest individual unit in a program
is known as a Token or a Lexical unit

9.3.1 Keywords
 Keywords are the reserved words
which convey specific meaning to the C++
compiler. They are the essential elements
to construct C++ programs. Most of the
keywords are common to C, C++ and Java.

C++ is a case sensitive programming
language so, all the keywords must be in
lowercase.

Table 9.1 C++ Keywords

asm auto break case catch
char class const continue default
delete do double else enum
extern float for friend goto
if inline int long new
operator private protected public register
return short signed sizeof static
struct switch template this throw
try typedef union unsigned virtual
void volatile while

• With revisions and additions, the recent
list of keywords also includes:

 using, namespace, bal, static_cast,
const_cast, dynamic_cast, true, false
• Identifiers containing a double

underscore are reserved for use by C++
implementations and standard libraries
and should be avoided by users.

9.3.2 Identifiers
 Identifiers are the user-defined
names given to different parts of the C++
program viz. variables, functions, arrays,
classes etc., These are the fundamental
building blocks of a program. Every
language has specific rules for naming the
identifiers.
Rules for naming an identifier:
• The first character of an identifier must

be an alphabet or an underscore (_).
• Only alphabets, digits and underscore

are permitted. Other special characters
are not allowed as part of an identifier.

• C++ is case sensitive as it treats upper
and lower-case characters differently.

• Reserved words or keywords cannot be
used as an identifier name.

Chapter 9 Page 115-151.indd 116 3/24/2020 9:21:03 AM

116 117

As per ANSI standards, C++ places no
limit on its length and therefore all the
characters are significant.

Identifiers Valid /
Invalid Reason for invalid

Num Valid
NUM Valid
_add Valid
total_sales Valid
tamilMark Valid

num-add Invalid Contains special
character (-)

this Invalid

This is one of
the keyword.
Keyword cannot
be used as
identifier names.

2myfile Invalid

Name must start
begins with an
alphabet or an
underscore

• You may use an underscore in variable
names to separate different parts of the
name (eg: total_sales is a valid identifier
where as the variable called total sales is
an invalid identifier).

• You may use capital style notation, such
as tamilMark ie. capitalizing the first
letter of the second word.

9.3.3 Literals (Constants)
 Literals are data items whose values
do not change during the execution of a
program. Therefore Literals are called
as Constants. C++ has several kinds of
literals:

Numeric Constants

Integer constants

Boolean Constants

Literals (Constants)

Real Constants

Character Constants

String Literals

Figure 9.1 Types of Constants

Numeric Constants:
As the name indicates, the numeric
constants are numeric values, which are
used as constants. Numeric constants are
further classified as:
1. Integer Constants (or) Fixed point

constants.
2. Real constants (or) Floating point

constants.
(1) Integer Constants (or) Fixed point

constants
 Integers are whole numbers without
any fractions. An integer constant must
have at least one digit without a decimal
point. It may be signed or unsigned.
Signed integers are considered as negative,
commas and blank spaces are not allowed
as part of it. In C++, there are three types
of integer constants: (i) Decimal (ii) Octal
(iii) Hexadecimal
(i) Decimal
 Any sequence of one or more digits (0 …. 9)

Valid Invalid
725 7,500 (Comma is not allowed)
-27 66 5(Blank space is not allowed)
4.56 9$ (Special Character not allowed)

 If you assign 4.56 as an integer decimal
constant, the compiler will accept only the integer
portion of 4.56 ie. 4. It will simply ignore .56.

Notes

 If a Decimal constant declared
with fractions, then the compiler will
take only the integer part of the value
and it will ignore its fractional part. This
is called as “Implicit Conversion”. It will
be discussed later.

(ii) Octal
 Any sequence of one or more octal values
(0 …. 7) that begins with 0 is considered as an Octal
constant.

Chapter 9 Page 115-151.indd 117 3/24/2020 9:21:03 AM

118 119

Valid Invalid
012 05,600(Commas is not allowed)
-027 04.56 (Decimal point is not allowed)**

+0231 0158 (8 is not a permissible digit in
octal system)

Notes

** When you use a fractional number
that begins with 0, C++ considers the
number as an integer not an Octal.

(iii) Hexadecimal
 Any sequence of one or more
Hexadecimal values (0 …. 9, A …. F) that
starts with 0x or 0Xis considered as an
Hexadecimal constant.

Valid Invalid
0x123 0x1,A5 (Commas is not allowed)

0X568 0x.14E (Decimal point is not allowed
like this)

 The suffix L or l and U or u
added with any constant forces it to be
represented as a long or unsigned constant
resp ec t ive ly.
(2) Real Constants (or) Floating point

constants
 A real or floating point constant
is a numeric constant having a fractional
component. These constants may be
written in fractional form or in exponent
form.
 Fractional form of a real constant
is a signed or unsigned sequence of
digits including a decimal point between
the digits. It must have at least one digit
before and after a decimal point. It may be
prefixed with + or - sign. A real constant
without any sign will be considered as
positive.
 Exponent form of real constants
consists of two parts: (1) Mantissa and

(2) Exponent. The mantissa must be
either an integer or a real constant. The
mantissa followed by a letter E or e and
the exponent, should also be an integer.
 For example, 58000000.00 may be
written as 0.58 × 108 or 0.58E8.

Mantissa
(Before E)

Exponent
(After E)

0.58 8

Example:
5.864 E1 101 × 5.864 58.64
5864 E-2 10-2 × 5864 58.64
0.5864 E2 102 × 0.5864 58.64
Boolean Literals
 Boolean literals are used to
represent one of the Boolean values (True
or false). Internally true has value 1 and
false has value 0.
Character constant
 A character constant in C++ is any
valid single character enclosed within
single quotes.
Valid character constants : ‘A’, ‘2’, ‘$’
Invalid character constants : “A”
 The value of a single character
constant has an equivalent ASCII value.
For example, the value of ‘A’ is 65.
Escape sequences (or) Non-graphic
characters
 C++ allows certain non-printable
characters represented as character
constants. Non-printable characters are
also called as non-graphic characters.
Non-printable characters are those
characters that cannot be typed directly
from a keyboard during the execution
of a program in C++, for example:
backspace, tabs etc. These non-printable
characters can be represented by using
escape sequences. An escape sequence is
represented by a backslash followed by
one or two characters.

Chapter 9 Page 115-151.indd 118 3/24/2020 9:21:03 AM

118 119

Table 9.2 Escape Sequences
Escape

sequence Non-graphical character

\a Audible or alert bell
\b Backspace
\f Form feed
\n Newline or linefeed
\r Carriage return
\t Horizontal tab
\v Vertical tab
\\ Backslash
\’ Single quote
\” Double quote
\? Question Mark

\On Octal number
\xHn Hexadecimal number

\0 Null
 Even though an escape sequence
contains two characters, they should be
enclosed within single quotes because,
C++ consider escape sequences as
character constants and allocates one byte
in ASCII representation.

ASCII (American Standard
Code for Information
Interchange) was first developed
and published in 1963 by the

X3 committee, a part of the American
Standards Association (ASA).

1. What is meant by literals? How many types
of integer literals are available in C++?

2. What kind of constants are following?
i) 26 ii) 015 iii) 0xF iv) 014.9

3. What is character constant in C++?
4. How are non graphic characters represented

in C++?
5. Write the following real constants into

exponent form:
i) 32.179 ii) 8.124 iii) 0.00007

6. Write the following real constants in
fractional form:
i) 0.23E4 ii) 0.517E-3 iii) 0.5E-5

7. What is the significance of null (\0)
character in a string?

?Evaluate Yourself

String Literals
 Sequence of characters enclosed
within double quotes are called as
String literals. By default, string literals
are automatically added with a special
character ‘\0’ (Null) at the end. Therefore,
the string “welcome” will actually be
represented as “welcome\0” in memory
and the size of this string is not 7 but
8 characters i.e., inclusive of the last
character \0.
Valid string Literals : “A”, “Welcome”
“1234”
Invalid String Literals : ‘Welcome’, ‘1234’

9.3.4 Operators
The symbols which are used to do some
mathematical or logical operations are
called as “Operators”. The data items or
values that the oper ators act upon are
called as “Operands”.

5 + 6

b

Operator

Operands

-a

In C++, The operators are classified on
the basis of the number of operands.

(i) Unary Operators - Require only one
operand

(ii) Binary Operators - Require two
operands

(iii) Ternary Operators - Require three
operands

Chapter 9 Page 115-151.indd 119 3/24/2020 9:21:03 AM

120 121

C++ Binary Operators are classified as:
(1) Arithmetic Operators
(2) Relational Operators
(3) Logical Operators
(4) Assignment Operators
(5) Conditional Operator

(1) Arithmetic Operators

 Arithmetic operators perform
simple arithmetic operations like addition,
subtraction, multiplication, division etc.,

Operator Operation Example
+ Addition 10 + 5 = 15
- Subtraction 10 – 5 = 5
* Multiplication 10 * 5 = 50

/ Division
10 / 5 = 2
(Quotient of the
division)

%
Modulus (To
find the remind-
er of a division)

10 % 3 =
1(Remainder of
the division)

• The above mentioned arithmetic
operators are binary operators which
requires minimum of two operands.

Increment and Decrement Operators
++ (Plus, Plus) Increment operator
-- (Minus, Minus) Decrement operator
 An increment or decrement operator
acts upon a single operand and returns a
new value. Thus, these operators are unary
operators. The increment operator adds 1
to its operand and the decrement operator
subtracts 1 from its operand. For example,
• x++ or ++ x is the same as x = x+1;
 It adds 1 to the present value of x
• x -- or -- x is the same as to x = x–1;
 It subtracts 1 from the present value of x

 The ++ or -- operators can be placed
either as prefix (before) or as postfix (after)
to a variable. With the prefix version, C++
performs the increment / decrement before
using the operand.
(2) Relational Operators
 Relational operators are used to
determine the relationship between its
operands. When the relational operators
are applied on two operands, the result will
be a Boolean value i.e 1 or 0 to represents
True or False respectively. C++ provides
six relational operators. They are,

Operator Operation Example
> Greater than a > b
< Less than a < b

>= Greater than or
equal to a >= b

<= Less than or equal
to a <= b

== Equal to a == b
!= Not equal a != b

• In the above examples, the operand a is
compared with b and depending on the
relation, the result will be either 1 or 0.
i.e., 1 for true, 0 for false.

• All six relational operators are binary
operators.

(3)Logical Operators

 A logical operator is used to evaluate
logical and relational expressions. The
logical operators act upon the operands that
are themselves called as logical expressions.
C++ provides three logical operators.

Table 9.3 Logical Operators

Operator Operation Description

&& AND
The logical AND combines two different relational expressions
in to one. It returns 1 (True), if both expression are true,
otherwise it returns 0 (false).

Chapter 9 Page 115-151.indd 120 3/24/2020 9:21:03 AM

120 121

|| OR
The logical OR combines two different relational expressions
in to one. It returns 1 (True), if either one of the expression is
true. It returns 0 (false), if both the expressions are false.

! NOT
NOT works on a single expression / operand. It simply negates
or inverts the truth value. i.e., if an operand / expression is 1
(true) then this operator returns 0 (false) and vice versa

• AND, OR both are binary operators
where as NOT is an unary operator.

Example: a = 5, b = 6, c = 7;

Expression Result
(a<b) && (b<c) 1 (True)
(a>b) && (b<c) 0 (False)

(a<b) || (b>c) 1 (True)

!(a>b) 1 (True)

(4)Assignment Operator:
 Assignment operator is used to
assign a value to a variable which is
on the left hand side of an assignment
statement. = (equal to) is commonly used
as the assignment operator in all computer
programming languages. This operator
copies the value at the right side of the
operator to the left side variable. It is also
a binary operator.

A = 32

 C++ uses different types of
assignment operators. They are called as
Shorthand assignment operators.

Operator Name of
Operator Example

+= Addition
Assignment

a = 10;
c = a += 5;
(ie, a = a + 5)
c = 15

-= Subtraction
Assignment

a = 10;
c = a -= 5;
(ie. a = a – 5)
c = 5

*= Multiplication
Assignment

a = 10;
c = a *= 5;
(ie. a = a * 5)
c = 50

/= Division
Assignment

a = 10;
c = a /= 5;
(ie. a = a / 5)
c = 2

%= Modulus
Assignment

a = 10;
c = a %= 5;
(ie. a = a % 5)
c = 0

Discuss the differences between = and ==
operators

(5) Conditional Operator:
 In C++, there is only one conditional
operator. ?: is a conditional Operator which
is also known as Ternary Operator. This
operator is used as an alternate to if … else
control statement. We will learn more about
this operator in later chapters along with if
…. else structure.

Other Operators:

The Comma
operator

Comma (,) is an
operator in C++ used to
string together several
expressions. The group of
expression separated by
comma is evaluated from
left to right.

Sizeof
This is called as compile
time operator. It returns
the size of a variable in
bytes.

Pointer * Pointer to a variable
& Address of

Chapter 9 Page 115-151.indd 121 3/24/2020 9:21:04 AM

122 123

The order of precedence:

() [] Operators within parenthesis are performed first Higher
++, -- Postfix increment / decrement
++, -- Prefix increment / decrement
*, /, % Multiplication, Division, Modulus

+, - Addition, Subtraction

<, <=, >, >= Less than, Less than or equal to, Greater than, Greater
than or equal to

==, != Equal to, Not equal to
&& Logical AND
|| Logical OR
?: Conditional Operator
= Simple Assignment

+=, -=, *=, /= Shorthand operators
, Comma operator Lower

9.3.5 Punctuators
 Punctuators are symbols, which are used as delimiters, while constructing a C++
program. They are also called as “Separators”. The following punctuators are used in
C++; most of these symbols are very similar to C and Java.

Separator Description Example

Curly braces { }

Opening and closing curly braces indicate
the start and end of a block of code. A block
of code containing more than one executable
statement. These statements together are
called as “compound statement”

int main ()
{
 int x=10, y=20, sum;
 sum = x + y;
 cout << sum;
}

Parenthesis () Opening and closing parenthesis indicate
function calls and function parameters.

clrscr();
int main ()

Square brackets
[]

It indicates single and multidimensional
arrays.

int num[5];
char name[50];

Comma , It is used as a separator in an expression int x=10, y=20, sum;

Component
selection

. Direct component
s e l e c t o r
-> Indirect component
selector

C l a s s
m e m b e r
o p e r a t o r s

:: Scope access /
r e s o l u t i o n
.* Dereference
->* Dereference pointer
to class member

Precedence of Operators:
 Operators are executed in the order
of precedence. The operands and the
operators are grouped in a specific logical
way for evaluation. This logical grouping
is called as an Association.

Chapter 9 Page 115-151.indd 122 3/24/2020 9:21:04 AM

122 123

Semicolon ; Every executable statement in C++ should
terminate with a semicolon

int main ()
{
 int x=10, y=20, sum;
 sum = x + y;
 cout << sum;
}

Colon : It is used to label a statement. private:

Comments
//
/* */

Any statement that begins with // are
considered as comments. Comments are
simply ignored by compilers. i.e., compiler
does not execute any statement that begins
with a //
// Single line comment
/* ……….. */ Multiline comment

/* This is written by me
to learn CPP */
int main ()
{
 int x=10, y=20, sum;
// to sum x and y
 sum = x + y;
 cout << sum;
}

In C++, one or two operators
may be used in different places
with different meaning.

For example: Asterisk (*) is used for
multiplication as well as for pointer to a
variable.

1. What is the use of operators?
2. What are binary operators? Give

examples of arithmetic binary operators.
3. What does the modulus operator % do?
4. What will be the result of 8.5 % 2?
5. Give that i = 8, j = 10, k = 8, What will

be result of the following expressions?
 (i) i < k (ii) i < j (iii) i > =
k (iv) i = = j (v) j ! = k

6. What will be the order of evaluation for
the following expressions?
(i) i + 3 >= j - 9 (ii) a +10 < p - 3
+ 2 q

7. Write an expression involving a logical
operator to test, if marks are 75 and grade
is 'A'.

?Evaluate Yourself

9.4 I/O Operators
9.4.1 Input operator
 C++ provides the operator >> to
get input. It extracts the value through
the keyboard and assigns it to the variable

on its right; hence, it is called as “Stream
extraction” or “get from” operator.
 It is a binary operator i.e., it requires
two operands. The first operand is the
pre-defined identifier cin (pronounced as
C-In) that identifies keyboard as the input
device. The second operand must be a
variable.

cin

>>

Variable

Figure 9.4 Working process of cin

 To receive or extract more than one
value at a time, >> operator should be used
for each variable. This is called cascading of
operator.
Example:

cin >>
n u m ;

Pre-defined object cin
extracts a value typed on
keyboard and stores it in
variable num.

Chapter 9 Page 115-151.indd 123 3/24/2020 9:21:04 AM

124 125

cin >>x
>> y;

This is used to extract two
values. cin reads the first value
and immediately assigns that
to variable x; next, it reads the
second value which is typed
after a space and assigns
that to y. Space is used as a
separator for each input.

9.4.2 Output Operator
 C++ provides << operator to
perform output operation. The operator
<< is called the “Stream insertion” or “put
to” operator. It is used to send the strings
or values of the variables on its right to the
object on its left. << is a binary operator.
 The first operand is the pre-defined
identifier cout (pronounced as C-Out)
that identifies monitor as the standard
output object. The second operand may be
a constant, variable or an expression.

cout

<<

Constant / Variable
/ Expression

Figure 9.5 Working process of cout
 To send more than one value at a
time, << operator should be used for each
constant/variable/expression. This is called
cascading of operator.
Example:

cout <<
“ We l c o m e ” ;

Pre-defined object cout
sends the given string
“Welcome” to screen.

cout << “The
sum = “ << sum;

First, cout sends the
string “The Sum = “
to the screen and then
sends the value of the
variable sum;
Usually, cout sends
everything specified
within double quotes or
single quotes i.e., string
or character constants,
except non-graphic
characters.

cout <<“\n
The Area: “
< < 3 . 1 4 * r * r ;

First, cout sends
everything specified
within double quotes
except \n to the screen,
and then it evaluates the
expression 3.14*r*r and
sends the result to the
screen.
\n – is a non graphic
character constant to
feed a new line.

cout << a + b ;
cout sends the sum of
a and b to the output
console (monitor)

9.4.3. Cascading of I/O operators
The multiple use of input and output
operators such as >> and << in a single
statement is known as cascading of I/O
operators.
Cascading cout:
 int Num=20;

 cout << “A=” << Num;
The Figure 9.6 is used to understand the
working of Cascading cout statement

A = 20

} }cout << "A=" << Num;

Figure 9.6 Cascading cout

Chapter 9 Page 115-151.indd 124 3/24/2020 9:21:04 AM

124 125

Cascading cin - Example:
 cout >> “Enter two number: ”;
 cin >> a >> b;
The Figure 9.7 is used to understand the
working of Cascading cin statement

Enter two number: 5

 6

cin >> a >> b;

a

5

b

6

Figure 9.7 Cascading cin

9.5 Sample program – A first look at
C++ program

 Let us start our first C++ program
that prints a string “Welcome to

Programming in C++” on the screen.

The above program produces, the following
output:

Welcome to Programming in C++
 This is very simple C++ program
which includes the basic elements that every
C++ program has. Let us have a look at these
elements:

1 // C++ program to print a string

This is a comment statement. Any statement that begins with // are considered as
comments. Compiler does not execute any comment as part of the program and it simply
ignores. If we need to write multiple lines of comments, we can use /* ……. */.

2 # include <iostream>

Usually all C++ programs begin with include statements starting with a # (hash /
pound). The symbol # is a directive for the preprocessor. That means, these statements
are processed before the compilation process begins.
#include <iostream> statement tells the compiler’s preprocessor to include the
header file “iostream” in the program.
The header file iostream should included in every C++ program to implement input /
output functionalities.
In simple words, iostream header file contains the definition of its member objects
cin and cout. If you fail to include iostream in your program, an error message will
occur on cin and cout; and we will not be able to get any input or send any output.

3 using namespace std;

The line using namespace std; tells the compiler to use standard namespace. Namespace
collects identifiers used for class, object and variables. Namespaces provide a method of
preventing name conflicts in large projects. It is a new concept introduced by the ANSI
C++ standards committee.

Chapter 9 Page 115-151.indd 125 3/24/2020 9:21:04 AM

126 127

4 int main ()

C++ program is a collection of functions. Every C++ program must have a main function.
The main() function is the starting point where all C++ programs begin their execution.
Therefore, the executable statements should be inside the main() function.

The statements between the curly braces (Line number 5 to 8) are executable statements.
This is actually called as a block of code. In line 6, cout simply sends the string constant
“Welcome to Programming in C++” to the screen. As we discussed already, every
executable statement must terminate with a semicolon. In line 7, return is a keyword
which is used to return the value what you specified to a function. In this case, it will
return 0 to main() function.

9.6 Execution of C++ program:
 For creating and executing a C++
program, one must follow four important
steps.
(1) Creating Source code
 Creating includes typing and editing the

valid C++ code as per the rules followed
by the C++ Compiler.

(2) Saving source code with extension .cpp
 After typing, the source code should
be saved with the extension .cpp
(3) Compilation
 This is an important step in constructing

a program. In compilation, compiler
links the library files with the source
code and verifies each and every line of
code. If any mistake or error is found,
it will throw error message. If there are
no errors, it translates the source code
into machine readable object file with
an extension .obj

(4) Execution
 This is the final step of a C++ Program.

In this stage, the object file becomes an
executable file with extension .exe. Once
the program becomes an executable

file, the program has an independent
existence. This means, you can run
your application without the help of any
compiler or IDE.

#include<iostream>
using namespace std;
int main ()
{
cout<<"Welcome";
return 0;
}

Compiler

Figure 9.8 Execution

9.7 C++ Development Environment

 There are lot of IDE programs
available for C++. IDE makes it easy to create,
compile and execute a C++ program. Most
of the IDEs are open source applications
(ie.) they are available free of cost.
9.7.1 Familiar C++ Compilers with IDE

Table 9.4 Open Source Compilers

Compiler Availability

Dev C++ Open source

Geany Open source

Code::blocks Open source

Code Lite Open source

Chapter 9 Page 115-151.indd 126 3/24/2020 9:21:04 AM

126 127

Net Beans Open source

Digital Mars Open source

Sky IDE Open source

Eclipse Open source

9.7.2 Working with Dev C++
Among the dozens of IDEs, we

take “Dev C++” compiler to create C++
programs. Programming techniques and
illustrated programs of this book are based
on “Dev C++” compiler.

Dev C++ is an open source, cross
platform (alpha version available for Linux),
full featured Integrated Development
Environment (IDE) distributed with
the GNU General Public License for
programming in C and C++. It is written
in Delphi.

1. After installation Dev C++ icon is
available on the desktop. Double click
to open IDE. Dev C++ IDE appears
as given below.

Figure 9.9 Dev C++ opening Window

2. To create a source file, Select File →
New → Source file or Press Ctrl + N.

3. In the screen that appears, type your
C++ program, and save the file by

clicking File → Save or Pressing Ctrl +
S. It will add .cpp by default at the end
of your source code file. No need to type
.cpp along with your file name.

Figure 9.10 Dev C++ IDE with a program

4. After save, Click Execute → Compile
and Run or press F11 key.

If your program contains any error, it
displays the errors under compile log. If
your program is without any error, the
display will appear as follows.

Figure 9.11 Dev C++ Compile Log

5. After successful compilation, output
will appear in output console, as
follows

Figure 9.12 Dev C++ Output Window

Chapter 9 Page 115-151.indd 127 3/24/2020 9:21:04 AM

128 129

9.8 Types of Errors
Some common types of errors are given below:

Type of Error Description

Syntax Error

• Syntax is a set of grammatical rules to construct a program. Every
programming language has unique rules for constructing the
sourcecode.

• Syntax errors occur when grammatical rules of C++ are violated.
• Example: if you type as follows, C++ will throw an error.
 cout << “Welcome to Programming in C++”
• As per grammatical rules of C++, every executable statement should

terminate with a semicolon. But, this statement does not end with a
semicolon.

Semantic Error

• A Program has not produced expected result even though the
program is grammatically correct.It may be happened by wrong use
of variable / operator / order of execution etc. This means, program is
grammatically correct, but it contains some logical error. So, Semantic
error is also called as “Logic Error”.

Run-time error

• A run time error occurs during the execution of a program. It occurs
because of some illegal operation that takes place.

• For example, if a program tries to open a file which does not exist, it
results in a run-time error

• C++ was developed by Bjarne Stroustrup
at AT & T Bell Labs during the year 1979.

• Character set is the set of characters
which are allowed to write C++
programs.

• Individual elements are collectively
called as Lexical units or Lexical elements
or Tokens.

• Keywords are the reserved words that
convey specific meaning to the C++
compiler.

• Identifiers are user-defined names given
to different parts of the C++ program
viz. variables, functions, arrays, classes
etc.,

• Literals are data items whose values do
not change during the execution of a
program. Therefore, Literals are called as
Constants.

• There are different kinds of literals used
in C++ (Integer, Float, Character, String)

• The symbols which are used to do some
mathematical, logical operations are
called as “Operators”.

• Punctuators are symbols, which are
used as delimiters in constructing
C++ programs. They are also called as
“Separators”.

• Extraction operator(>>) and Insertion
operator (<<) are used to get input and
send output in C++.

Points to Remember:

Chapter 9 Page 115-151.indd 128 3/24/2020 9:21:04 AM

128 129

Hands on practice:

• Type the following C++ Programs in Dev C++ IDE and execute. if compiler shows any
errors, try to rectify it and execute again and again till you get the expected result.

1. C++ Program to find the total marks of three subjects
#include <iostream>
using namespace std;
int main()
{
 int m1, m2, m3, sum;
 cout << "\n Enter Mark 1: ";
 cin >> m1;
 cout << "\n Enter Mark 2: ";
 cin >> m2;
 cout << "\n Enter Mark 3: ";
 cin >> m3;
 sum = m1 + m2 + m3;
 cout << "\n The sum = " << sum;
}

• Make changes in the above code to get the average of all the given marks.

2. C++ program to find the area of a circle
#include <iostream>
using namespace std;
int main()
{
 int radius;
 float area;
 cout << "\n Enter Radius: ";
 cin >> radius;
 area = 3.14 * radius * radius;
 cout << "\n The area of circle = " << area;
}
3. point out the errors in the following program:

Using namespace std;
int main()
{
cout << “Enter a value ”;
cin << num1 >> num2
num+num2=sum;
cout >> “\n The Sum= ” >> sum;

Chapter 9 Page 115-151.indd 129 3/24/2020 9:21:04 AM

130 131

4. point out the type of error in the following program:
#include <iostream>
using namespace std;
int main()
{
 int h=10; w=12;
 cout << "Area of rectangle " << h+w;
}

Evaluation

SECTION – A
Choose the correct answer:

1. Who developed C++?

 (a) Charles Babbage (b) Bjarne Stroustrup

 (c) Bill Gates (d) Sundar Pichai

2. What was the original name given to C++?

 (a) CPP (b) Advanced C (c) C with Classes (d) Class with C

3. Who coined C++?
 (a) Rick Mascitti (b) Rick Bjarne (c) Bill Gates (d) Dennis Ritchie

4. The smallest individual unit in a program is:

 (a) Program (b) Algorithm (c) Flowchart (d) Tokens

5. Which of the following operator is extraction operator in C++?
 (a) >> (b) << (c) <> (d) ^^

6. Which of the following statements is not true?
 (a) Keywords are the reserved words which convey specific meaning to the C++ compiler.
 (b) Reserved words or keywords can be used as an identifier name.
 (c) An integer constant must have at least one digit without a decimal point.
 (d) Exponent form of real constants consist of two parts

7. Which of the following is a valid string literal?

 (a) ‘A’ (b) ‘Welcome’ (c) 1232 (d) “1232”

8. A program written in high level language is called as

 (a) Object code (b) Source code (c) Executable code (d) All the above
9. Assume a=5, b=6; what will be result of a&b?
 (a) 4 (b) 5 (c) 1 (d) 0

10. Which of the following is called as compile time operators?
 (a) sizeof (b) pointer (c) virtual (d) this

Chapter 9 Page 115-151.indd 130 3/24/2020 9:21:04 AM

130 131

SECTION-B

Very Short Answers

1. What is meant by a token? Name the token available in C++.
2. What are keywords? Can keywords be used as identifiers?
3. The following constants are of which type?
 (i) 39 (ii) 032 (iii) 0XCAFE (iv) 04.14
4. Write the following real constants into the exponent form:
 (i) 23.197 (ii) 7.214 (iii) 0.00005 (iv) 0.319
5. Assume n=10; what will be result of n++ and --n;?
6. Match the following

A B
(a) Modulus (1) Tokens

(b) Separators
(2) Remainder of a
d i v i s i o n

(c) Stream extraction (3) Punctuators
(d) Lexical Units (4) get from

SECTION-C
Short Answers

1. Describe the differences between keywords and identifiers?
2. Is C++ case sensitive? What is meant by the term “case sensitive”?
3. Differentiate “=” and “==”.
4. What is the use of a header file?
5. Why is main function special?

SECTION - D
Explain in detail
1. Write about Binary operators used in C++.

2. What are the types of Errors?

References:
(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,

Mc.Graw Hills.
(2) The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.
(3) Computer Science with C++ (A text book of CBSE XI and XII), Sumita Arora,

Dhanpat Rai & Co.

Chapter 9 Page 115-151.indd 131 3/24/2020 9:21:05 AM

132 133

Data Types, Variables and Expressions

9.10 Introduction

 Every programming language has two fundamental elements, viz., data types and
variables. They are very essential elements to write even the most elementary programs.
C++ provides a predefined set of data types for handling the data items. Such data types
are known as fundamental or built-in data types. Apart from the built-in data types, a
programmer can also create his own data types called as User-defined data types. In this
chapter, we are going to learn about built-in data types.

9.11 Concept of Data types

Let us look at the following example,

 Name = Ram

 Age = 15

 Average_Mark = 85.6

 In the above example, Name, Age, Average_mark are the fields which hold the
values such as Ram, 15, and 85.6 respectively.

 In a programming language, fields are referred as variables and the values are
referred to as data. Each data item in the above example looks different. That is, “Ram”
is a sequence of alphabets and the other two data items are numbers. The first value is a
whole number and the second one is a fractional number. In real-world scenarios, there
are lots of different kinds of data we handle in our day-to-day life. The nature or type of
the data item varies, for example distance (from your home to school), ticket fare, cost of
a pen, marks, temperature, etc.,

 In C++ programming, before handling any data, it should be clearly specified to
the language compiler, regarding what kind of data it is, with some predefined set of data
types.

9.12 C++ Data types

 In C++, the data types are classified as three main categories

 (1) Fundamental data types

 (2) User-defined data types and

 (3) Derived data types.

Chapter 9 Page 115-151.indd 132 3/24/2020 9:21:05 AM

132 133

Data Types

User Defines
Data types

Derived
Data types

Floating
Point

Integral
types

Structure,
Union, Class,
Enumeration

Void

int char float double

Array, Function,
Pointer, Reference

Fundamantal Built -
in data types

Figure 9.13 Data types in C++

 In this chapter, we are going to learn about only the Fundamental data types.

 In order to understand the working of data types, we need to know about variables. The
variables are the named memory locations to hold values of specific data types. In C++, the
variables should be declared explicitly with their data types before they are actually used.
Syntax for declaring a variable:
 <data type> <variable name>;
Example:
 int num1;
 To declare more than one variable which are of the same data type using a single
statement, it can be declared by separating the variables using a comma.
Example:
 int num1, num2, sum;
 For example, to store your computer science marks first you should declare a variable
to hold your marks with a suitable data type. Choosing an appropriate data type needs more
knowledge and experience. Usually, marks are represented as whole numbers. Thus, the
variable for storing the computer science marks should be of integer data type.
Example:
 int comp_science_marks;
Now, one variable named comp_science_marks is ready to store your marks.
We will learn more about variables later in this chapter.

9.12.1 Introduction to fundamental Data types:
 Fundamental (atomic) data types are predefined data types available with C++. There
are five fundamental data types in C++: char, int, float, double and void. Actually, these are
the keywords for defining the data types.

(1) int data type:
 Integer data type accepts and returns only integer numbers. If a variable is declared as
an int, C++ compiler allows storing only integer values into it. If you try to store a fractional
value in an int type variable it will accept only the integer portion and the fractional part will
be ignored.

Chapter 9 Page 115-151.indd 133 3/24/2020 9:21:05 AM

134 135

For Example
int num=12;
 num1 variable is declared as integer types. So, it can store integer value
(2) char data type:
 Character data type accepts and returns all valid ASCII characters. Character data type
is often said to be an integer type, since all the characters are represented in memory by their
associated ASCII Codes. If a variable is declared as char, C++ allows storing either a character
or an integer value.

Example 1:-

char c='A';

cout<<ch ;

In the above code, ch is declared as a char type variable to hold a character. It displays the
character A

Example 2:-

char ch='A'

cout<<ch+1;

In the above statements, the value of ch is incremented by 1 and the new value is stored back
in the same variable ch. (Remember that, arithmetic operations are carried out only on the
numbers not with alphabets) so it displays B

 Another program illustrates how int and char data types are working together.

#include <iostream>
using namespace std;
int main ()
{
 int n;
 char ch;
 cout << "\n Enter an ASCII code (0 to 255): ";
 cin >> n;
 ch = n;
 cout << "\n Equivalent Character: " << ch;
}
The output
Enter an ASCII code (0 to 255): 100
Equivalent Character: d

Illustration 9.3: C++ program to get an ASCII value and display the corresponding
character

 In the above program, variable n is declared as an int type and another variable ch as a
char type. During execution, the program prompts the user to enter an ASCII value. If the user
enters an ASCII value as an integer, it will be stored in the variable n. In the statement ch = n;
the value of n is assigned into ch. Remember that, ch is a char type variable.

Chapter 9 Page 115-151.indd 134 3/24/2020 9:21:05 AM

134 135

 For example, if a user enters 100 as input; initially, 100 is stored in the variable n. In the
next statement, the value of n i.e., 100 is assigned to ch. Since, ch is a char type; it shows the
corresponding ASCII character as output. (Equivalent ASCII Character for 100 is d).

(3) float data type:
 If a variable is declared as float, all values will be stored as floating point values.
There are two advantages of using float data types.
 (1) They can represent values between the integers.
 (2) They can represent a much greater range of values.
 At the same time, floating point operations takes more time to execute compared to
the integer type ie., floating point operations are slower than integer operations. This is a
disadvantage of floating point operation.

For Example

float num=13.4;

 In the above example, num variable is declared as float type .

(4) double data type:

 This is for double precision floating point numbers. (precision means significant
numbers after decimal point). The double is also used for handling floating point numbers.
But, this type occupies double the space than float type. This means, more fractions can be
accommodated in double than in float type. The double is larger and slower than type float.
double is used in a similar way as that of float data type.

(5) void data type:

 The literal meaning for void is ‘empty space’. Here, in C++, the void data type specifies
an empty set of values. It is used as a return type for functions that do not return any value.

1. What do you mean by fundemantal data types?
2. The data type char is used to represent characters. then why is it often termed as an

integer type?
3. What is the advantage of floating point numbers over integers?
4. The data type double is another floating point type. Why is it treated as a distinct data

type?
5. What is the use of void data type?

?Evaluate Yourself

9.12.2 Memory representation of Fundamental Data types:

 One of the most important reason for declaring a variable as a particular data type
is to allocate appropriate space in memory. As per the stored program concept, every
data should be accommodated in the main memory before they are processed. So, C++
compiler allocates specific memory space for each and every data handled according to

Chapter 9 Page 115-151.indd 135 3/24/2020 9:21:05 AM

136 137

the compiler’s standards.
 The following Table 9.5 shows how much of memory space is allocated for each
fundamental data type. Remember that, every data is stored inside the computer memory
in the form of binary digits (See Unit I Chapter 2).

Table 9. 5 Memory allocation for Fundamental data types

Data type
Space in memory

Range of value
in terms of bytes in terms of bits

char 1 byte 8 bits -128 to 127
int 2 bytes 16 bits -32,768 to 32,767
float 4 bytes 32 bits 3.4×10-38 to 3.4×1038 -1
double 8 bytes 64 bits 1.7×10-308 to 1.7 × 10308-1

9.12.3 Data type modifiers:
 Modifiers are used to modify the storing capacity of a fundamental data type except void
type. Usually, every fundamental data type has a fixed range of values to store data items in memory.
For example, int data type can store only two bytes of data. In reality, some integer data may have
more length and may need more space in memory. In this situation, we should modify the memory
space to accommodate large integer values. Modifiers can be used to modify (expand or reduce)
the memory allocation of any fundamental data type. They are also called as Qualifiers.
There are four modifiers used in C++. They are:
 (1) signed (2) unsigned (3) long (4) short
 These four modifiers can be used with any fundamental data type. The following
Table 9.6 shows the memory allocation for each data type with and without modifiers.

Integer type

Table 9.6 Memory allocation for Data types

Data type

Space in
memory

Range of valuein
terms

of
bytes

in
terms
of bits

short short is a short name for short int 2
bytes 16 bits -32,768 to

3 2 , 7 6 7
unsigned
short

an integer number without minus
sign.

2
bytes 16 bits 0 to 65535

signed short An integer number with minus sign 2
bytes 32 bits -32,768 to

3 2 , 7 6 7
Both short and signed short are similar

int An integer may or may not be
s igned

2
bytes 16 bits -32,768 to

3 2 , 7 6 7

Chapter 9 Page 115-151.indd 136 3/24/2020 9:21:05 AM

136 137

unsigned int An integer without any sign (minus
symbol)

2
bytes 16 bits 0 to 65535

signed int An integer with sign 2
bytes 16 bits -32,768 to

3 2 , 7 6 7
Both short and int are similar

long long is short name for long int 4
bytes 32 bits -2147483648

to 2147483647
u n s i g n e d
l o n g

A double spaced integer without
any sign

4
bytes 32 bits 0 to

4,294,967,295

signed long A double spaced integer with sign 4
bytes 32 bits -2147483648

to 2147483647
 The above table clearly shows that an integer type accepts only 2 bytes of data
whereas a long int accepts data that is double this size i.e., 4 bytes of data. So, we can store
more digits in a long int. (long is a modifier and int is a fundamental data type)

char type
Table 9.7 Memory allocation for char Data types

Data type
Space in memory

Range of valuein terms
of bytes

in terms
of bits

char Signed ASCII character 1 byte 8 bits -128 to 127
u n s i g n e d
c h a r

ASCII character without
sign 1 byte 8 bits 0 to 255

signed char ASCII character with
s ign 1 byte 8 bits -128 to 127

Floating point type
Table 9.8 Memory allocation for floating point Data types

Data type

Space in memory

Range of valuein
terms

of bytes

in
terms
of bits

float signed fractional value 4 bytes 32 bits 3.4×10-38 to
3 . 4 × 1 0 3 8 - 1

double signed more precision
fractional value 8 bytes 64 bits 1.7 × 10-308 to

1.7 × 10308 -1

long double signed more precision
fractional value 10 bytes 80 bits 3.4 × 10-4932 to

1.1 × 104932 -1

 Memory allocation is subjected to vary based on the type of compiler that is being
used. Here, the given values are as per the Turbo C++ compiler. Dev C++ provides some
more space to int and long double types. Following Tables 9.9 shows the difference
between Turbo C++ and Dev C++ allocation of memory.

Table 9.9 Memory allocation of Turbo C++ and Dev C++

Chapter 9 Page 115-151.indd 137 3/24/2020 9:21:05 AM

138 139

Data type
Memory size in bytes

Turbo C++ Dev C++
short 2 2

unsigned short 2 2

signed short 2 2
int 2 4
unsigned int 2 4
signed int 2 4
long 4 4
unsigned long 4 4
signed long 4 4
char 1 1
unsigned char 1 1
signed char 1 1
float 4 4
double 8 8
long double 10 12

 Since, Dev C++ provides 4 bytes to int and long, any one of these types can be used to
handle bigger integer values while writing programs in Dev C++.
Note: sizeof() is an operator which gives the size of a data type.
Number Suffixes in C++
 There are different suffixes for integer and floating point numbers. Suffix can be
used to assign the same value as a different type. For example, if you want to store 45 in
int, long, unsigned int and unsigned long int, you can use suffix letter L or U (either case)
with 45 i.e. 45L or 45U. This type of declaration instructs the compiler to store the given
values as long and unsigned. ‘F’ can be used for floating point values, example: 3.14F

9.13 Variables

 Variables are user-defined names assigned to specific memory locations in which
the values are stored. Variables are also identifiers; and hence, the rules for naming the
identifiers should be followed while naming a variable. These are called as symbolic
variables because these are named locations.
There are two values associated with a symbolic variable; they are R-value and L-value.
• R-value is data stored in a memory location
• L-value is the memory address in which the R-value is stored.

Chapter 9 Page 115-151.indd 138 3/24/2020 9:21:05 AM

138 139

num2

num1

Variable
name

R - value (Value within
memory)

L - value (Memory Address)

100

65

0x125e
0x126e

0x127e

0x128e
0x129e
0x130e
0x131e
0x132e
0x133e
0x134e

Figure 9.14 Memory allocation of a variable
Remember that, the memory addresses are in the form of Hexadecimal values
9.13.1 Declaration of Variables
 Every variable should be declared before they are actually used in a program.
Declaration is a process to instruct the compiler to allocate memory as per the type that is
specified along with the variable name. For example, if you declare a variable as int type,
in Dev C++, the compiler allocates 4 bytes of memory. Thus, every variable should be
declared along with the type of value to be stored.
Declaration of more than one variable:
More than one variable of the same type can be declared as a single statement using a
comma separating the individual variables.
Syntax:
<data type> <var1>, <var2>, <var3> …… <var_n>;
Example:
int num1, num2, sum;
 In the above statement, there are three variables declared as int type. Which means,
in num1, num2 and sum, you can store only integer values.
 For the above declaration, the C++ compiler allocates 4 bytes of memory (i.e. 4
memory boxes) for each variable.

}}
}

0x125e
0x126e
0x127e
0x128e
0x129e
0x130e
0x131e
0x132e
0x133e
0x134e

L
- v

al
ue

 (M
em

or
y

A
dd

re
ss

int num1, num2, sum;

num2

Variable names

num1

Figure 9.15 Memory allocation of int type variables

Chapter 9 Page 115-151.indd 139 3/24/2020 9:21:05 AM

140 141

If you declare a variable without any initial value, the memory space allocated to that variable
will be occupied with some unknown value. These unknown values are called as “Junk” or
“Garbage” values.

#include <iostream>
using namespace std;
int main()
{
 int num1, num2, sum;
 cout << num1 << endl;
 cout << num2 << endl;
 cout << num1 + num2;
}

 In the above program, some unknown values will be occupied in memory that is
allocated for the variables num1 and num2 and the statement cout << num1 + num2; will
display the sum of those unknown junk values.
9.13.2 Initialization of variables
Assigning an initial value to a variable during its declaration is called as “Initialization”.
Examples:
int num = 100;
float pi = 3.14;
double price = 231.45;
Here, the variables num, pi, and price have been initialized during the declaration. These
initial values can be later changed during the program execution.

#include <iostream>
using namespace std;
int main()
{
 float pi = 3.14, radius, height, CSA;
 cout << "\n Curved Surface Area of a cylinder";
 cout << "\n Enter Radius (in cm): ";
 cin >> radius;
 cout << "\n Enter Height (in cm): ";
 cin >> height;
 CSA = (2*pi*radius)*height;
 system("cls");
 cout << "\n Radius: " << radius <<"cm";
 cout << "\n Height: " << height << "cm";
 cout << "\n Curved Surface Area of a Cylinder is " << CSA <<" sq. cm.";
}

Output:
 Curved Surface Area of a cylinder
 Enter Radius (in cm): 7
 Enter Height (in cm): 20
 Radius: 7cm
Height: 20cm
Curved Surface Area of a Cylinder is 879.2 sq. cm.

Illustration 9.6 C++ Program to find the Curved Surface Area of a cylinder (CSA) (CSA = 2 pi
r * h)

Variables that are of the same type can be initialized in a single statement.

Chapter 9 Page 115-151.indd 140 3/24/2020 9:21:05 AM

140 141

Example:
int x1 = -1, x2 = 1, x3, n;
9.13.3 Dynamic Initialization
 A variable can be initialized during the execution of a program. It is known as
“Dynamic initialization”. For example,
int num1, num2, sum;
sum = num1 + num2;
The above two statements can be combined into a single one as follows:
int sum = num1+num2;
This initializes sum using the known values of num1 and num2 during the execution.

#include <iostream>
using namespace std;
int main()
{
 int num1, num2;
 cout << "\n Enter number 1: ";
 cin >> num1;
 cout << "\n Enter number 2: ";
 cin >> num2;
 int sum = num1 + num2; // Dynamic initialization
 cout << "\n Average: " << sum /2;
}

Output:
Enter number 1: 78
Enter number 2: 65
Average: 71

Illustration 9.7 C++ Program to illustrate dynamic initialization

 In the above program, after getting the values of num1 and num2, sum is declared
and initialized with the addition of those two variables. After that, it is divided by 2.

#include <iostream>
using namespace std;
int main()
{
 int radius;
 float pi = 3.14;
 cout << "\n Enter Radius (in cm): ";
 cin >> radius;
 float perimeter = (pi+2)*radius; // dynamic initialization
 float area = (pi*radius*radius)/2; // dynamic initialization
 cout << "\n Perimeter of the semicircle is " << perimeter << " cm";
 cout << "\n Area of the semicircle is " << area << " sq.cm";
}

Output:
Enter Radius (in cm): 14
Perimeter of the semicircle is 71.96 cm
Area of the semicircle is 307.72 sq.cm

Illustration 9.8: C++ program to find the perimeter and area of a semi circle

Chapter 9 Page 115-151.indd 141 3/24/2020 9:21:05 AM

142 143

9.13.4 The Access modifier const
 const is the keyword used to declare a constant. You already learnt about constant
in the previous chapter. const keyword modifies / restricts the accessibility of a variable.
So, it is known as Access modifier.
For example,
int num = 100;
 The above statement declares a variable num with an initial value 100. However, the value
of num can be changed during the execution. If you modify the above definition as const int
num = 100; the variable num becomes a constant and its value will remain 100 throughout the
program, and it can never be changed during the execution.

#include <iostream>
using namespace std;
int main()
{
 const int num=100;
 cout << "\n Value of num is = " << num;
 num = num + 1; // Trying to increment the constant
 cout << "\n Value of num after increment " << num;
}

 In the above code, an error message will be displayed as “Cannot modify the const
object” in Turbo compiler and “assignment of read only memory num” in Dev C++.
9.13.5 References
 A reference provides an alias for a previously defined variable. Declaration of a reference
consists of base type and an & (ampersand) symbol; reference variable name is assigned the
value of a previously declared variable.
Syntax:
<type> <& reference_variable> = <original_variable>;

#include <iostream>
using namespace std;
int main()
{
 int num;
 int &temp = num; //declaration of a reference variable temp
 num = 100;
cout << "\n The value of num = " << num;
cout << "\n The value of temp = " << temp;
}
The output of the above program will be
The value of num = 100
The value of temp = 100

Illustration 9.9: C++ program to declare reference variable

Chapter 9 Page 115-151.indd 142 3/24/2020 9:21:05 AM

142 143

1. What are modifiers? What is the use of modifiers?
2. What is wrong with the following C++ statement:
 long float x;
3. What is a variable ? Why is a variable called symblolic variable?
4. What do you mean by dynamic initialization of a variable? Give an exmple.
5. What is wrong with the following statement?
 const int x;

?Evaluate Yourself

9.14 Formatting Output

 Formatting output is very important in the development of output screens for
easy reading and understanding. Manipulators are used to format the output of any C++
program. Manipulators are functions specifically designed to use with the insertion (<<)
and extraction(>>) operators.

 C++ offers several input and output manipulators for formatting. Commonly
used manipulators are: endl, setw, setfill, setprecision and setf. In order to use these
manipulators, you should include the appropriate header file. endl manipulator is a
member of iostream header file. setw, setfill, setprecision and setf manipulators are
members of iomanip header file.

endl (End the Line)

 endl is used as a line feeder in C++. It can be used as an alternate to ‘\n’. In other
words, endl inserts a new line and then makes the cursor to point to the beginning of the
next line. There is a difference between endl and ‘\n’, even though they are performing
similar tasks.

• endl – Inserts a new line and flushes the buffer (Flush means – clean)
• ‘\n’ - Inserts only a new line.
Example:
 cout << "\n The value of num = " << num;
 cout << "The value of num = " << num <<endl;
Both these statements display the same output.
setw ()

 setw manipulator sets the width of the field assigned for the output. The field width
determines the minimum number of characters to be written in output.

Syntax:

setw(number of characters)

Chapter 9 Page 115-151.indd 143 3/24/2020 9:21:05 AM

144 145

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 float basic, da, hra, gpf, tax, gross, np;
 char name[30];
 cout << "\n Enter Basic Pay: ";
 cin >> basic;
 cout << "\n Enter D.A : ";
 cin >> da;
 cout << "\n Enter H.R.A: ";
 cin >> hra;
 gross = basic+da+hra; // sum of basic, da and hra
 gpf = (basic+da) * 0.10; // 10% 0f basic and da
 tax = gross * 0.10; //10% of gross pay
 np = gross - (gpf+tax); //netpay = earnings - deductions
 cout << setw(25) << "Basic Pay : " << setw(10)<< basic<< endl;
 cout << setw(25) << "Dearness Allowance : "<< setw(10)<<da<< endl;
 cout<<setw(25)<<"House Rent Allowance : "<<setw(10)<< hra<<endl;
 cout << setw(25) << "Gross Pay : " << setw(10) << gross << endl;
 cout << setw(25) << "G.P.F : " << setw(10) << gpf << endl;
 cout << setw(25) << "Income Tax : " << setw(10)<< tax << endl;
 cout << setw(25) << "Net Pay : " << setw(10) << np << endl;
}

Illustration 9.10: Program to Calculate Net Salary

The output will be,
Enter Basic Pay: 12000
Enter D.A : 1250
Enter H.R.A : 1450

Basic Pay : 12000
Dearness Allowance : 1250

House Rent Allowance : 1450
Gross Pay : 14700

G.P.F : 1325
Income Tax : 1470

Net Pay : 11905
(HOT: Try to make multiple output statements as a single cout statement)

 In the above program, every output statement has two setw() manipulators; first setw (25)
creates a filed with 25 spaces and second setw(10) creates another field with 10 spaces. When you

Chapter 9 Page 115-151.indd 144 3/24/2020 9:21:05 AM

144 145

represent a value to these fields, it will show the value within the field from right to left.

Field 2 with 10 space width New line modifier

Data to accommodate
in Field 2

Data to accommodate
in Field 1

Field 1 with 25 space width

} }
cout<<setw(25)<<"Basic Pay:"<<setw(10)<<basic<<endl;

In field1 and field 2, the string “Basic Pay: ” and the value of basic pay are shown as given in
Figure 9.16 below.

-------------------------------- Basic pay:

Field 1 with 25 space width Field 2 with 10 space width

---------------12000

Figure 9.16 setw() function
setprecision ()
This is used to display numbers with fractions in specific number of digits.
Syntax:
 setprecision (number of digits);
Example:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ float hra = 1200.123;
 cout << setprecision (5) << hra; }
 In the above code, the given value 1200.123 will be displayed in 5 digits including
fractions. So, the output will be 1200.1
 setprecision () prints the values from left to right. For the above code, first, it will take
4 digits and then prints one digit from fractional portion.
 setprecision can also be used to set the number of decimal places to be displayed. In
order to do this task, you will have to set an ios flag within setf() manipulator. This may be
used in two forms: (i) fixed and (ii) scientific
 These two forms are used when the keywords fixed or scientific are appropriately used
before the setprecision manipulator.
Example:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ cout.setf(ios::fixed);

 cout << setprecision(2)<<0.1; }

Chapter 9 Page 115-151.indd 145 3/24/2020 9:21:05 AM

146 147

 In the above program, ios flag is set to fixed type; it prints the floating point number in
fixed notation. So, the output will be, 0.10

cout.setf(ios::scientific);

cout << setprecision(2) << 0.1;

 In the above statements, ios flag is set to scientific type; it will print the floating point
number in scientific notation. So, the output will be, 1.00e-001

9.15 Expression
 An expression is a combination of operators, constants and variables arranged as
per the rules of C++. It may also include function calls which return values. (Functions
will be learnt in upcoming chapters).
 An expression may consist of one or more operands, and zero or more operators to
produce a value. In C++, there are seven types of expressions, and they are:
 (i) Constant Expression (ii) Integer Expression
 (iii) Floating Expression (iv) Relational Expression
 (v) Logical Expression (vi) Bitwise Expression
 (vii) Pointer Expression
SN Expression Description Example

1 Constant
Expression

Constant expression consist only constant
values int num=100;

2 I n t e g e r
E x p r e s s i o n

The combination of integer and character
values and/or variables with simple
arithmetic operators to produce integer
results.

sum=num1+num2;
avg=sum/5;

3 Float Expression
The combination of floating point values
and/or variables with simple arithmetic
operators to produce floating point results.

Area=3.14*r*r;

4 R e l a t i o n a l
E x p r e s s i o n

The combination of values and/or variables
with relational operators to produce
bool(true means 1 or false means 0) values
as results.

x>y;
a+b==c+d;

5 L o g i c a l
E x p r e s s i o n

The combination of values and/or variables
with Logical operators to produce bool
values as results.

(a>b)&& (c==10);

6 B i t w i s e
E x p r e s s i o n

The combination of values and/or variables
with Bitwise operators.

x>>3;
a<<2;

7 P o i n t e r
E x p r e s s i o n

A Pointer is a variable that holds a memory
address. Pointer variables are declared using
(✳) symbol.

int *ptr;

Table 9.10 : Types of Expressions

Chapter 9 Page 115-151.indd 146 3/24/2020 9:21:05 AM

146 147

9.16 Type Conversion

 The process of converting one fundamental data type into another is called as “Type Conversion”.
C++ provides two types of conversions.
(1) Implicit type conversion
(2) Explicit type conversion.
(1) Implicit type conversion:
 An Implicit type conversion is a conversion performed by the compiler automatically.
So, implicit conversion is also called as “Automatic conversion”.
 This type of conversion is applied usually whenever different data types are
intermixed in an expression. If the type of the operands differ, the compiler converts one
of them to match with the other, using the rule that the “smaller” type is converted to the
“wider” type, which is called as “Type Promotion”.
For example:
#include <iostream>
using namespace std;
int main()
{
 int a=6;
 float b=3.14;
 cout << a+b;
}
 In the above program, operand a is an int type and b is a float type. During the
execution of the program, int is converted into a float, because a float is wider than int.
Hence, the output of the above program will be: 9.14

The following Table 9.11 shows you the conversion pattern.

LHO

RHO
char short int long float double long double

char int int int long float double long double

short int int int long float double long double

int int int int long float double long double

long long long long long float double long double

float float float float float float double long double

double double double double double double double long double

long
double

long
double

long
double

long
double

long
double

long
double

long
double long double

(RHO – Right Hand Operand; LHO – Left Hand Operand)

Chapter 9 Page 115-151.indd 147 3/24/2020 9:21:05 AM

148 149

Table 9.11: Implicit conversion of mixed operands

(2) Explicit type conversion
 C++ allows explicit conversion of variables or expressions from one data type to
another specific data type by the programmer. It is called as “type casting”.
Syntax:
 (type-name) expression;
Where type-name is a valid C++ data type to which the conversion is to be performed.
Example:
#include <iostream>
using namespace std;
int main()
{
 float varf=78.685;
 cout << (int) varf;
}
 In the above program, variable varf is declared as a float with an initial value
78.685. The value of varf is explicitly converted to an int type in cout statement. Thus, the
final output will be 78.
 During explicit conversion, if you assign a value to a type with a greater range, it
does not cause any problem. But, assigning a value of a larger type to a smaller type may
result in loosing or loss of precision values.

S.No Explicit Conversion Problem

1 double to float
Loss of precision. If the original value is out of
range for the target type, the result becomes
undefined

2 float to int
Loss of fractional part. If original value may be
out of range for target type, the result becomes
undefined

3 long to short Loss of data
Table 9.12 – Explicit Conversion Problems

#include <iostream>
using namespace std;
int main()
{
 double varf=178.25255685;
 cout << (float) varf << endl;
 cout << (int) varf << endl;
}
Output:
178.253
178

Example:

Chapter 9 Page 115-151.indd 148 3/24/2020 9:21:05 AM

148 149

1. What is meant by type conversion?
2. How implicit conversion is different from explicit conversion?
3. What is the difference between endl and \n?
4. What is the use of references?
5. What is the use of setprecision () ?

?Evaluate Yourself

Hands on practice:
1. Write C++ programs to interchange the values of two variables.
 a. Using the third variable
 b. Without using third variable
2. Write C++ programs to do the following:
 a. To find the perimeter and area of a quadrant.
 b. To find the area of triangle.
 c. To convert the temperature from Celsius to Fahrenheit.
3. Write a C++ to find the total and percentage of marks you secured from 10th

Standard Public Exam. Display all the marks one-by-one along with total and
percentage. Apply formatting functions.

• Every programming language has two
fundamental elements, viz., data types
and variables.

• In C++, the data types are classified
as three main categories (1) Built-in
data types (2) User-defined data types
(3) Derived data types.

• The variables are the named space to hold
values of certain data type.

• There are five fundamental data types in
C++: char, int, float, double and void.

• C++ compiler allocates specific memory
space for each and every data handled
according to the compiler’s standards.

• Variables are user-defined names
assigned to a memory location in which
the values are stored.

• Declaration is a process to instruct the
compiler to allocate memory as per the
type specified along with the variable
name.

• Manipulators are used to format output
of any C++ program. Manipulators are
functions specifically designed to use with
the insertion (<<) and extraction(>>)
operators.

• An expression is a combination of
operators, constants and variables
arranged as per the rules of C++.

• The process of converting one
fundamental data type into another
is called as “Type Conversion”. C++
provides two types of conversions (1)
Implicit type conversion and (2) Explicit
type conversion.

Points to Remember

Chapter 9 Page 115-151.indd 149 3/24/2020 9:21:05 AM

150 151

Evaluation

SECTION – A
Choose the correct answer
1. How many categories of data types are available in C++?
 (a) 5 (b) 4 (c) 3 (d) 2
2. Which of the following data types is not a fundamental type?
 (a) signed (b) int (c) float (d) char
3. What will be the result of following statement?
 char ch= ‘B’;
 cout << (int) ch;
 (a) B (b) b (c) 65 (d) 66
4. Which of the character is used as suffix to indicate a floating point value?
 (a) F (b) C (c) L (d) D
5. How many bytes of memory is allocated for the following variable declaration if you are

using Dev C++? short int x;
 (a) 2 (b) 4 (c) 6 (d) 8
6. What is the output of the following snippet?
 char ch = ‘A’;
 ch = ch + 1;
 (a) B (b) A1 (c) F (d) 1A
7. Which of the following is not a data type modifier?
 (a) signed (b) int (c) long (d) short
8. Which of the following operator returns the size of the data type?
 (a) sizeof() (b) int () (c) long () (d) double ()
9. Which operator is used to access reference of a variable?
 (a) $ (b) # (c) & (d) !
10. This can be used as alternate to endl command:
 (a) \t (b) \b (c) \0 (c) \n

SECTION-B

Very Short Answers

1. Write a short note on const keyword with an example.
2. What is the use of setw() format manipulator?
3. Why is char often treated as integer data type?
4. What is a reference variable? What is its use?
5. Consider the following C++ statement. Are they equivalent?
 char ch = 67; char ch = ‘C’;

Chapter 9 Page 115-151.indd 150 3/24/2020 9:21:05 AM

150 151

6. What is the difference between 56L and 56?

7. Determine which of the following are valid constant? And specify their type.

 (i) 0.5 (ii) ‘Name’ (iii) ‘\t’ (iv) 27,822

8. Suppose x and y are two double type variable that you want add as integer and assign to
an integer variable. Construct a C++ statement to do the above.

9. What will be the result of following if num=6 initially.

 (a) cout << num;

 (b) cout << (num==5);

10. Which of the following two statements are valid? Why? Also write their result.

 (i) int a; a = 3,014; (ii) int a; a=(3,014);

SECTION-C
Short Answers

1. What are arithmetic operators in C++? Differentiate unary and binary arithmetic operators.
Give example for each of them.

2. How relational operators and logical operators are related to one another?

3. Evaluate the following C++ expressions where x, y, z are integers and m, n are floating
point numbers. The value of x = 5, y = 4 and m=2.5;

 (i) n = x + y / x;

 (ii) z = m * x + y;

 (iii) z *= x * m + x;

Reference:

(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

(2) The Complete Reference C++ (Forth Edition), Herbert Schildt. Mc.Graw Hills.

(3) Computer Science with C++ (A text book of CBSE XI and XII), Sumita Arora,
Dhanpat Rai & Co.

Chapter 9 Page 115-151.indd 151 3/24/2020 9:21:05 AM

152 153

Learning Objectives

After learning this chapter, the students
will be able to
• Understand the different

kinds of statements.
• Construct different flow

of control statements in
C++.

10.1 Introduction

 In the previous chapters you learnt the
basic concepts of C++ programming such as
variables, constants, operators, data types etc.
Generally a program executes its statements
sequentially from beginning to end. However,
such a strict sequential ordering is restrictive
and less useful. There are lot of situations
where it is useful to decide the code block
executed on the basis of a certain condition.
In such situations, the flow of control jumps
from one part of the code to another segment
of code. Program statements that cause
such jumps are called as “Control flow”.
This chapter deals with the basics of control
structures such as “Selection”, “Iteration” and
“Jump” statement.

10.2 Statements

 A computer program is a set of
statements or instructions to perform a
specific task. These statements are intended
to perform specific action. The action may
be of variable declarations, expression
evaluations, assignment operations, decision
making, looping and so on.

CHAPTER 10
Flow of Control

There are two kinds of statements used in
C++.
(i) Null statement
(ii) Compound statement

10.2.1 Null statement
 The "null or empty statement" is a
statement containing only a semicolon. It
takes the flowing form:

 ; // it is a null statement

 Null statements are commonly used
as placeholders in iteration statements or as
statements on which to place labels at the
end of compound statements or functions.

10.2.2 Compound (Block) statement
 C++ allows a group of statements
enclosed by pair of braces {}. This group
of statements is called as a compound
statement or a block.

The general format of compound statement
is:
{
 statement1;
 statement2;
 statement3;
}
For example
{
 int x, y;
 x = 10;
 y = x + 10;
}

Unit III Introduction to C++

Chapter 10 Page 152-179.indd 152 3/24/2020 9:21:32 AM

152 153

 The compound statement or block
is a treated as a single unit and may appear
anywhere in the program.

10.3 Control Statements

 Control statements are statements
that alter the sequence of flow of instructions.

 In a program, statements may
be executed sequentially, selectively or
iteratively. Every programming languages
provide statements to support sequence,
selection (branching) and iteration.

 If the statements are executed
sequentially, the flow is called as sequential
flow. In some situations, if the statements
alter the flow of execution like branching,
iteration, jumping and function calls, this
flow is called as control flow.

Sequence statement

 The sequential
statement are the
statements, that are executed
one after another only once
from top to bottom. These
statements do not alter the flow of execution.
These statements are called as sequential
flow statements. They always end with a
semicolon (;).

Selection statement

STATEMENT 2

Entry

True

STATEMENT1

STATEMENT 1 STATEMENT 2

False
Condition

Exit

Statement 1

Statement 2

Statement 3

 The selection statement means the
statement (s) executed depend upon a
condition. If a condition is true, a true block
(a set of statements) is executed otherwise
a false block is executed. This statement is
also called decision statement or selection
statement because it helps in making
decision about which set of statements are
to be executed.

Iteration statement

True

False

The Exit Condition

The Loop Body

STATEMENT 1

STATEMENT 2

Condition
?

 The iteration statement is a set of
statement that are repetitively executed
based upon a conditions. If a condition
evaluates to true, the set of statements
(true block) is executed again and again.
As soon as the condition becomes false,
the repetition stops. This is also known as
looping statement or iteration statement.
 The set of statements that are
executed again and again is called the body
of the loop.The condition on which the
execution or exit from the loop is called
exit-condition or test-condition.
 Generally, all the programming
languages support this type of statements
to write programs depending upon the
problem. C++ also supports this type
of statements. These statements will be
discussed in coming sections.

Chapter 10 Page 152-179.indd 153 3/24/2020 9:21:32 AM

154 155

Note

 In C++, any non zero is treated
as true including negative numbers and
zero is treated as false.

 Selection statements and iteration
statements are executed depending upon
the conditional expression. The conditional
expression evaluates either true or false.

10.4 Selection statements

 In a program a decision causes a one
time jump to a different part of a program.
Decisions in C++ are made in several ways,
most importantly with if .. else … statement
which chooses between two alternatives.
Another decision statement, switch creates
branches for multiple alternatives sections
of code, depending on the value of a single
variable.

10.4.1 if statement
 The if statement evaluates a condition,
if the condition is true then a true-block
(a statement or set of statements) is executed,

otherwise the true-block is skipped.The
general syntax of the if statement is:

if (expression)
 true-block;
statement-x;

 In the above syntax, if is a keyword
that should contain expression or condition
which is enclosed within parentheses. If
the expression is true (nonzero) then the
true-block is executed and followed by
statement-x are also executed, otherwise,
the control passes to statement-x. The true-
block may consists of a single statement, a
compound statement or empty statement.
The control flow of if statement and the
corresponding flow chart is shown below.

Test
expression

True-block

Statement- X

#include <iostream>
using namespace std;
int main()
{
 int age;
 cout<< "\n Enter your age: ";
 cin>> age;
 if(age>=18)
 cout<< "\n You are eligible for voting";
 cout<< "This statement is always executed.";
 return 0;
}

Illustration 10.1 C++ program to check whether a person is eligible to vote using if
statement

The pair of braces is not required
because if condition followed by
only one statement

Output
 Enter your age: 23
 You are eligible for voting….
 This statement is always executed.

Chapter 10 Page 152-179.indd 154 3/24/2020 9:21:32 AM

154 155

10.4.2 if-else statement
 In the above examples of if, you have
seen that, a block of statements are excecuted
only if the condition evaluates to true. What
if there is another course of action to be
followed if the condition evaluates to false.
There is another form of if that allows for
this kind of either or condition by providing
an else clause. The syntax of the if-else
statement is given below:

if (expression)
{
 True-block;
}
else
{
 False-block;
}
Statement-x

 In if-else statement, first the
expression or condition is evaluated to either
true of false. If the result is true, then the
statements inside true-block is executed and
false-block is skipped. If the result is false,
then the statement inside the false-block is
executed i.e., the true-block is skipped.

Test expression

True

False

True Block
False-Block

Statement-X

#include <iostream>
using namespace std;
int main()
{
 int num, rem;
 cout<< "\n Enter a number: ";
 cin>>num;
 rem = num % 2;
 if (rem==0)
 cout<< "\n The given number" <<num<< " is Even";
 else
 cout<< "\n The given number "<<num<< " is Odd";
 return 0;
}
Output

Enter number: 10
The given number 10 is Even

Illustration 10.2 C++ program to find whether the given number is even number or
odd number using if-else statement

 In the above program, the remainder of the given number is stored in rem. If the value
of rem is zero, the given number is inferred as an even number otherwise, it is inferred as on
odd number.

Chapter 10 Page 152-179.indd 155 3/24/2020 9:21:32 AM

156 157

10.4.3 Nested if
 An if statement which contains another if statement is called nested if. The nested can
have one of the following three forms.
1. If nested inside if part
2. If nested inside else part
3. If nested inside both if part and else part
The syntax of the nested if:

if (expression-1)
{
 if (expression-2)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}
else
 body of else part;

If nested inside if part If nested inside else part
if (expression-1)
{
 body of true part;
}
else
{
 if (expression-2)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}

if (expression)
{
 if (expression)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}
else
{
 if (expression)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}

If nested inside both if part
and else part

 In the first syntax of the nested if mentioned above the expression-1 is evaluated and
the expression result is false then control passes to statement-m. Otherwise, expression-2 is
evaluated,if the condition is true, then Nested-True-block is executed, next statement-n is also
executed. Otherwise Nested-False-Block, statement-n and statement-m are executed.

 The working procedure of the above said if..else structures are given as flowchart below:

Statement 3 Statement 2

Statement x

Statement 1

False

False
Condition 2

Condition 1
True

True

Next Statement

Chapter 10 Page 152-179.indd 156 3/24/2020 9:21:33 AM

156 157

Flowchart 10.1 if nested inside if Part

Statement Statement

Statement

Statement

False

Condition

Condition
True

Next Statement

Flowchart 10.2 If nested inside else part

Statement Statement Statement Statement

False

FalseFalse
Condition Condition

Condition
True

True True

Flowchart 10.3 If nested inside both if part and else part

#include <iostream>
using namespace std;
int main()
{
 int sales, commission;
 char grade;
 cout << "\n Enter Sales amount: ";
 cin >> sales;
 cout << "\n Enter Grade: ";
 cin >> grade;
 if (sales > 5000)
 {
 commission = sales * 0.10;
 cout << "\n Commission: " << commission;
 }

Illustration 10.3 – C++ program to calculate commission according to grade using
nested if statement

Chapter 10 Page 152-179.indd 157 3/24/2020 9:21:33 AM

158 159

 else
 {
 commission = sales * 0.05;
 cout << "\n Commission: " << commission;
 }
 cout << "\n Good Job ";
 return 0;
}
Output:
Enter Sales amount: 6000
Enter Grade: A
Commission: 600
Good Job

10.4.4 if -else-if ladder

 The if-else ladder is a multi-path decision making statement. In this type of statement
'if' is followed by one or more else if statements and finally end with an else statement.

The syntax of if-else ladder:

if (expression 1)
{
 Statement-1
}
else
 if(expression 2)
 {
 Statement-2
 }
 else
 if (expression 3)
 {
 Statement-3
 }
 else
 {
 Statement-4
 }

 When the respective expression becomes true, the statement associated with block is
executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final
else statement will be executed.

Chapter 10 Page 152-179.indd 158 3/24/2020 9:21:33 AM

158 159

Condition- n

Condition-1

Statement -2 Statement-n Statment-sStatement-1

True True
True

False

False

False

Next Statement

Condition-2

Flowchart 10.4 if-else ladder flow chart

#include <iostream>
using namespace std;
int main ()
{
int marks;
cout<<" Enter the Marks :";
cin>>marks;
if(marks >= 60)
 cout<< "Your grade is 1st class !!" <<endl;
 else if(marks >= 50 && marks < 60)
 cout<< "your grade is 2nd class !!" <<endl;
 else if(marks >= 40 && marks < 50)
 cout<< "your grade is 3rd class !!" <<endl;
else
 cout<< "You are fail !!" <<endl;
return 0;
}
Output
Enter the Marks :60
Your grade is 1st class !!

Illustration 10.4 C++ program to find your grade using if-else ladder.

 When the marks are greater than or
equal to 60, the message "Your grade is 1st
class !!" is displayed and the rest of the ladder
is bypassed. When the marks are between
50 and 59, the message "Your grade is 2nd

class !!" is displayed, and the other ladder is
bypassed. When the mark between 40 to 49,
the message "Your grade is 3rd class !!" is
displayed, otherwise, the message "You are
fail !!" is displayed.

Chapter 10 Page 152-179.indd 159 3/24/2020 9:21:33 AM

160 161

10.4.5 The ?: Alternative to if- else

 The conditional operator (or Ternary operator) is an alternative for ‘if else statement’.
The conditional operator that consists of two symbols (?:). It takes three arguments. The control
flow of conditional operator is shown below:

The syntax of the conditional operator is:

 expression 1? expression 2 : expression 3

FALSE

Expression1 (with
Condition) ? Expression 2 Expression 3

TRUE

:

 In the above syntax, the expression 1 is a condition which is evaluated, if the condition
is true (Non-zero), then the control is transferred to expression 2, otherwise, the control passes
to expression 3.

#include <iostream>
using namespace std;
int main()
{
 int a, b, largest;
 cout << "\n Enter any two numbers: ";
 cin >> a >> b;
 largest = (a>b)? a : b;
 cout << "\n Largest number : " << largest;
 return 0;
}
Output:
 Enter any two numbers: 12 98
 Largest number : 98

Illustration 10.5 – C++ program to find greatest of two numbers using conditional
operator

10.4.6 Switch statement

 The switch statement is a multi-way branch statement. It provides an easy way to
dispatch execution to different parts of code based on the value of the expression. The switch
statement replaces multiple if-else sequence.

Chapter 10 Page 152-179.indd 160 3/24/2020 9:21:33 AM

160 161

The syntax of the switch statement is;

switch(expression)
{
 case constant 1:
 statement(s);
 break;
 case constant 2:
 statement(s);
 break;
 .
 .
 .
 .
 default:
 statement(s);
}

 In the above syntax, the expression is evaluated and if its value matches against the
constant value specified in one of the case statements, that respective set of statements are
executed. Otherwise, the statements under the default option are executed. The workflow of
switch statement and flow chart are shown below.

Expression

default

Case 3

Case 2

Case 1

code in case 1Block

code in case 1Block

code in case 2Block

code in case 3Block

code in default Block

Flowchart10.5: workflow of switch and flow chart
Rules:
1. The expression provided in the switch should result in a constant value otherwise it would

not be valid.

2. Duplicate case values are not allowed.

3. The default statement is optional.
4. The break statement is used inside the switch to terminate a statement sequence. When

a break statement is reached, the switch terminates, and the flow of control jumps to the
next line following the switch statement.

Chapter 10 Page 152-179.indd 161 3/24/2020 9:21:33 AM

162 163

5. The break statement is optional. If omitted, execution will continue on into the next case.
The flow of control will fall through to subsequent cases until a break is reached.

6. Nesting of switch statements is also allowed.

#include <iostream>
using namespace std;
int main()
{
 int num;
 cout << "\n Enter week day number: ";
 cin >> num;
 switch (num)
 {
 case 1 : cout << "\n Sunday"; break;
 case 2 : cout << "\n Monday"; break;
 case 3 : cout << "\n Tuesday"; break;
 case 4 : cout << "\n Wednessday"; break;
 case 5 : cout << "\n Thursday"; break;
 case 6 : cout << "\n Friday"; break;
 case 7 : cout << "\n Saturday"; break;
 default: cout << "\n Wrong input....";
 }
}
Output:
Enter week day number: 6
Friday

Illustration 10.6 – C++ program to demonstrate switch statement

10.4.7 Switch vs if-else
 “if-else” and “switch” both are selection statements. The selection statements, transfer the
flow of the program to the particular block of statements based upon whether the condition is
“true” or “false”. However, there are some differences in their operations. These are given below:

Key Differences Between if-else and switch

S.No if-else Switch

1
Expression inside if statement decide whether
to execute the if block or under else block.

expression inside switch statement
decide which case to execute.

2
An if-else statement uses multiple statements
for multiple choices

switch statement uses single
expression for multiple choices.

3
If-else statement checks for equality as well as
for logical expression.

switch checks only for equality.

4
The if statement evaluates integer, character,
pointer or floating-point type or Boolean type.

switch statement evaluates only
character or a integer data type.

5
If the condition is false the else block statements
will be executed

If the condition is false then the
default statements are executed.

Chapter 10 Page 152-179.indd 162 3/24/2020 9:21:33 AM

162 163

The if statement is more flexible than switch statement.

10.5 Iteration statements

 An iteration (or looping) is a
sequence of one or more statements that
are repeatedly executed until a condition is
satisfied. These statements are also called as
control flow statements. It is used to reduce
the length of code, to reduce time, to execute
program and takes less memory space. C++
supports three types of iteration statements;
• for statement
• while statement
• do-while statement

 All looping statements repeat a set
statements as long as a specified condition
is remains true. The specified condition
is referred as a loop control. For all three
loop statements, a true condition is any
nonzero value and a zero value shows a false
condition.

10.5.1 Parts of a loop
 Every loop has four elements that are used
for different purposes. These elements are
• Initialization expression
• Test expression
• Update expression
• The body of the loop
Initialization expression(s): The control
variable(s) must be initialized before the
control enters into loop. The initialization
of the control variable takes place under the
initialization expressions. The initialization
expression is executed only once in the
beginning of the loop.

Test Expression: The test expression is an
expression or condition whose value decides
whether the loop-body will be execute
or not. If the expression evaluates to true
(i.e., 1), the body of the loop gets executed,
otherwise the loop is terminated.
In an entry-controlled loop, the test-
expression is evaluated before the entering
into a loop whereas in an exit-controlled
loop, the test-expression is evaluated before
exit from the loop.
Update expression: It is used to change the
value of the loop variable. This statement
is executed at the end of the loop after the
body of the loop is executed.
The body of the loop: A statement or set of
statements forms a body of the loop that are
executed repetitively. In an entry-controlled
loop, first the test-expression is evaluated
and if it is nonzero, the body of the loop is
executed otherwise the loop is terminated.
In an exit-controlled loop, the body of the
loop is executed first then the test-expression
is evaluated. If the test-expression is true the
body of the loop is repeated otherwise loop
is terminated
10.5.2 for loop

 The for loop is a entry- controlled
loop and is the easiest looping statement
which allows code to be executed repeatedly.
It contains three different statements
(initialization, condition or test-expression
and update expression(s)) separated by
semicolons.
The general syntax is:

for (initialization(s); test-expression; update expression(s))
{
 Statement 1;
 Statement 2;
 ………….
}
Statement-x;

Chapter 10 Page 152-179.indd 163 3/24/2020 9:21:33 AM

164 165

 The initialization part is used to
initialize variables or declare variable which
are executed only once, then the control
passes to test-expression. After evaluation
of test-expression, if the result is false, the
control transferred to statement-x. If the
result is true, the body of the for loop is
executed, next the control is transferred
to update expression. After evaluation
of update expression part, the control is
transferred to the test-expression part. Next
the steps 3 to 5 is repeated. The workflow of
for loop and flow chart are shown below.

Test
expression

Body of for
Loop

Initilization
Statement

Statement-X

Update
Statement

Exit for Loop

False

True

Flowchart 10.6: Workflow of for
loop and flow chart

#include <iostream>
using namespace std;
int main ()
{
int i;
for(i = 0; i< 10; i ++)
 cout<< "value of i : " <<i<<endl;
return 0;
}
Output
value of i : 0
value of i : 1
value of i : 2

Illustration 10.7 C++ program to display numbers from 0 to 9 using for loop

value of i : 3
value of i : 4
value of i : 5
value of i : 6
value of i : 7
value of i : 8
value of i : 9

Chapter 10 Page 152-179.indd 164 3/24/2020 9:21:33 AM

164 165

The following lines describes the working of the above given for loop:

Initialization Expression

 Test Expression Update Expression

for (i=0; i < 10; i++)

 Body of the loop

cout<<"value of i:"<<i<<endl;

Here, the body of the loop contains
a single statement,so need not use
curly braces

 In the above program, first the variable i is initialized, next i is compared with 10, if i is
less than ten, the value of i is incremented. In this way, the numbers 0 to 9 are displayed. Once
i becomes 10, it is no longer < 10. So, the control comes out of the for loop.

#include <iostream>
using namespace std;
int main ()
{
int i,sum=0;
for(i=1; i<=10;i++)
 {
 sum=sum+i;
 }
cout<<"The sum of 1 to 10 is "<<sum;
return 0;
}
Output
The sum of 1 to 10 is 55

Illustration 10.8 C++ program to sum the numbers from 1 to 10 using for loop

Variations of for loop
 The for is one of the most important
looping statement in C++ because it allows a
several variations. These variations increase
the flexibility and applicability of for loop.
These variations will be discussed below:

Multiple initialization and multiple
update expressions
 Multiple statements can be used in
the initialization and update expressions of
for loop. These multiple initialization and
multiple update expressions are separated
by commas. For example,

#include<iostream>
using namespace std;
int main()
{
 int i, j;
 for(i=0, j=10 ; i<j ; i++,j--)
 {
 cout<<"\nThe value of i is"<<i<<" The value of j is "<<j;

} }

Multiple initialization expressions
(separated by commas)

Multiple update expressions
(separated by commas)

Chapter 10 Page 152-179.indd 165 3/24/2020 9:21:33 AM

166 167

}
return 0;
}
Output
The value of i is 0 The value of j is 10
The value of i is 1 The value of j is 9
The value of i is 2 The value of j is 8
The value of i is 3 The value of j is 7
The value of i is 4 The value of j is 6

 In the above example, the initialization
part contains two variables i and j and update
expression contains i++ and j++. These two
variables are separated by commas which
is executed in sequential order i.e., during
initialization firstly i=0 followed by j=10.
Similarly, in update expression, firstly i++ is
evaluated followed by j++ is evaluated.

Prefer prefix operator over postfix
 Generally, the update expression
contains increment/decrement operator

(++ or --). In this part, always prefer prefix
increment/decrement operator over postfix
when to be used alone. The reason behind
this is that when used alone, prefix operators
are executed faster than postfix.

Optional expressions

 Generally, the for loop contains three
parts, i.e., initialization expressions, test
expressions and update expressions. These
three expressions are optional in a for loop.

#include <iostream>
using namespace std;
int main ()
{
int i, sum=0, n;
cout<<"\n Enter The value of n";
cin>>n;
i =1;
for (; i<=n;)
 {
 sum += i;
 ++i;
 }
cout<<"\n The sum of 1 to " <<n<<"is "<<sum;
return 0;
}
Output
Enter the value of n 5
The sum of 1 to 5 is 15

Illustration 10.9 C++ program to sum the numbers from 1 to n

Chapter 10 Page 152-179.indd 166 3/24/2020 9:21:33 AM

166 167

 In the above code, the update expression is not given, but a semicolon is necessary before the
update expression.

Initialization expression and
update expressions are skipped

for (; i<=n;)

 In the above code, neither the initialization nor the update expression is given in the for loop.
If both or any one of expressions are absent then the control is transferred to conditional part.

infinite loop

 An infinite loop will be formed if a test-expression is absent in a for loop. For example,

for(i=0 ; ; ++i)

cout<<"\n Welcome"; This statement is
displayed infinitely

test - expression is skipped

Similarly, the following for loop also forms an infinite loop.

for(; ;)

cout<<"\n Welcome"; This statement is
displayed infinitely

All three expressions are skipped

Empty loop

 Empty loop means a loop that has no statement in its body is called an empty loop.
Following for loop is an empty loop:

for(i=0 ; i<=5; +=i) ; The body of for loop
contains a null statement

 In the above code, the for loop contains a null statement, it is an empty loop.

Similarly, the following for loop also forms an empty loop.

for(i=0 ; i<=5; ++i) ;
The body of for loop
contains a null statement

The body of for loop is not
executed because semicolon(;)
is given at the end of for loop.cout<<"\nWe are Indians";

{

}

int i;

Chapter 10 Page 152-179.indd 167 3/24/2020 9:21:33 AM

168 169

 In the above code, the body of a for loop enclosed in braces is not executed because a
semicolon is given after the for loop.

Declaration of variable in a for loop
 In C++, the variables can also be declared within a for loop. For instance,

 int main ()

 int sum = 0;

 for(int i=0; i<=5; ++i)

 Variable (i)is declared within the for loop.

 The variable i can be accessed
only within the body of loop.

 cout<<"\nThe variable i cannot be accessed here";
 cout<<"\n The variable sum can be accessed here";

 sum = sum + i;
 {

 {

 }

 }
 A variable declared inside the block of main() can be accessed anywhere inside main()
i.e., the scope of variable in main()

10.5.3 While loop
 A while loop is a control flow statement that allows the loop statements to be executed
as long as the condition is true. The while loop is an entry-controlled loop because the test-
expression is evaluated before entering into a loop.
The while loop syntax is:

while (Test expression)
{
 Body of the loop;
}
Statement-x;

The control flow and flow chart of the while loop is shown below.

Test
expression

Body of while
Loop

Statement -X;

True

false

Flowchart 10.7: while loop control flow and flowchart

Chapter 10 Page 152-179.indd 168 3/24/2020 9:21:33 AM

168 169

 In while loop, the test expression is evaluated and if the test expression result is true,
then the body of the loop is executed and again the control is transferred to the while loop.
When the test expression result is false the control is transferred to statement-x.

#include <iostream>
using namespace std;
int main ()
{
int i=1,sum=0;
while(i<=10)
{
 sum=sum+i;
 i++;
}
cout<<"The sum of 1 to 10 is "<<sum;
return 0;
}
Output
The sum of 1 to 10 is 55

Illustration 10.10 C++ program to sum numbers from 1 to 10 using while loop

 In the above program, the integer variable i is initialized to 1 and the variable sum to
0. The while loop checks the condition, i < 10, if the condition is true, the value of i, which is
added to sum and i is incremented by 1. Again, the condition i < 10 is checked. Since 2 < 10, 2
is added to the earlier value of sum. This continues until i becomes 11. At this point in time,
11 < 10 evaluates to false and the while loop terminates. After the loop termination, the value
of sum is displayed.

#include <iostream>
using namespace std;
int main ()
{
int i=1,num,avg,sum=0;
while(i<=5)
{
 cout<<"Enter the number : ";
 cin>>num;
 sum=sum+num;
 i++;
}
avg=sum/5;
cout<<"The sum is "<<sum<<endl;
cout<<"The average is "<<avg;
return 0;
}
Output
Enter the number : 1
Enter the number : 2
Enter the number : 3
Enter the number : 4
Enter the number : 5
The sum is 15
The average is 3

Illustration 10.11 C++ program to find sum and average of 5 numbers using while loop

Chapter 10 Page 152-179.indd 169 3/24/2020 9:21:33 AM

170 171

 In the above program, integer variables num and avg are declared and variable i is
initialized to 1 and sum to 0. The while loop checks the condition, since i <= 5 the condition is
true, a number is read from the user and this is added to sum and i is incremented by 1. Now,
the condition is i <= 5 is again checked. Since 2 <=5, the second number is obtained from
the user and it is added to sum. This continues, until i becomes 6, at which point the while
loop terminates. After the loop termination, the avg is computed and both sum and avg are
displayed.

While loop variation
 A while loop may contain several variations. It can be an empty loop or an infinite
loop. An empty while loop does not have any statement inside the body of the loop except null
statement i.e., just a semicolon.
For example

This is an empty loop because the while
loop does not contain any statement

while(++i < 10000)
int i=0;

return 0;

}

{
int main()

 In the above code, the loop is a time delay loop. A time delay loop is useful for pausing
the program for some time.

 A while loop may be infinite loop when no update statement is given inside the body of
the loop. For example,

This statement will be displayed
infinitely because no update
statement inside the body of the loop

This is not a part of the while loop statement
because of missing curly braces

cout <<"The value of i is "<<i;

i++;

while(i < =10)
int i = 0;

int main()
{

}

return 0;

Chapter 10 Page 152-179.indd 170 3/24/2020 9:21:33 AM

170 171

10.5.4 do-while loop

 The do-while loop is an exit-controlled loop. In do-while loop, the condition is evaluated
at the bottom of the loop after executing the body of the loop. This means that the body of the
loop is executed at least once, even when the condition evaluates false during the first iteration.
The do-while loop syntax is:

do
{
 Body of the loop;

} while(condition);

The flow control and flowchart for do-while loop is shown below

Body of Loop

Test
expression

Statement - X

False

true

Flowchart 10.8 : do-while loop control flow and flowchart

#include <iostream>
using namespace std;
int main ()
{
int n = 10;
do
{
 cout<<n<<", ";
 n--;
}while (n>0) ;
}
Output
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Illustration 10.12 C++ program to display number from 10 to 1 using do-while loop

Chapter 10 Page 152-179.indd 171 3/24/2020 9:21:33 AM

172 173

 In the above program, the integer variable n is initialized to 10. Next the value of n is
displayed as 10 and n is decremented by 1. Now, the condition is evaluated, since 9 > 0, again
9 is displayed and n is decremented to 8. This continues, until n becomes equal to 0, at which
point, the condition n > 0 will evaluate to false and the do-while loop terminates.

10.5.5 Nesting of loops
A loop which contains another loop is called as a nested loop.
The syntax is given below:

for (initialization(s); test-expression; update expression(s))
{
 for (initialization(s); test-expression; update expression(s)
 {
 statement(s);
 }
statement(s);
}

while(condition)
{
 while(condition)
 {
 statement(s);
 }
statement(s);
}

do
{
statement(s);
 do
 {
 statement(s);
 }while(condition);
} while(condition);

#include<iostream>
using namespace std;
int main(void)
{
 cout<< "A multiplication table:" <<endl <<" 1\t2\t3\t4\t5\t6\t7\t8\t9" <<endl<< "" <<endl;
 for(int c = 1; c < 10; c++)
 {
 cout<< c << "| ";
 for(int i = 1; i< 10; i++)
 {
 cout<<i * c << '\t';
 }
 cout<<endl;
 }
return 0;
}

Illustration 10.13 C++ program to display matrix multiplication table using nested for loop

Chapter 10 Page 152-179.indd 172 3/24/2020 9:21:33 AM

172 173

Output
A multiplication table:
1 2 3 4 5 6 7 8 9
1| 1 2 3 4 5 6 7 8 9
2| 2 4 6 8 10 12 14 16 18
3| 3 6 9 12 15 18 21 24 27
4| 4 8 12 16 20 24 28 32 36
5| 5 10 15 20 25 30 35 40 45
6| 6 12 18 24 30 36 42 48 54
7| 7 14 21 28 35 42 49 56 63
8| 8 16 24 32 40 48 56 64 72
9| 9 18 27 36 45 54 63 72 81

10.6 Jump statements

 Jump statements are used to interrupt the normal flow of program. Types of Jump
Statements are
• goto statement
• break statement
• continue statement

10.6.1 goto statement

 The goto statement is a control statement which is used to transfer the control from one
place to another place without any condition in a program.

The syntax of the goto statement is;

Syntax1

goto label;

label:

Syntax2

label:

goto label;

goto label;
.
.
label :
.
.

label
.
.
goto label :
.
.

backward
jump

For ward
jump

Chapter 10 Page 152-179.indd 173 3/24/2020 9:21:33 AM

174 175

 In the syntax above, label is an identifier. When goto label; is encountered, the control of
program jumps to label: and executes the code below it.

include <iostream>
using namespace std;
int main()
{
int n=1;
jump:
{
 if(n<10)
 { // Control of the program move to jump:
 cout<<n<<'\t';
 n+=2;
 goto jump;
 }
 else
 return 0;
} }
Output
1 2 5 7 9

Illustration 10.14 C++ program to display the first five odd numberts using goto
statement

 In the above program the first five odd numbers are displayed.if n is is less than 10 goto
transfers the control to jump statement .If n is greater than 10 the control comes out of the
loop.

10.6.2 break statement

 A break statement is a jump statement which terminates the execution of loop and the
control is transferred to resume normal execution after the body of the loop. The following
Figure. shows the working of break statement with looping statements;

for(init; expr 1; expr 2) while(expe)

statement; statement;
} while (condition);
statement;

do

. . . .
if (condition)
 break;
. . . .

. . . .
if (condition)
 break;
. . . .

. . . .
if (condition)
 break;
. . . .

true truetrue
}

}

{

break statement in for, while and do-while loop

Chapter 10 Page 152-179.indd 174 3/24/2020 9:21:33 AM

174 175

#include <iostream>
using namespace std;
int main ()
{
int count = 1;
do
{
cout<< "Count : " << count <<endl;
if(count > 3)
 {
 break;
 }
count ++;
}while(count < 20);
return 0;
}

Illustration 10.15 C++ program to count N numbers using break statement

Output
Count : 1
Count : 2
Count : 3

 In the above example, the while loop will iterate for 20 times, but as soon as the count
reaches 3, the loop is terminated, because of the break statement.

10.6.3 continue statement
 The continue statement works quite similar to the break statement. Instead of terminating
the loop (break statement), continue statement forces the loop to continue or execute the
next iteration. When the continue statement is executed in the loop, the code inside the loop
following the continue statement will be skipped and next iteration of the loop will begin.
The following Figure describes the working flow of the continue statement

((

()

))
if (expr)if (expr) if (expr)

continue; continue; continue;

while

whilefor
{ {{

} } }.

do

The workflow of the continue statement

 In the above example, the loop will iterate 10 times but, if i reaches 6, then the control
is transferred to for loop, because of the continue statement.

Chapter 10 Page 152-179.indd 175 3/24/2020 9:21:34 AM

176 177

#include <iostream>
using namespace std;
 int main()
{
for (int i = 1; i<= 10; i++) {
if (i == 6)
continue;
else
cout<<i<< " ";
}
return 0;
}
Output
1 2 3 4 5 7 8 9 10

Illustraion 10.16 C++ program to display numbers from 1 to 10 except 6 using continue
statement

Difference between Break and Continue

Break Continue

Break is used to terminate the
execution of the loop.

Continue is not used to terminate the execution of
loop.

It breaks the iteration. It skips the iteration.

When this statement is executed,
control will come out from the
loop and executes the statement
immediate after loop.

When this statement is executed, it will not come out
of the loop but moves/jumps to the next iteration of
loop.

Break is used with loops as well as
switch case.

Continue is only used in loops, it is not used in
switch case.

Hands on practice:

Write C++ program to solve the following
problems :
1. Program to input a character and to

print whether a given character is an
alphabet, digit or any other character.

2. Program to print whether a given
character is an uppercase or a
lowercase character or a digit or any
other character. use ASCII codes for it.
The ASCII codes are as given below:

 Characters ASCII Range
 0' - '9' 48 - 57
 'A' - 'Z' 65 - 90
 'a' - 'z' 97 - 122
 other characters 0- 255 excluding the

above mentioned
codes.

3. Program to calculate the factorial of an
integer.

4. Program to print fibonacci series i.e., 0
1 1 2 3 5 8......

Chapter 10 Page 152-179.indd 176 3/24/2020 9:21:34 AM

176 177

5. Programs to produce the following design using nested loops

(a) (b)
A
A B
A B C
A B C D
A B C D E
A B C D E F

5 4 3 2 1
5 4 3 2
5 4 3
5 4
5

• A computer program is a set of statements
or instructions to perform a specific task.

• There are two kinds of statements
used in C++, viz Null and Compound
Statement.

• Control Statement are statements
that alter the sequence of flow of
instaructions.

• There are three kinds of control
statement used in C++. (1) Sequence
Statement (2) Selection Statement
(3) Iteration Statement

• If and Switch are Selection Statements.

• The Conditional Operator is an
alternative for 'if else Statement'.

• The Switch Statment is a multi-way
branching statement.

• Iteration Statement (looping) is use to
execute a set of statements repeatedly
until a condition is satisfied.

• There are three kinds Iteration
Statements supported. (1) for (2) While
(3) do-While.

• In C++ three Jump Statment are used
(1) goto (2) break (3) continue

Points to Remember:

Evaluation
SECTION – A

Choose the correct answer

1. What is the alternate
name of null statement?

 (A) No statement
(B) Empty statement

 (C) Void statement
(D) Zero statement

2. In C++, the group of statements should
be enclosed within:

 (A) { } (B) []
(C) () (D) < >

3. The set of statements that are executed
again and again in iteration is called as:

 (A) condition (B) loop
 (C) statement (D) body of loop

4. The multi way branch statement:

 (A) if (B) if … else
(C) switch (D) for

5. How many types of iteration
statements?

 (A) 2 (B) 3
(C) 4 (D) 5

6. How many times the following loop
will execute? for (int i=0; i<10; i++)

 (A) 0 (B) 10
(C) 9 (D) 11

Chapter 10 Page 152-179.indd 177 3/24/2020 9:21:34 AM

178 179

7. Which of the following is the exit
control loop?

 (A) for (B) while
 (C) do…while (D) if…else

8. Identify the odd one from the keywords
of jump statements:

 (A) break (B) switch
(C) goto (D) continue

9. Which of the following is called entry
control loop?

 (A) do-while (B) for
(C) while (D) if-else

10. A loop that contains another loop
inside its body:

 (A) Nested loop (B) Inner loop
 (C) Inline loop (D) Nesting of loop

SECTION-B

Very Short Answers

1. What is a null statement and compound
statement?

2. What is selection statement? write it's
types?

3. Correct the following code sigment:
 if (x=1)
 p= 100;
 else
 p = 10;

4. What will be the output of the following
code:

 int year;
 cin >> year;
 if (year % 100 == 0)
 if (year % 400 == 0)
 cout << "Leap";
 else
 cout << "Not Leap year";
 If the input given is (i) 2000 (ii) 2003

(iii) 2010?

5. What is the output of the following
code?

 for (int i=2; i<=10 ; i+=2)
 cout << i;

6. Write a for loop that displays the
number from 21 to 30.

7. Write a while loop that displays
numbers 2, 4, 6, 8.......20.

8. Compare an if and a ? : operator.
SECTION-C

Short Answers

1. Convert the following if-else to a single
conditional statement:

 if (x >= 10)
 a = m + 5;
 else
 a = m;
2. Rewrite the following code so that it is

functional:
 v = 5;
 do;
 {
 total += v;
 cout << total;
 while v <= 10
3. Write a C++ program to print

multiplication table of a given number.
4. Write the syntax and purpose of switch

statement.
5. Write a short program to print

following series:
 (a) 1 4 7 10...... 40

SECTION - D

Explain in detail

1. Explain control statement with suitable
example.

2. What is an entry control loop? Explain
any one of the entry controlled loop
with suitable example.

Chapter 10 Page 152-179.indd 178 3/24/2020 9:21:34 AM

178 179

3. Write a program to find the LCM and
GCD of two numbers.

4. Write programs to find the sum of the
following series:

 (a)
 x2 + x3 - x4 + x5 - x6

2!x- 3! 4! 5! 6!

 (b) x
2 + x3 +....+ xn

2x+ 3 n
5. Write a program to find sum of the

series
 S = 1 + x + x2 +..... + xn

Reference:

(1) Object Oriented Programming with
C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

(2) The Complete Reference C++ (Forth
Edition), Herbert Schildt. Mc.Graw
Hills.

(3) Computer Science with C++ (A text
book of CBSE XI and XII), Sumita
Arora, Dhanpat Rai & Co.

Chapter 10 Page 152-179.indd 179 3/24/2020 9:21:34 AM

180 181

Learning Objectives
After learning this
chapter, the students will
be able to
• Understand the

Definition of
Functions and uses of Functions

• Understand the Types of Functions –
pre-defined and
user-defined functions

• Apply mathematical functions for
solving problems.

• Use String and Character functions for
the manipulation of String and Character
data

• Implement modular programming by
creating functions

• Understand the role of arguments
and compare different methods of the
arguments

• Recognizes the scope of variables and
functions in a program.

11.1 INTRODUCTION
 A large program can be split into small
sub-programs (blocks) called as functions
where each sub-program can perform some
specific functionality. Functions reduce the
size and complexity of a program, makes
it easier to understand, test, and check for
errors. The functions which are available by
default are known as “Built-in” functions
and user can create their own functions
known as “User-defined” functions.

CHAPTER 11
Functions

Unit III Introduction to C++

• Built-in functions – Functions which
are available in C++ language standard
library.

• User-defined functions – Functions
created by users.

11.2 Need for Functions

 To reduce size and complexity
of the program we use Functions. The
programmers can make use of sub programs
either writing their own functions or calling
them from standard library.

1. Divide and Conquer
• Complicated programs can be divided

into manageable sub programs called
functions.

• A programmer can focus on developing,
debugging and testing individual
functions.

• Many programmers can work on
different functions simultaneously.

2. Reusability

• Few lines of code may be repeatedly
used in different contexts. Duplication
of the same code can be eliminated by
using functions which improves the
maintenance and reduce program size.

• Some functions can be called multiple
times with different inputs.

Chapter 11 Page 180-205.indd 180 3/24/2020 9:22:03 AM

180 181

11.3 Types of Functions
Functions can be classified into two types,

1. Pre-defined or Built-in or Library
Functions

2. User-defined Function.

 C++ provides a rich collection of
functions ready to be used for various tasks.
The tasks to be performed by each of these
are already written, debugged and compiled,
their definitions alone are grouped and
stored in files called header files. Such
ready-to-use sub programs are called pre-
defined functions or built-in functions.

 C++ also provides the facility to
create new functions for specific task as per
user requirement. The name of the task and
data required (arguments) are decided by
the user and hence they are known as User-
defined functions.

11.4 C++ Header Files and
Built-in Functions

 Header files provide function
prototype and definitions for library
functions. Data types and constants used
with the library functions are also defined
in them. A header file can be identified by
their file extension .h. A single header file
may contain multiple built-in functions.
 For example: stdio.h is a header file
that contains pre-defined “standard input/
output” functions.
11.4.1 Standard input/output (stdio.h)
 This header file defines the standard
I/O predefined functions getchar(),
putchar(), gets(), puts() and etc.
11.4.1.1 getchar() and putchar() functions

 The predefined function getchar() is
used to get a single character from keyboard
and putchar() function is used to display it.

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
 cout<<"\n Type a Character : ";
 char ch = getchar();
 cout << "\n The entered Character is: ";
 putchar(ch);
 return 0;
}
Output:
Type a Character : T
The entered Character is: T

Program 11.1 C++ code to accept a character and display it

11.4.1.2. gets() and puts() functions
 Function gets() reads a string from standard input and stores it into the string pointed
by the variable. Function puts() prints the string read by gets() function in a newline.

Chapter 11 Page 180-205.indd 181 3/24/2020 9:22:03 AM

182 183

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
 char str[50];
 cout<<"Enter a string : ";
 gets(str);
 cout<<"You entered: "
 puts(str);
 return(0);
}
Output :
Enter a string : Computer Science
You entered: Computer Science

Program 11.2 C++ code to accept and display a string

11.4.2 Character functions (ctype.h)

 This header file defines various operations on characters. Following are the various
character functions available in C++. The header file ctype.h is to be included to use these
functions in a program.

11.4.2.1.isalnum()

 This function is used to check whether a character is alphanumeric or not. This
function returns non-zero value if c is a digit or a letter, else it returns 0.

General Form:

 int isalnum (char c)

Example :

 int r = isalnum(‘5’);

 cout << isalnum('A') <<’\t’<<r;

 But the statements given below assign 0 to the variable n, since the given character is
neither an alphabet nor a digit.

 char c = '$';

 int n = isalnum(c);

 cout<<c;

Output:

 0

Chapter 11 Page 180-205.indd 182 3/24/2020 9:22:03 AM

182 183

#include<iostream>
#include<stdio.h>
#include<ctype.h>
using namespace std;
int main()
{
 char ch;
 int r;
 cout<<"\n Type a Character :";
 ch = getchar();
 r = isalnum(ch);
 cout<<"\nThe Return Value of isalnum(ch) is :"<<r;
}
Output-1:
 Type a Character :A
 The Return Value of isalnum(ch) is :1
Output-2:
 Type a Character :?
 The Return Value of isalnum(ch) is :0

Program 11.3

11.4.2.2. isalpha()

 The isalpha() function is used to check whether the given character is an alphabet or
not.

General Form:

 isalpha(char c)

 This function will return 1 if the given character is an alphabet, and 0 otherwise 0. The
following statement assigns 0 to the variable n, since the given character is not an alphabet.

 int n = isalpha(‘3’);

But, the statement given below displays 1, since the given character is an alphabet.

 cout << isalpha('a');

Chapter 11 Page 180-205.indd 183 3/24/2020 9:22:03 AM

184 185

#include<iostream>
#include<stdio.h>
#include<ctype.h>
using namespace std;
int main()
{
 char ch;
 cout << "\n Enter a charater: ";
 ch = getchar();
 cout<<"\n The Return Value of isalpha(ch) is :" << isalpha(ch) ;
}
Output-1:
 Enter a charater: A
 The Return Value of isalpha(ch) is :1
Output-2:
 Enter a charater: 7
 The Return Value of isalpha(ch) is :0

Program 11.4

11.4.2.3 isdigit()

 This function is used to check whether a given character is a digit or not. This function
will return 1 if the given character is a digit, and 0 otherwise.

General Form:

 isdigit(char c)

using namespace std;
#include<iostream>
#include<ctype.h>
int main()
{
 char ch;
 cout << "\n Enter a Character: ";
 cin >> ch;
 cout<<"\n The Return Value of isdigit(ch) is :" << isdigit(ch) ;
}

Program 11.5

Chapter 11 Page 180-205.indd 184 3/24/2020 9:22:03 AM

184 185

Output-1
 Enter a Character: 3
 The Return Value of isdigit(ch) is :1
Output-2
 Enter a Character: A
 The Return Value of isdigit(ch) is :0

 *Return 0; (Not Compulsory in latest compilers)

11.4.2.4. islower()

 This function is used to check
whether a character is in lower case (small
letter) or not. This functions will return a
non-zero value, if the given character is a
lower case alphabet, and 0 otherwise.

General Form:
 islower(char c)
 After executing the following
statements, the value of the variable n will be
1 since the given character is in lower case.

 char ch = 'n';
 int n = islower(ch);
 But the statement given below will
assign 0 to the variable n, since the given
character is an uppercase alphabet.
 int n = islower('P');

11.4.2.5. isupper()

 This function is used to check the
given character is uppercase. This function
will return 1 if true otherwise 0.

General Form:
 isupper(char c)
For the following examples value 1 will be
assigned to n and 0 for m.
 int n=isupper(‘A’);
 int m=isupper(‘a’);

11.4.2.6. toupper()
 This function is used to convert
the given character into its uppercase.
This function will return the upper case

equivalent of the given character. If the
given character itself is in upper case, the
output will be the same.

General Form:
 char toupper(char c);
 The following statement will assign
the character constant 'K' to the variable c.
 char c = toupper('k’);
 But, the output of the statement given
below will be 'B' itself.
 cout <<toupper('B');

11.4.2.7. tolower()
 This function is used to convert
the given character into its lowercase. This
function will return the lower case equivalent
of the given character. If the given character
itself is in lower case, the output will be the
same.

General Form:
 char tolower(char c)
 The following statement will assign
the character constant 'k' to the variable c.
 char c = tolower('K’);
 But, the output of the statement given
below will be 'b' itself.
 cout <<tolower('b');

11.4.3 String manipulation (string.h)

 The library string.h (also referred
as cstring) has several common functions
for dealing with strings stored in array of
characters. The string.h header file is to be
included before using any string function.

Chapter 11 Page 180-205.indd 185 3/24/2020 9:22:03 AM

186 187

11.4.3.1 strcpy()
General Form:
 strcpy(Target String, Source String)
 The strcpy() function takes two arguments: target and source. It copies the character
string pointed by the source to the memory location pointed by the target. The null terminating
character (\0) attached to the string is also copied.

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char source[] = "Computer Science";
 char target[20]="target";
 cout<<"\n String in Source Before Copied :"<<source;
 cout<<"\n String in Target Before Copied :"<<target;
 strcpy(target,source);
 cout<<"\n String in Target After strcpy function Executed :"<<target;
 return 0;
}

Program 11.6

Output:
 String in Source Before Copied :Computer Science
 String in Target Before Copied :target
 String in Target After strcpy function Executed :Computer Science

11.4.3.2 strlen()

 The strlen() takes a null terminated string as its argument and returns its length. The
length does not include the null(\0) character.
General Form:
 strlen(string)

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char source[] = "Computer Science";
 cout<<"\n Given String is "<<source<<" its Length is "<<strlen(source);
 return 0;
}
Output:
 Given String is Computer Science its Length is 16

Program 11.7

Chapter 11 Page 180-205.indd 186 3/24/2020 9:22:03 AM

186 187

11.4.3.3 strcmp()

 The strcmp() function takes two arguments: string1 and string2. It compares the
contents of string1 and string2 lexicographically.

General Form:

 strcpy(String1, String2)

The strcmp() function returns a:

• Positive value if the first differing character in string1 is greater than the corresponding
character in string2. (ASCII values are compared)

• Negative value if the first differing character in string1 is less than the corresponding
character in string2.

• 0 if string1 and string2 are equal.

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char string1[] = "Computer";
 char string2[] = "Science";
 int result;
 result = strcmp(string1,string2);
 if(result==0)
 {
 cout<<"String1 : "<<string1<<" and String2 : "<<string2 <<"Are Equal";
 }
 if (result<0)
 {
 cout<<"String1 :"<<string1<<" and String2 : "<<string2 <<" Are Not Equal";
 }
}
Output
 String1 : Computer and String2 : Science Are Not Equal

Program 11.8

11.4.3.4 strcat()
 The strcat() function takes two arguments: target and source. This function appends
copy of the character string pointed by the source to the end of string pointed by the target.

Chapter 11 Page 180-205.indd 187 3/24/2020 9:22:03 AM

188 189

General Form:
 strcat(Target, source)

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char target[50] = "Learning C++ is fun";
 char source[50] = " , easy and Very useful";
 strcat(target, source);
 cout << target ;
 return 0;
}
Output
 Learning C++ is fun , easy and Very useful

Program 11.9

11.4.3.5 strupr()
 The strupr() function is used to convert the given string into Uppercase letters.

General Form:
 strcat(string)

using namespace std;
#include<iostream>
#include<ctype.h>
#include<string.h>
int main()
{
 char str1[50];
 cout<<"\nType any string in Lower case :";
 gets(str1);
 cout<<"\n Converted the Source string “<<str1<<into Upper Case is "<<strupr(str1);
 return 0;
}
Output:
 Type any string in Lower case : computer science
Converted the Source string computer science into Upper Case is COMPUTER SCIENCE

Program 11.10

11.4.3.6 strlwr()
 The strlwr() function is used to convert the given string into Lowercase letters.
General Form:

 strlwr(string)

Chapter 11 Page 180-205.indd 188 3/24/2020 9:22:03 AM

188 189

using namespace std;
#include<iostream>
#include<ctype.h>
#include<string.h>
int main()
{
 char str1[50];
 cout<<"\nType any string in Upper case :";
 gets(str1);
 cout<<"\n Converted the Source string “<<str1<<into Lower Case is "<<strlwr(str1);
}
Output:
 Type any string in Upper case : COMPUTER SCIENCE
Converted the Source string COMPUTER SCIENCE into lower Case is computer science

Program 11.11

11.4.4 Mathematical functions (math.h)
 Most of the mathematical functions are defined in math.h header file which includes
basic mathematical functions.
11.4.4.1 cos() function
 The cos() function takes a single argument in radians. The cos() function returns the
value in the range of [-1, 1]. The returned value is either in double, float, or long double.

#include <iostream>
#include <math.h>
using namespace std;
int main()
{
 double x = 0.5, result;
 result = cos(x);
 cout << "COS("<<x<<")= "<<result;
}
Output:
 COS(0.5)= 0.877583

Program 11.12

11.4.4.2 sqrt() function
 The sqrt() function returns the square root of the given value. The sqrt() function
takes a single non-negative argument. If a negative value is passed as an argument to sqrt()
function, a domain error occurs.

Chapter 11 Page 180-205.indd 189 3/24/2020 9:22:03 AM

190 191

#include <iostream>
#include <math.h>
using namespace std;
int main()
{
 double x = 625, result;
 result = sqrt(x);
 cout << "sqrt("<<x<<") = "<<result;
 return 0;
}
Output:
 sqrt(625) = 25

Program 11.13

11.4.4.3 sin() function
 The sin() function takes a single argument in radians. The sin() function returns the
value in the range of [-1, 1]. The returned value is either in double, float, or long double.
11.4.4.4 pow() function
 The pow() function returns base raised to the power of an exponent. If any argument
passed to pow() is long double, the return type is promoted to long double. If not, the return
type is double. The pow() function takes two arguments:
• base - the base value
• exponent - exponent of the base

#include <iostream>
#include <math.h>
using namespace std;
int main ()
{
 double base, exponent, result;
 base = 5;
 exponent = 4;
 result = pow(base, exponent);
 cout << "pow("<<base << "^" << exponent << ") = " << result;
 double x = 25;;
 result = sin(x);
 cout << "\nsin("<<x<<")= "<<result;
 return 0;
}
Output:
 pow(5^4) = 625
 sin(25)= -0.132352

Program 11.14

Chapter 11 Page 180-205.indd 190 3/24/2020 9:22:03 AM

190 191

11.5 User-defined Functions

11.5.1 Introduction

 We can also define new functions
to perform a specific task. These are called
as user-defined functions. User-defined
functions are created by the user. A function
can optionally define input parameters that
enable callers to pass arguments into the
function. A function can also optionally
return a value as output. Functions are useful
for encapsulating common operations in a
single reusable block, ideally with a name
that clearly describes what the function does.

11.5.2 Function Definition
 In C++, a function must be defined
before it is used anywhere in the program.
The general syntax of a function definition is:

 Return_Data_Type Function_
name(parameter list)

 {

 Body of the function

 }

Note:
1. The Return_Data_Type is any valid data

type of C++.

2. The Function_name is a user-defined
identifier.

3. The parameter list, which is optional, is
a list of parameters, i.e. a list of variables
preceded by data types and separated by
commas.

4. The body of the function comprises C++
statements that are required to perform
the intended task of this function.

11.5.3 Function Prototype

 C++ program can contain any
number of functions. But, it must always
have only one main() function to begin

the program execution. We can write the
definitions of functions in any order as we
wish. We can define the main() function
first and all other functions after that or we
can define all the needed functions prior
to main(). Like a variable declaration, a
function must be declared before it is used
in the program. The declaration statement
may be given outside the main() function.

long fact (int, double)

Function name

List of argumentsReturn type

long
fact (int, double)

Figure 11.1
The prototype above provides the
following information to the compiler:
• The return value of the function is of

type long.
• fact is the name of the function.
• the function is called with two arguments:
 The first argument is of int data type.
 The second argument is of double data

type.
 int display(int, int) // function

prototype//
 The above function prototype
provides details about the return data type,
name of the function and a list of formal
parameters or arguments.

11.5.4 Use of void command
void type has two important purposes:
• To indicate the function does not return

a value
• To declare a generic pointer.

Chapter 11 Page 180-205.indd 191 3/24/2020 9:22:04 AM

192 193

void data type indicates the compiler that
the function does not return a value, or in
a larger context void indicates that it holds
nothing.

Notes

For Example:
 void fun(void)
 The above function prototype tells
compiler that the function fun() neither
receives values from calling program nor
return a value to the calling program.

11.5.5 Accessing a function
 The user-defined function should
be called explicitly using its name and
the required arguments to be passed. The
compiler refers to the function prototype to
check whether the function has been called
correctly. If the argument type does not
match exactly with the data type defined in
the prototype, the compiler will perform type
conversion, if possible. If type conversion is
impossible, the compiler generates an error
message.

Example :

1 display() calling the function without a return value and without any argument
2 display (x, y) calling the function without a return value and with arguments
3 x = display() calling the function with a return value and without any argument

4 x = display (x, y) calling the function with a return value and with arguments

11.5.5.1 Formal Parameters and Actual Parameters or Arguments
 Arguments or parameters are the means to pass values from the calling function to
the called function. The variables used in the function definition as parameters are known as
formal parameters. The constants, variables or expressions used in the function call are known
as actual parameters.

Using namespace std;
int sum (int x, int y)
{
 return (x + y);
}
int main ()
{
 int a,b ;
 cout<<"\n Enter Number 1:";
 cin>>a;
 cout<<"\n Enter Number 2:";
 cin >>b;
 cout<<"\n The sum = "<<sum (a, b);
}

#include <iostream>

[

[

[[

Formal Parameter

M
ai

n
Pr

og
ra

m
Fu

nc
tio

n

Actual Parameter

Figure 11.2 Formal and Actual Parameters

Chapter 11 Page 180-205.indd 192 3/24/2020 9:22:04 AM

192 193

11.5.5.2 Default arguments
 In C++, one can assign default values
to the formal parameters of a function
prototype. The Default arguments allows
to omit some arguments when calling the
function.

When calling a function,

• For any missing arguments, complier
uses the values in default arguments for
the called function.

• The default value is given in the form of
variable initialization.

 Example : void defaultvalue(int
n1=10, n2=100);

• The default arguments facilitate the
function call statement with partial or
no arguments.

Example : defaultvalue(x,y);

 defaultvalue(200,150);

 defaultvalue(150);

 defaultvalue(x,150);

• The default values can be included in
the function prototype from right to left,
i.e., we cannot have a default value for an
argument in between the argument list.

Example : void defaultvalue(int n1=10,
n2);//invalid prototype
 void defaultvalue(int n1, n2
= 10);//valid prototype
11.5.5.3 Constant Arguments
 The constant variable can be
declared using const keyword. The const
keyword makes variable value stable. The
constant variable should be initialized
while declaring. The const modifier enables
to assign an initial value to a variable that
cannot be changed later inside the body of
the function.
Syntax :
<returntype><functionname> (const
<datatype variable=value>)
Example:
• int minimum(const int a=10);
• float area(const float pi=3.14, int r=5);

#include <iostream>
using namespace std;
double area(const double r,const double pi=3.14)
{
 return(pi*r*r);
}
int main ()
{
 double rad,res;
 cout<<"\nEnter Radius :";
 cin>>rad;
 res=area(rad);
 cout << "\nThe Area of Circle ="<<res;
 return 0;
}
Output:
Enter Radius :5
The Area of Circle =78.5

Program 11.16

Chapter 11 Page 180-205.indd 193 3/24/2020 9:22:04 AM

194 195

 If the variable value “r” is changed as r=25; inside the body of the function “area” then
compiler will throw an error as “assignment of read-only parameter 'r'”

double area(const double r,const double pi=3.14)

{

 r=25;

 return(pi*r*r);

}

11.6 Methods of calling functions

 In C++, the arguments can be passed to a function in two ways. Based on the method
of passing the arguments, the function calling methods can be classified as Call by Value
method and Call by Reference or Address method.

11.6.1 Call by value Method

 This method copies the value of an actual parameter into the formal parameter of the
function. In this case, changes made to formal parameter within the function will have no
effect on the actual parameter.

#include<iostream>
using namespace std;
void display(int x)
{
 int a=x*x;
 cout<<"\n\nThe Value inside display function (a * a):"<<a;
}
int main()
{
 int a;
 cout<<”\nExample : Function call by value:”;
 cout<<"\n\nEnter the Value for A :";
 cin>>a;
 display(a);
 cout<<"\n\nThe Value inside main function "<<a;
 return(0);
}
Output :
Example : Function call by value
Enter the Value for A : 5
The Value inside display function (a * a) : 25
The Value inside main function 5

Program 11.17

Chapter 11 Page 180-205.indd 194 3/24/2020 9:22:04 AM

194 195

11.6.2 Call by reference or address Method

 This method copies the address of the actual argument into the formal parameter.
Since the address of the argument is passed ,any change made in the formal parameter will be
reflected back in the actual parameter.

Program 11.18

#include<iostream>
using namespace std;
void display(int &x) //passing address of a//
{
 x=x*x;
 cout<<"\n\nThe Value inside display function (n1 x n1) :"<<x ;
 }
int main()
{
int n1;
cout<<"\nEnter the Value for N1 :";
cin>>n1;
cout<<"\nThe Value of N1 is inside main function Before passing : "<< n1;
display(n1);
cout<<"\nThe Value of N1 is inside main function After passing (n1 x n1) : "<< n1; return(0);
}
Output :
Enter the Value for N1 :45
The Value of N1 is inside main function Before passing : 45
The Value inside display function (n1 x n1) :2025
The Value of N1 is inside main function After passing (n1 x n1) : 2025

 Note that the only change in the display() function is in the function header. The &
symbol in the declaration of the parameter x means that the argument is a reference variable
and hence the function will be called by passing reference. Hence when the argument n1 is
passed to the display() function, the variable x gets the address of n1 so that the location will
be shared. In other words, the variables x and n1 refer to the same memory location. We use
the name n1 in the main() function, and the name x in the display() function to refer the same
storage location. So, when we change the value of x, we are actually changing the value of n1.
11.6.3 Inline function

 Normally the call statement to a function makes a compiler to jump to the functions
(the definition of the functions are stored in STACKS) and also jump back to the instruction
following the call statement. This reduces the speed of program execution. Inline functions
can be used to reduce the overheads like STACKS for small function definition.

Chapter 11 Page 180-205.indd 195 3/24/2020 9:22:04 AM

196 197

 An inline function looks like normal function in the source file but inserts the function's
code directly into the calling program. To make a function inline, one has to insert the keyword
inline in the function header.

Syntax :
 inline returntype functionname(datatype parameter 1, … datatype parameter n)
Advantages of inline functions:
• Inline functions execute faster but requires more memory space.
• Reduce the complexity of using STACKS.

#include <iostream>
using namespace std;
inline int add (int a , int b)
{
 int c=a+b;
 return(c);
}
int main ()
{
 int x,y,z;
 cout<<"\nEnter the First Number :";
 cin>>x;
 cout<<"\nEnter the second Number :";
 cin>>y;
 z=add(x,y);
 cout << "\n sum of "<<x<<"+"<<y<<"="<<z;
 return 0;
}
Output:
Enter the First Number :10
Enter the second Number :20
sum of 10+20=30

Program 11.19

 Though the above program is written in the normal function definition format during
compilation the function code a+b will be directly inserted in the calling statement i.e.
z=add(x,y); this makes the calling statement to change as z = a+b;

11.7 Different forms of User-defined Function declarations

11.7.1 A Function without return value and without parameter

 The following program is an example for a function with no return and no arguments
passed .

Chapter 11 Page 180-205.indd 196 3/24/2020 9:22:04 AM

196 197

 The name of the function is display(), its return data type is void and it does not have
any argument.

#include<iostream>

using namespace std;

void display()

{ cout<<"First C++ Program with Function"; }

int main()

{ display(); // Function calling statement//

 return(0);

}

Output :

 First C++ Program with Function

Program 11.20

11.7.2 A Function with return value and without parameter

 The name of the function is display(), its return type is int and it does not have any
argument. The return statement returns a value to the calling function and transfers the
program control back to the calling statement.

#include<iostream>
using namespace std;
int display()
{
 int a=10, b=5, s;
 s=a+b;
 return s;
}
int main()
{ int m=display();
 cout<<"\nThe Sum="<<m;
 return(0);
}
Output :
 The Sum=15

Program 11.21

Chapter 11 Page 180-205.indd 197 3/24/2020 9:22:04 AM

198 199

11.7.3 A Function without return value and with parameter

 The name of the function is display(), its return type is void and it has two parameters
or arguments x and y to receive two values. The return statement returns the control back to
the calling statement.

#include<iostream>
using namespace std;
void display(int x, int y)
{
 int s=x+y;
 cout<<"The Sum of Passed Values: "<<s;
}
int main()
{
 int a=50,b=45;
 display(a,b);
 return(0);
}
Output :
The Sum of Passed Values: 95

Program 11 .22

11.7.4 A Function with return value and with parameter

 The name of the function is display(), its return type is int and it has two parameters or
arguments x and y to receive two values. The return statement returns the control back to the
calling statement.

#include<iostream>
using namespace std;
int display(int x, int y)
{
 int s=x+y;
 return s;
}
int main()
{
 int a=45,b=20;
 int s=display(a,b);
 cout<<”\nExample:Function with Return Value and with Arguments”;
 cout<<"\nThe Sum of Passed Values: "<<s;
 return(0);
}

Program 11.23

Chapter 11 Page 180-205.indd 198 3/24/2020 9:22:04 AM

198 199

Output :

Example: Function with Return Value and with Arguments

The Sum of Passed Values: 65

11.8 Returning from function

 Returning from the function is done by using the return statement.

 The return statement stops execution and returns to the calling function. When a
return statement is executed, the function is terminated immediately at that point.

11.8.1 The return statement

 The return statement is used to return from a function. It is categorized as a jump
statement because it terminates the execution of the function and transfer the control to the
called statement. A return may or may not have a value associated with it. If return has a value
associated with it, that value becomes the return value for the calling statement. Even for void
function return statement without parameter can be used to terminate the function.

Syntax:
 return expression/variable;
Example : return(a+b); return(a);
 return; // to terminate the function
11.8.2 Returning values:
 The functions that return no value is declared as void. The data type of a function is
treated as int, if no data type is explicitly mentioned. For example,
For Example :
 int add (int, int);
 add (int, int);
 In both prototypes, the return value is int, because by default the return value of a
function in C++ is of type int when no return value is explicitly given. Look at the following
examples:

Sl.No Function Prototype Return type
1 int sum(int, float) int
2 float area(float, float) float

3 char result() char

4 double fact(int n) double

Chapter 11 Page 180-205.indd 199 3/24/2020 9:22:04 AM

200 201

Returning Non-integer values
 A string can also be returned to a calling statement.

#include<iostream>
#include<string.h>
using namespace std;
char *display()
{ return (“chennai”); }
int main()
{
 char s[50];
 strcpy(s,display());
 cout<<”\nExample:Function with Non Integer Return”<<s;
 return(0);}
Output :
Example: Function with Non Integer Return Chennai

Program 11.24

11.9 Recursive Function
 A function that calls itself is known as recursive function. And, this technique is known
as recursion.
Example 1: Factorial of a Number Using Recursion

#include <iostream>
using namespace std;
int factorial(int); // Function prototype //
int main()
{
 int no;
 cout<<"\nEnter a number to find its factorial: ";
 cin >> no;
 cout << "\nFactorial of Number " << no <<" = " << factorial(no);
 return 0;
}
int factorial(int m)
{
 if (m > 1)
 {
 return m*factorial(m-1);
 }
 else
 {
 return 1;
}
}
Output :
Enter a number to find its factorial: 5
Factorial of Number 5 = 120

Program 11.25

Chapter 11 Page 180-205.indd 200 3/24/2020 9:22:04 AM

200 201

Note: Function prototype is mandatory since the function factorial() is given after the main()
function.

11.10 Scope Rules of Variables

 Scope refers to the accessibility of a variable. There are four types of scopes in C++.
They are: Local scope, Function scope, File scope and Class scope.

11.10.1 Introduction
 A scope is a region or life of the variable and broadly speaking there are three places,
where variables can be declared,
• Inside a block which is called local variables.
• Inside a function is called function variables.
• Outside of all functions which is called global variables.
• Inside a class is called class variable or data members.
11.10.2 Local Scope:
• A local variable is defined within a block. A block of code begins and ends with curly

braces { }.
• The scope of a local variable is the block in which it is defined.
• A local variable cannot be accessed from outside the block of its declaration.
• A local variable is created upon entry into its block and destroyed upon exit.

11.10.3 Function Scope:
• The scope of variables declared within a function is extended to the function block, and all

sub-blocks therein.
• The life time of a function scope variable, is the life time of the function block. The scope

of formal parameters is function scope.

11.10.4 File Scope:

• A variable declared above all blocks and functions (including main ()) has the scope of a
file. The life time of a file scope variable is the life time of a program.

• The file scope variable is also called as global variable.

//Demo to test all Scopes//
#include<iostream>
using namespace std;
int file_var=20; //Declared within File - file scope variable
void add(int x)
{
 int m; //Declaration of variable m in add () - Function scope variable
 m=x+30+file_var;
 cout<<"\n The Sum = "<<m;
}

Program 11.26

Chapter 11 Page 180-205.indd 201 3/24/2020 9:22:04 AM

202 203

int main ()
{
int a ;
a = 10;
if(a>b)
{
 int t; // local to this if block - Local variable

 t=a+20;
 }
cout<<t;
add(a);
cout<<m;
cout<<”\nThe File Variable = “<<file_var;
return(0);
}

Error
In function 'int main()':
[Error] 't' was not declared in main()
 On compilation the Program 11.28, the compiler prompts an error
message: The variable t is not accessible. Because the life time of a local
variable is the life time of a block in its state of execution.
[Error] 'm' was not declared in this scope

The variable m is not accessible. Because the life time of the function
scope variable is the life time of a block in its state of execution.

11.10.5 Class Scope:

• A class is a new way of creating and implementing a user defined data type. Classes provide
a method for packing together data of different types.

• Data members are the data variables that represent the features or properties of a class.

class student
{
 private :
int mark1, mark2, total;
};

The class student contains
mark1, mark2 and total are
data variables. Its scope is
within the class student
only.

Note: The class scope will be discussed later in chapter “Classes and Object”.

Chapter 11 Page 180-205.indd 202 3/24/2020 9:22:04 AM

202 203

11.10.6 Scope resolution operator

The scope operator reveals the hidden scope of a variable. The scope resolution operator (::)
is used for the following purposes.

• To access a Global variable when there is a Local variable with same name. An example
using Scope Resolution Operator.

// Program to show that we can access a global variable
// using scope resolution operator :: when there is a local
// variable with same name //
#include<iostream>
using namespace std;
int x=45; // Global Variable x
int main()
{
 int x = 10; // Local Variable x
 cout << "\nValue of global x is " << ::x;
 cout << "\nValue of local x is " << x;
 return 0;
}
Output:
Value of global x is 45
Value of local x is 10

Program 11.27

• A large program can typically be split into
smaller sized blocks called as functions.

• Functions can be classified into Pre-
defined or Built-in or Library Functions
and User-defined Functions.

• User-defined functions are created by
the user.

• The void function tells the compiler that
the function returns nothing.

• The return statement returns a value
to the calling function and transfers
the program control back to the calling
function.

• The default return type of a function in
C++ is of type int.

• A function that calls itself is known as
recursive function.

• Scope refers to the accessibility of a
variable.

• There are four types of Scopes. They are:
Local scope, Function scope, File scope
and Class scope.

• The scope operator (::) reveals the hidden
scope of a variable.

Points to Remember:

Chapter 11 Page 180-205.indd 203 3/24/2020 9:22:04 AM

204 205

Hands on practice:

Write C++ program to solve the following problems :

1. Program that reads two strings and appends the first string to the second. For example,
if the first string is entered as Tamil and second string as nadu, the program should print
Tamilnadu. Use string library header.

2. Program that reads a string and converts it to uppercase. Include required header files.

3. Program that checks whether a given character is an alphabet or not. If it is an alphabet,
whether it is lowercase character or uppercase character? Include required header files.

4. Write definition for a function sumseries () in c++ with two arguments/ parameters -
double x and int n. The function should return a value of type double and it should perform
sum of the following series:

 x-x2 /3! + x3 / 5! - x4 / 7! + x5 / 9! -... upto n terms.

5. Program that invokes a function calc () which intakes two integers and an arithmetic
operator and prints the corresponding result.

Evaluation

SECTION – A
Choose the correct answer

1. Which of the following header file defines the standard I/O predefined functions ?
 A) stdio.h B) math.h C) string.h D) ctype.h
2. Which function is used to check whether a character is alphanumeric or not.
 A) isalpha() B) isdigit() C) isalnum() D) islower()
3. Which function begins the program execution ?
 A) isalpha() B) isdigit() C) main() D) islower()
4. Which of the following function is with a return value and without any argument ?
 A) x=display(int, int) B) x=display() C) y=display(float) D) display(int)
5. Which is return data type of the function prototype of add(int, int); ?
 A) int B) float C) char D) double
6. Which of the following is the scope operator ?
 A) > B) & C) % D) ::

Chapter 11 Page 180-205.indd 204 3/24/2020 9:22:04 AM

204 205

SECTION-B

Very Short Answers

1. Define Functions.
2. Write about strlen() function.
3. What are importance of void data type.
4. What is Parameter and list its types?
5. Write a note on Local Scope.

SECTION-C
Short Answers

1. What is Built-in functions ?
2. What is the difference between isupper() and toupper() functions ?
3. Write about strcmp() function.
4. Write short note on pow() function in C++.
5. What are the information the prototype provides to the compiler ?
6. What is default arguments ? Give example.

SECTION - D

Explain in detail

1. Explain Call by value method with suitable example.
2. What is Recursion? Write a program to find the factorial of the given number using

recursion.
3. What are the different forms of function return? Explain with example.
4. Explain scope of variable with example.
5. Write a program to accept any integer number and reverse it.

Chapter 11 Page 180-205.indd 205 3/24/2020 9:22:04 AM

206 207

Learning Objectives
After learning this
chapter, the students
will be able to

• Know the structured
data type using arrays.

• Know the types of arrays.
• Writing programs to manuplates

different types of arrays.

12.1 Introduction
 The variables are used to store data.
These variables are the one of the basic
building blocks in C++. A single variable is
used to store a single value that can be used
anywhere in the memory. In some situations,
we need to store multiple values of the same
type. In that case, it needs multiple variables
of the same data type. All the values are
stored randomly anywhere in the memory.

 For example, to store the roll
numbers of the 100 students, it needs 100
variables named as roll1, roll2, roll3,…….
roll100 . It becomes very difficult to declare
100 variables and store all the roll numbers.
In C++, the concept of Array helps to store
multiple values in a single variable. Literally,
the meaning of Array is “More than one”.
In other words, array is an easy way of
storing multiple values of the same type
referenced by a common name”. An array
is also a derived data type in C++.

 “An array is a collection of variables
of the same type that are referenced by a
common name”. In an array, the values
are stored in a fixed number of elements

CHAPTER 12Introduction of C++Unit III

Arrays and Structures

of the same type sequentially in memory.
Therefore, an integer array holds a sequence
of integers; a character array holds a
sequence of characters, and so on. The size
of the array is referred to as its dimension.

12.2 Types of Arrays:

There are different types of arrays used in
C++. They are:

• One-dimensional arrays

• Two-dimensional arrays

• Multi-dimensional arrays

12.2.1 One-dimensional array
 This is the simplest form of an array.
A one dimensional array represents values
that are stored in a single row or in a single
column.

Declaration
Syntax:
<data type><array_name> [<array_size>];

data_type declares the basic type of the
array, which is the type of each element in
the array.

array_name specifies the name with which
the array will be referenced.

array_size defines how many elements the
array will hold. Size should be specified with
square brackets [].

Example:

 int num[10];

Chapter 12 Page 206-227.indd 206 3/24/2020 9:22:22 AM

206 207

 In the above declaration, an array
named “num” is declared with 10 elements
(memory space to store 10 different values)
as integer type.

 For the above declaration, the
compiler allocates 10 memory locations
(boxes) referenced by a common name
“num” as given below

0 1 2 3 4 5 6 7 8 9

int num[10];

subscripts

 Each element (Memory box) has a
unique index number starting from 0 which
is known as “subscript”. The subscript always
starts with 0 and it should be an unsigned
integer value. Each element of an array is
referred by its name with subscript index
within the square bracket. For example,
num[3] refers to the 4th element in the
array.

Some more array declarations with various
data types:

char emp_name[25]; // character
array named emp_name with size 25

float salary[20]; // floating-point array
named salary with size 20

int a[5], b[10], c[15]; // multiple arrays are
declared of type int

Memory representation of an one
dimensional array

 The amount of storage required to
hold an array is directly related with type
and size. The following figure shows the
memory allocation of an array with five
elements.

int numb [5];

num [0] num [1] num [2] num [3] num [4]

1
0

2
5

1
0

2
6

1
0

2
7

1
0

2
8

1
0

2
9

1
0

3
0

 1
0

3
1

 1
0

3
2

1
0

3
3

1
0

3
4

1
0

3
5

1
0

3
6

1
0

3
7

1
0

3
8

1
0

3
9

1
0

4
0

1
0

4
1

1
0

4
2

1
0

4
3

1
0

4
4

1
0

4
5

1
0

4
6

1
0

4
7

1
0

4
8

 The above figure clearly shows that, the array num is an integer array with 5 elements.
As per the Dev-C++ compiler, 4 bytes are allocated for every int type variable. Here, there are
totally 5 elements in the array, where for each element, 4 bytes will be allocated. Totally, 20
bytes will be allocated for this array.

Datatype Turbo C++ Dev C++
char 1 1
int 2 4
float 4 4
long 4 4
double 8 8
long double 10 10

The memory space allocated for an array can be calculated using the following formula:

Chapter 12 Page 206-227.indd 207 3/24/2020 9:22:23 AM

208 209

Number of bytes allocated for type of
array × Number of elements
Initialization
 An array can be initialized at the
time of its declaration. Unless an array is
initialized, all the array elements contain
garbage values.
Syntax:
<datatype> <array_name> [size] = {value-
1,value-2,…………… ,value-n};
Example
int age[5]={19,21,16,1,50};
 In the above example, the array name
is ‘age’ whose size is 5. In this case, the first
element 19 is stored in age[0], the second
element 21 is stored in age[1] and so on as
shown in figure 12.1

19 21 16 501

int age [5]={19,21,16,1,50};

ag
e

[0
]

ag
e

[1
]

ag
e

[2
]

ag
e

[3
]

ag
e

[4
]

Figure 12.1

 While declaring and initializing
values in an array, the values should be given
within the curly braces ie. { ….. }

 The size of an array may be optional
when the array is initialized during
declaration.

Example:

int age[]={ 19,21,16,1,50};

 In the above initialization, the size
of the array is not specified directly in the
declaration with initialization. So, the size is
determined by compiler which depends on
the total number of values. In this case, the
size of the array is five.

More examples of array initialization:

float x[5] = {5.6, 5.7, 5.8, 5.9, 6.1};

char vowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

Accepting values to an array during
run time :
 Multiple assignment statements
are required to insert values to the cells of
the array during runtime. The for loop is
ideally suited for iterating through the array
elements.

#include <iostream>
using namespace std;
int main()
{
 int num[5];
 for(int i=0; i<5; i++)
 {
 cout<< "\n Enter value " << i+1 << "= ";
 cin>>num[i];
 }
}

// Input values while execution

 In the above program, a for loop has been constructed to execute the statements within
the loop for 5 times. During each iteration of the loop, cout statement prompts you to “Enter
value …….” and cin gets the value and stores it in num[i];

The following table shows the execution of the above code block.

Chapter 12 Page 206-227.indd 208 3/24/2020 9:22:23 AM

208 209

Iteration i <5
cout << "\n
Enter value " <<
i+1 << "= ";

cin>>num [i];
Received

value stored in
memory

i++ (i=i+1)

1 5 > 0 (T) Enter value 1 = num[0] = 5 num[0] 5 1
2 5 > 1 (T) Enter value 2 = num[1] = 10 num[1] 10 2
3 5 > 2 (T) Enter value 3 = num[2] = 15 num[2] 15 3
4 5 > 3 (T) Enter value 4 = num[3] = 20 num[3] 20 4
5 5 > 4 (T) Enter value 4 = num[25 = [4 num[4] 25 5
6 5 > 5 (F) Exit from Loop

Note

In for loop, the index i is declared with an initial value 0 (zero). Since in most of the cases,
the initial value of the loop index will be used as the array subscript representation.

Accessing array elements
 Array elements can be used anywhere in a program as we do in case of a normal
variable. The elements of an array are accessed with the array name followed by the subscript
index within the square bracket.
Example:
 cout<<num[3];
 In the above statement, num[3] refers to the 4th element of the array and cout statement
displays the value of num[3].

Note

The subscript in bracket can be a variable, a constant or an expression that evaluates to an
integer.

#include <iostream>
using namespace std;
int main()
{
 int num[5] = {10, 20, 30, 40, 50};
 int t=2;
 cout<<num[2] <<endl; // S1
 cout<<num[3+1] <<endl; // S2
 cout<<num[t=t+1]; // S3
}
output:
30
50
40

// Accessing array elements

Chapter 12 Page 206-227.indd 209 3/24/2020 9:22:23 AM

210 211

 In the above program, statement S1 displays the value of the 3rd element (subscript
index 2). S2 will display the value of the 5th element (ie. Subscript value is 3+1 = 4). In the
same way statement S3 will display the value of the 4th element.

#include <iostream>
using namespace std;
int main()
{
 int num[10], even=0, odd=0;
 for (int i=0; i<10; i++)
 {
 cout<< "\n Enter Number " << i+1 <<"= ";
 cin>>num[i];
 if (num[i] % 2 == 0)
 ++even;
 else
 ++odd;
 }
 cout << "\n There are "<< even <<" Even Numbers";
 cout << "\n There are "<< odd <<" Odd Numbers";
}

C++ program to inputs 10 values and count the number of odd and even
numbers

Output:
Enter Number 1= 78
Enter Number 2= 51
Enter Number 3= 32
Enter Number 4= 66
Enter Number 5= 41
Enter Number 6= 68
Enter Number 7= 27
Enter Number 8= 65
Enter Number 9= 28
Enter Number 10= 94
There are 6 Even Numbers
There are 4 Odd Numbers

(HOTS : Rewrite the above program using the conditional operator instead of if)
Searching in a one dimensional array:
 Searching is a process of finding a particular value present in a given set of numbers.
The linear search or sequential search compares each element of the list with the value that has
to be searched until all the elements in the array have been traversed and compared.

Chapter 12 Page 206-227.indd 210 3/24/2020 9:22:23 AM

210 211

#include <iostream>
using namespace std;
int main()
{
 int num[10], val, id=-1;
 for (int i=0; i<10; i++)
 {
 cout<< "\n Enter value " << i+1 <<"= ";
 cin>>num[i];
 }
 cout<< "\n Enter a value to be searched: ";
 cin>>val;

for (int i=0; i<size; i++)
{

 if (arr[i] == value)
 { id= i;
 break;
 }

}
 if(id==-1)
 cout<< "\n Given value is not found in the array..";
 else
 cout<< "\n The value is found at the position" << id+1;
 return 0;
}

Program for Linear Search

 The above program reads an array and prompts for the values to be searched. It compares
each element of the list with the value that has to be searched until all the elements in the array
have been traversed and compared.
Strings

 A string is defined as a sequence of characters where each character may be a letter,
number or a symbol. Each element occupies one byte of memory. Every string is terminated
by a null (‘\0’, ASCII code 0) character which must be appended at the end of the string. In
C++, there is no basic data type to represent a string. Instead, it implements a string as an
one-dimensional character array. When declaring a character array, it also has to hold a null
character at the end, and so, the size of the character array should be one character longer than
the length of the string.

Character Array (String) creation

 To create any kind of array, the size (length) of the array must be known in advance, so
that the memory locations can be allocated according to the size of the array. Once an array is
created, its length is fixed and cannot be changed during run time. This is shown in figure12.2

Chapter 12 Page 206-227.indd 211 3/24/2020 9:22:23 AM

212 213

a [0]

First Element

Index :

Elements:

Last Element

0

a [1]

1

a [2]

2

a [3] a [n-1]

 [n-1]3

Array Name : a
Array Length : n

Figure 12.2
Syntax
Array declaration is:

 char array_name[size];

In the above declaration, the size of the array must be an unsigned integer value.

For example,

 char country[6];

 Here, the array reserves 6 bytes of memory for storing a sequence of characters. The
length of the string cannot be more than 5 characters and one location is reserved for the null
character at the end.

#include <iostream>
using namespace std;
int main()
 {
 char country[6];
 cout<< "Enter the name of the country: ";
 cin>>country;
 cout<<" The name of the country is "<<country;
}
OUTPUT
Enter country the name: INDIA
The country name is INDIA

//Program to demonstrate a character array.

Initialization
The character array can be initialized at the time of its declaration. The syntax is shown below:

 char array_name[size]={ list of characters separated by comma or a string } ;

For example,

char country[6]=“INDIA”;

In the above example, the text “INDIA” has 5 letters which is assigned as initial value to array
country. The text is enclosed within double quotes. The memory representation is shown in
Figure 13.3

Chapter 12 Page 206-227.indd 212 3/24/2020 9:22:23 AM

212 213

I

C
ou

nt
ry

[0
]

10
00

10
01

10
02

10
03

10
04

10
05

C
ou

nt
ry

[1
]

C
ou

nt
ry

[2
]

C
ou

nt
ry

[3
]

C
ou

nt
ry

[4
]

C
ou

nt
ry

[5
]

N D I A '\0'

Figure 12.3
 In the above memory representation,
each character occupies one byte in memory.
At the end of the string, a null character
is automatically added by the compiler.
C++ also provides other ways of initializing
the character array:

char country[6]={‘I’, ‘N’, ‘D’, ‘I’, ‘A’, ‘\0’};

char country[]=“INDIA”;

char country[]={‘I’, ‘N’, ‘D’, ‘I’, ‘A’, ‘\0’};

 If the size of the array is not explicitly
mentioned, the compiler automatically
calculate the size of the array based on the
number of elements in the list and allocates
space accordingly.

 In the initialization of the string, if
all the characters are not initialized, then
the rest of the characters will be filled with
NULL.

Example:

char str[5]={'5','+','A'};

str[0]; ---> 5

str[1]; ---> +

str[2]; ---> A

str[3]; ---> NULL

str[4]; ---> NULL

Note

During initialization, the array of
elements cannot be initialized more than
its size.

For example
char str[2]={'5','+','A','B'}; // Invalid
 In the above example, the compiler
displays “initialize-string for array of chars
is too long” error message.

#include<iostream>
using namespace std;
int main()
{
 int i, j, len, flag =1;
 char a [20];
 cout<<"Enter a string:";
 cin>>a;
 for(len=0;a[len]!='\0';++len)
 for(!=0,j=len-1;i<len/2;++i,--j)
 {
 if(a[j]!=a[i])
 flag=0;
 }

Write a Program to check palindrome or not

Chapter 12 Page 206-227.indd 213 3/24/2020 9:22:23 AM

214 215

 if(flag==1)
 cout<<"\n The String is palindrome";
 else
 cout<<"\n The String is not palindrome";
 return 0;
}
Output:
 Enter a string : madam
 The String is palindrome

12.3 Two-dimensional array
 Two-dimensional (2D) arrays are collection of similar elements where the elements are
stored in certain number of rows and columns. An example m × n matrix where m denotes the
number of rows and n denotes the number of columns is shown in Figure12.4
int arr[3][3];

arr[0] [0] arr[0] [1] arr[0] [3]

arr[1] [0] arr[1] [1] arr[1] [2]

arr[2] [0] arr[2] [1] arr[2] [2]

2D array conceptual memory representation

The array arr can be coneptually viewed in matrix form with 3 rows and
3 coloumns. The point to be noted here is since the subscript starts with
0 arr [0][0] represents the first element.

Column subscript

Ro
w

 su
bs

cr
ip

t

Figure 12.4

12.3.1 Declaration of 2-D array
The declaration of a 2-D array is

data-type array_name[row-size][col-size];

In the above declaration, data-type refers to any valid C++ data-type, array_name refers to the
name of the 2-D array, row-size refers to the number of rows and col-size refers to the number
of columns in the 2-D array.

For example

 int A[3][4];

In the above example, A is a 2-D array, 3 denotes the number of rows and 4 denotes the
number of columns. This array can hold a maximum of 12 elements.

Note

Array size must be an unsigned integer value which is greater than 0. In arrays, column size
is compulsory but row size is optional.

Chapter 12 Page 206-227.indd 214 3/24/2020 9:22:23 AM

214 215

Other examples of 2-D array are:
int A[3][3];
float x[2][3];
char name[5][20];

12.3.2 Initialization of Two-Dimensional array
 The array can be initialized in more than one way at the time of 2-D array declaration.
For example

int matrix[4][3]={
{10,20,30},// Initializes row 0
{40,50,60},// Initializes row 1
{70,80,90},// Initializes row 2
{100,110,120}// Initializes row 3
};
int matrix[4][3]={10,20,30,40,50,60,70,80,90,100,110,120};

Array’s row size is optional but column size is compulsory.

For example

int matrix[][3]={

{10,20,30},// row 0

{40,50,60},// row 1

{70,80,90},// row 2

{100,110,120}// row 3

};

12.3.3 Accessing the two-dimensional array

 Two-dimensional array uses two index values to access a particular element in it, where
the first index specifies the row value and second index specifies the column value.

matrix[0][0]=10;// Assign 10 to the first element of the first row

matrix[0][1]=20;// Assign 20 to the second element of the first row

matrix[1][2]=60;// Assign 60 to the third element of the second row

matrix[3][0]=100;// Assign 100 to the first element of the fourth row

Chapter 12 Page 206-227.indd 215 3/24/2020 9:22:23 AM

216 217

#include<iostream>
#include<conio>
using namespace std;
int main()
{
 int row, col, m1[10][10], m2[10][10], sum[10][10];
 cout<<"Enter the number of rows : ";
 cin>>row;
 cout<<"Enter the number of columns : ";
 cin>>col;
 cout<< "Enter the elements of fi rst matrix: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j <col;j++)
 cin>>m1[i][j];
 cout<< "Enter the elements of second matrix: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j<col;j++)
 cin>>m2[i][j];
 cout<<"Output: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j<col;j++)
 {
 sum[i][j]=m1[i][j]+m2[i][j];
 cout<<sum[i][j]<<" ";
 }
 cout<<endl<<endl;
 }
getch();
return 0;
}

Write a program to perform addition of two matrices

Enter the number of rows : 2
Enter the number of column : 2
Enter the elements of first matrix:
1
1
1
1
Enter the elements of second matrix:
1
1
1
1
Output:
2 2
2 2

Chapter 12 Page 206-227.indd 216 3/24/2020 9:22:23 AM

216 217

12.3.4 Memory representation of 2-D array
Normally, the two-dimensional array can be viewed as a matrix. The conceptual view of a 2-D
array is shown below:
int A[4][3];

A[0][0] A[0][1] A[0][2]

A[1][0] A[1][1] A[1][2]

A[2][0] A[2][1] A[2][2]

A[3][0] A[3][1] A[3][2]

In the above example, the 2-D array name A has 4 rows and 3 columns.
Like one-dimensional, the 2-D array elements are stored in continuous memory.
 There are two types of 2-D array memory representations. They are:

• Row-Major order
• Column-Major order

For example
 int A[4][3]={ { 8,6,5}, { 2,1,9}, {3,6,4}, {4,3,2} }
Row Major order
In row-major order, all the elements are stored row by row in continuous memory locations, that
is, all the elements in first row, then in the second row and so on. The memory representation
of row major order is as shown below;

8 6 5 2 1 9 3 6 4 4 3 2

1000 1004 1008 1012 1016 1020 1024 1028 1032 1036 1040 1044
 Row 0 Row 1 Row 2 Row 3

Column Major order
8 2 3 4 6 1 6 3 5 9 4 2

1000 1004 1008 1012 1016 1020 1024 1028 1032 1036 1040 1044

Col 0 Col 1 Col 2
12.4 Array of strings
An array of strings is a two-dimensional character array. The size of the first index (rows)
denotes the number of strings and the size of the second index (columns) denotes the maximum
length of each string. Usually, array of strings are declared in such a way to accommodate the
null character at the end of each string. For example, the 2-D array has the declaration:
char Name[6][10];

In the above declaration, the 2-D array has two indices which refer to the row size and column
size, that is 6 refers to the number of rows and 10 refers to the number of columns.

Chapter 12 Page 206-227.indd 217 3/24/2020 9:22:23 AM

218 219

12.4.1 Initialization
For example
char Name[6][10] = {"Mr. Bean", "Mr.Bush", "Nicole", "Kidman", "Arnold", "Jodie"};
In the above example, the 2-D array is initialized with 6 strings, where each string is a maximum
of 9 characters long, since the last character is null.
The memory arrangement of a 2-D array is shown below and all the strings are stored in
continuous locations.

r 0 1 2 3 4 5 6 7 8
o 0 M r . B e a n \0
w 1 M r . B u s h \0
s 2 N i c o l e \0

3 K i d m a n \0
4 A r n o l d \0
5 J o d i e \0

Columns

Name [5][4]

Name [2][2]

First index

Second index

Name [row] [column] = Name [0] [0]

Name [3][5]

#include<iostream>
using namespace std;
int main()
{
 // initialize 2d array
 char colour [4][10]={"Blue","Red","Orange",
 "yellow"};

 // printing strings stored in 2d array
 for (int i=0; i <4; i++)
 cout << colour [i] << "\n";
}
Output:
 Blue
 Red
 Orange
 Yellow

C++ program to demonstrate array of strings using 2-D character array

Chapter 12 Page 206-227.indd 218 3/24/2020 9:22:23 AM

218 219

Case Study:
(1) Write a program to accept the marks of 10 students and find the average, maximum and

minimum marks.
Structures

12.5 Structures Introduction

 Structure is a user-defined which has the combination of data items with different data
types. This allows to group variables of mixed data types together into a single unit.

12.5.1 Purpose of Structures
 In any situation when more than one variable is required to represent objects of
uniform data-types, array can be used. If the elements are of different data types,then array
cannot support. If more than one variable is used, they can be stored in memory but not in
adjacent locations. It increases the time consumption while searching. The structure provides
a facility to store different data types as a part of the same logical element in one memory
chunk adjacent to each other.

12.5.2 Declaring and defining structures
 Structure is declared using the keyword ‘struct’. The syntax of creating a structure is
given below.

struct structure_name {

 type member_name1;

 type member_name2;

Objects declared along with
structure definition are called
global objects

 } reference_name;

 An optional field reference_name can be used to declare objects of the structure type
directly.

Example:

struct Student

{

 long rollno;

 int age;

 float weight;

} ;

 In the above declaration of the struct, three variables rollno,age and weight are used.
These variables(data element)within the structure are called members (or fields). In order to
use the Student structure, a variable of type Student is declared and the memory allocation is
shown in figure 12.5

Chapter 12 Page 206-227.indd 219 3/24/2020 9:22:23 AM

220 221

Rollno Age weight
4 Bytes 2 Bytes 4 Bytes

Fig 12.5 Memory Allocation

struct Student balu; // create a Student structure for Balu

 This defines a variable of type Student named as Balu. Similar to normal variables, struct
variable allocates memory for that variable itself. It is possible to define multiple variables of
the same struct type:

struct Student frank; // create a structure for Student Frank.

For example, the structure objects balu and frank can also be declared as the structure data
type as:

struct Student

{

longrollno;

int age;

float weight;

} balu, frank;

12.5.3 Referencing Structure Elements

 Once the two objects of student structure type are declared (balu and frank),their
members can be accessed directly. The syntax for that is using a dot (.) between the object name
and the member name. For example, the elements of the structure Student can be accessed as
follows:

balu.rollno

balu.age

balu.weight

frank.rollno

frank.age

frank.weight

Chapter 12 Page 206-227.indd 220 3/24/2020 9:22:23 AM

220 221

(Anonymous Structure Vs Named Structure)
A structure without a name/tag is called anonymous structure.
struct
{
long rollno;
 int age;
 float weight;
} student;
The student can be referred as reference name to the above structure and the
elements can be accessed like student.rollno, student.age and student.weight .

12.5.4 Initializing structure elements

Values can be assigned to structure elements similar to assigning values to variables.

Example

 balu.rollno= “702016”;

 balu.age= 18;

 balu.weight= 48.5;

Also, values can be assigned directly as similar to assigning values to Arrays.

balu={702016, 18, 48.5};

12.5.5 Structure Assignment
Structures can be assigned directly instead of assigning the values of elements individually.

Example

 If Mahesh and Praveen are same age and same height and weight then the values of
Mahesh can be copied to Praveen

struct Student

{
Structure assignment is possible
only if both structure variables/
objects are same type. int age;

 float height, weight;

}mahesh;

 The age of Mahesh is 17 and the height and weights are 164.5 and 52.5 respectively.The
following statement will perform the assignment.

mahesh = {17, 164.5, 52.5};

praveen =mahesh;

will assign the same age, height and weight to Praveen.

Chapter 12 Page 206-227.indd 221 3/24/2020 9:22:24 AM

222 223

Examples:

#include <iostream>
using namespace std;
struct Student
{
 int age;
 float height, weight;
} mahesh;
void main()
{
 cout<< “ Enter the age:”<<endl;
 cin>>mahesh.age;
 cout<< “Enter the height:”<<endl;
 cin>>mahesh.height;
 cout<< “Enter the weight:”<<endl;
 cin>>mahesh.weight;
 cout<< “The values entered for Age, height and weight are”<<endl;
 cout<<mahesh.age<< “\t”<<mahesh.height<< “\t”<<Mahesh.
weight;
}
Output:
Enter the age:
18
Enter the height:
160.5
Enter the weight:
46.5
The values entered for Age, height and weight are
18 160.5 46.5

The following C++ program reads student information through keyboard
and displays the same

• Structure is a user-defined which has the
combination of data items with different
data types

• Structure is declared using the keyword
‘struct’

• Structure elements are referenced using
its object name followed by dot(.)
operator and then the member name

• A structure without a name/tag is called
anonymous structure.

• The structure elements can be initialized
either by using separate assignment

statements or at the time of declaration
by surrounding its values with braces.

• A structure object can also be assigned
to another structure object only if both
the objects are of same structure type.

• The structure declared within another
structure is called a nested structure

• A structure can contain array as its
member element.

• Array of structure variable can also be
created.

Points to Remember:

Chapter 12 Page 206-227.indd 222 3/24/2020 9:22:24 AM

222 223

Evaluation

SECTION – A

Choose the correct answer

1. Which of the following is the collection of variables of the same type that an referenced by a
common name ?

 a) int b) float c) Array d) class

2. int age[]={6,90,20,18,2}; How many elements are there in this array?

 a) 2 b) 5 c) 6 d) 4

3. cin>>n[3]; To which element does this statement accept the value?

 a) 2 b) 3 c) 4 d) 5

4. By default, a string ends with which character?

 a)\o b) \t c) \n d) \b

5. Structure definition is terminated by

 (a) : (b) } (c) ; (d) ::

6. What will happen when the structure is declared?

 (a) it will not allocate any memory (b) it will allocate the memory

 (c) it will be declared and initialized (d) it will be only declared

7. A structure declaration is given below.

 struct Time
 {
 int hours;
 int minutes;
 int seconds;
 }t;
 Using above declaration which of the following refers to seconds.
 (a) Time.seconds (b) Time::seconds (c)seconds (d) t. seconds

8. Which of the following is a properly defined structure?

 (a) struct {int num;} (b) struct sum {int num;}

 (c) struct sum int sum; (d)struct sum {int num;};

9. A structure declaration is given below.

Chapter 12 Page 206-227.indd 223 3/24/2020 9:22:24 AM

224 225

 struct employee
 {
 int empno;
 char ename[10];
 }e[5];
 Using above declaration which of the following statement is correct.
 (a) cout<<e[0].empno<<e[0].ename; (b) cout<<e[0].empno<<ename;
 (c)cout<<e[0]->empno<<e[0]->ename; (d) cout<<e.empno<<e.ename;

10. When accessing a structure member ,the identifier to the left of the dot operator is the
name of

 (a) structure variable (b) structure tag

 (c) structure member (d) structure function

SECTION-B

Very Short Answers

1. What is Traversal in an Array?

2. What is Strings?

3. What is the syntax to declare two – dimensional array.

4. Define structure .What is its use?
5. What is the error in the following structure definition.
 struct employee{ inteno;charename[20];char dept;}
 Employee e1,e2;

SECTION-C
Short Answers

1. Define an Array ? What are the types?

2. Write note an Array of strings.

3. The following code sums up the total of all students name starting with ‘S’ and display it.
Fill in the blanks with required statements.

 struct student {int exam no,lang,eng,phy,che,mat,csc,total;char name[15];};
 int main()
 {
 student s[20];
 for(int i=0;i<20;i++)
 { …………………….. //accept student details }
 for(int i=0;i<20;i++)
 {
 …………………….. //check for name starts with letter “S”

Chapter 12 Page 206-227.indd 224 3/24/2020 9:22:24 AM

224 225

 ……………………. // display the detail of the checked name
 }
 return 0;
 }
4. How to access members of a structure?Give example.
5. What is called anonymous structure .Give an example

SECTION - D

Explain in detail
1. Write a C++ program to find the difference between two matrix.

2. Write a C++ program to add two distances using the following structure definition

 struct Distance{

 int feet;

 float inch;

 }d1 , d2, sum;

3. Write the output of the following c++ program

 #include<iostream>
 #include<stdio>
 #include <string>
 #include<conio>
 using namespace std;
 struct books {
 char name[20], author[20];
 } a[2];
 int main()
 { cout<< "Details of Book No " << 1 << "\n";
 cout<< "------------------------\n";
 cout<< "Book Name :"<<strcpy(a[0].name,"Programming ")<<endl;
 cout<< "Book Author :"<<strcpy(a[0].author,"Dromy")<<endl;
 cout<< "\nDetails of Book No " << 2 << "\n";
 cout<< "------------------------\n";
 cout<< "Book Name :"<<strcpy(a[1].name,"C++programming")<<endl;
 cout<< "Book Author :"<<strcpy(a[1].author,"BjarneStroustrup ")<<endl;
 cout<<"\n\n";
 cout<< "==\n";
 cout<< " S.No\t| Book Name\t|author\n";
 cout<< "==";
 for (int i = 0; i < 2; i++) {

Chapter 12 Page 206-227.indd 225 3/24/2020 9:22:24 AM

226 227

 cout<< "\n " << i + 1 << "\t|" << a[i].name << "\t| " << a[i].author;
 }
 cout<< "\n===";
 return 0;
 }
4. Write the output of the following c++ program

 #include <iostream>

 #include <string>

 using namespace std;

 struct student

 {

 introll_no;

 char name[10];

 long phone_number;

 };

 int main(){

 student p1 = {1,"Brown",123443},p2;

 p2.roll_no = 2;

 strcpy(p2.name ,"Sam");

 p2.phone_number = 1234567822;

 cout<< "First Student" <<endl;

 cout<< "roll no : " << p1.roll_no <<endl<< "name : " << p1.name <<endl;

 cout<< "phone no : " << p1.phone_number <<endl;

 cout<< "Second Student" <<endl;

 cout<< "roll no : " << p2.roll_no <<endl<< "name : " << p2.name <<endl;

 cout<< "phone no : " << p2.phone_number <<endl;

 return 0;

}

5. Debug the error in the following program

 #include <istream.h>

 structPersonRec

 {

Chapter 12 Page 206-227.indd 226 3/24/2020 9:22:24 AM

226 227

charlastName[10];

chaefirstName[10];

int age;

 }

 PersonRecPeopleArrayType[10];

void main()

 {

PersonRecord people;

for (i = 0; i < 10; i++)

 {

cout<<people.firstName<< ‘ ‘ <<people.lastName <<people.age;

 }

for (int i = 0; i < 10; i++)

 {

cout<< "Enter first name: "; cin<<peop[i].firstName;

cout<< "Enter last name: "; cin>>peop[i].lastName;

cout<< "Enter age: "; cin>> people[i].age;}

}

References:
1. Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,

Mc.Graw Hills.
2. The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.
3. Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora,

DhanpatRai& Co.
4. The C++ Programming Language, Bjarne Stroustrup

Chapter 12 Page 206-227.indd 227 3/24/2020 9:22:24 AM

228 229

Learing Objectives

After learning this chapter, the students
will be able to

• Understand the concept of OOPS

• Know the difference between
Procedural, Modular and Object
Oriented Programming.

• Understand the advantages and
disadvantages of Object Oriented
Programming.

13.1 Introduction

 Object-Oriented Programming
(OOP) is the term used to describe a
programming approach based on classes
and objects. The object-oriented paradigm
allows us to organize software as a collection
of objects that consist of both data and
behaviour. This is in contrast to conventional
functional programming practice, that
loosely connects data and behaviour.

 Since 1980's the word 'object' has
appeared in relation to programming
languages, with almost all languages
developed since 1990 having object-oriented
features. This chapter introduces general
OOP concepts.

CHAPTER 13
Introduction to Object Oriented

Programming Techniques

13.2 Programming Paradigms

 Paradigm means organizing
principle of a program. It is an approach
to programming. There are different
approaches available for problem solving
using computer. They are Procedural
programming, Modular Programming and
Object Oriented Programming

13.2.1 Procedural programming

 Procedural means a list of
instructions were given to the computer to
do something. Procedural programming
aims more at procedures. This emphasis on
doing things.

Important features of procedural
programming

• Programs are organized in the form of
subroutines or sub programs

• All data items are global

• Suitable for small sized software
application

• Difficult to maintain and enhance the
program code as any change in data type
needs to be propagated to all subroutines
that use the same data type. This is time
consuming.

• Example: FORTRAN and COBOL.

Unit IV Object Oriented
Programming with C++

Chapter 13 Page 228-232.indd 228 3/24/2020 9:22:44 AM

228 229

13.2.2 Modular programming:-
 Modular programming consist
of a list of instructions that instructs
the computer to do something. But this
Paradigm consists of multiple modules,
each module has a set of functions of
related types. Data is hidden under the
modules. Arrangement of data can be
changed only by modifying the module

Important features of Modular
programming
• Emphasis on algorithm rather than data
• Programs are divided into individual

modules
• Each modules are independent of each

other and have their own local data
• Modules can work with its own data as

well as with the data passed to it.
• Example: Pascal and C
13.2.3 Object Oriented Programming:-

 Object Oriented Programming
paradigm emphasizes on the data rather
than the algorithm. It implements programs
using classes and objects.

Class: A Class is a construct in C++ which
is used to bind data and its associated
function together into a single unit using
the encapsulation concept. Class is a user
defined data type. Class represents a group
of similar objects.

It can also be defined as a template or
blueprint representing a group objects
that share common properties and
relationship.

Objects: Represents data and its associated
function together into a single unit. Objects
are the basic unit of OOP. Basically an object

is created from a class. They are instances of
class also called as class variables

 An identifiable entity with some
characteristics and behaviour is called
object.

Important features of Object oriented
programming

• Emphasizes on data rather than
algorithm

• Data abstraction is introduced in
addition to procedural abstraction

• Data and its associated operations are
grouped in to single unit

• Programs are designed around the data
being operated

• Relationships can be created between
similar, yet distinct data types

• Example: C++, Java, VB.Net, Python
etc.

13.3 Basic Concepts of OOP

 The Object Oriented Programing has
been developed to overcome the drawbacks
of procedural and modular programming.
It is widely accepted that object-oriented
programming is the most important and
powerful way of creating software.

 The Object-Oriented Programming
approach mainly encourages:

• Modularisation: where the program can
be decomposed into modules.

• Software re-use: where a program can
be composed from existing and new
modules.

Main Features of Object Oriented
Programming
• Data Abstraction
• Encapsulation

Chapter 13 Page 228-232.indd 229 3/24/2020 9:22:44 AM

230 231

• Modularity
• Inheritance
• Polymorphism
13.3.1 Encapsulation

 The mechanism by which the data
and functions are bound together into a
single unit is known as Encapsulation. It
implements abstraction.
 Encapsulation is about binding the
data variables and functions together in
class. It can also be called data binding.
 Encapsulation is the most striking
feature of a class. The data is not accessible to
the outside world, and only those functions
which are wrapped in the class can access
it. These functions provide the interface
between the object’s data and the program.
This encapsulation of data from direct
access by the program is called data hiding
or information hiding.
13.3.2 Data Abstraction

 Abstraction refers to showing only
the essential features without revealing
background details. Classes use the concept
of abstraction to define a list of abstract
attributes and function which operate on
these attributes. They encapsulate all the
essential properties of the object that are
to be created. The attributes are called data
members because they hold information.
The functions that operate on these data are
called methods or member function.

13.3.3 Modularity

 Modularity is designing a system
that is divided into a set of functional units
(named modules) that can be composed
into a larger application.

13.3.4 Inheritance
 Inheritance is the technique of
building new classes (derived class) from
an existing Class (base class). The most
important advantage of inheritance is code
reusability.
13.3.5 Polymorphism
 Polymorphism is the ability of a
message or function to be displayed in more
than one form.

13.4 Advantages of OOP
Re-usability:
 “Write once and use it multiple
times” you can achieve this by using class.
Redundancy:
 Inheritance is the good feature
for data redundancy. If you need a same
functionality in multiple class you can write
a common class for the same functionality
and inherit that class to sub class.
Easy Maintenance:
 It is easy to maintain and modify
existing code as new objects can be created
with small differences to existing ones.
Security:
 Using data hiding and abstraction
only necessary data will be provided thus
maintains the security of data.

13.5 Disadvantages of OOP
Size:
 Object Oriented Programs are much
larger than other programs.
Effort:
 Object Oriented Programs require a
lot of work to create.
Speed:
 Object Oriented Programs are slower
than other programs, because of their size.

Chapter 13 Page 228-232.indd 230 3/24/2020 9:22:44 AM

230 231

• Paradigm means organizing principle of a
program.It is an approach to programming.

• Procedural or Modular programming
means a list of instructions were given and
each instructions tell the computer to do
something.

• Procedural programming aims more ate
procedures. In this Programs are organized
in the form of subroutines or sub programs

• Modular programming combines related
procedures in a module and hides data
under modules.

• Object Oriented programming Paradigm
emphasizes on the data rather than the
algorithm. It implements programs using
classes and objects

• Class is a user defined data type. Class
represents a group of similar objects.

• Objects are the basic unit of OOP.It

represents data and associated function
together in to a single unit.

• The mechanism by which the data and
functions are bound together into a single
unit is known as ENCAPSULATION. It
implements abstraction .

• Abstraction refers to showing only the
essential features without revealing
background details

• Modularity is designing a system that is
divided into a set of functional units that
can be composed into a larger application.

• Polymorphism is the ability of a message or
function to be displayed in more than one
form.

• Inheritance is the technique of building
new classes (derived class) from an existing
class. The most important advantage of
inheritance is code reusability.Inheritance
is transitive in nature.

Points to Remember:

Evaluation

SECTION – A
Choose the correct answer

1. The term is used to describe a programming approach based on classes and objects is
 (A) OOP (B) POP (C) ADT (D) SOP

2. The paradigm which aims more at procedures.
 (A) Object Oriented Programming (B)Procedural programming
 (C) Modular programming (D)Structural programming

3. Which of the following is a user defined data type?
 (A) class (B) float (C) int (D) object

4. The identifiable entity with some characteristics and behaviour is.
 (A) class (B) object (C) structure (D) member

5. The mechanism by which the data and functions are bound together into a single unit
is known as

 (A) Inheritance (B) Encapsulation
 (C) Polymorphism (D) Abstraction
6. Insulation of the data from direct access by the program is called as
 (A) Data hiding (B) Encapsulation
 (C) Polymorphism (D) Abstraction

Chapter 13 Page 228-232.indd 231 3/24/2020 9:22:44 AM

232 PB

7. Which of the following concept encapsulate all the essential properties of the object
that are to be created?

 (A) class (B) Encapsulation
 (C) Polymorphism (D) Abstraction
8. Which of the following is the most important advantage of inheritance?
 (A) data hiding (B) code reusability
 (C) code modification (D) accessibility
9. “Write once and use it multiple time” can be achieved by
 (A) redundancy (B) reusability
 (C) modification (D) composition
10. Which of the following supports the transitive nature of data?
 (A) Inheritance (B) Encapsulation
 (C) Polymorphism (D) Abstraction

SECTION-B

Very Short Answers

1. How is modular programming different from procedural programming paradigm?
2. Differentiate classes and objects.
3. What is polymorphism?
4. How is encapsulation and abstraction are interrelated?
5. Write the disadvantages of OOP.

SECTION-C
Short Answers

1. What is paradigm ?Mention the different types of paradigm.
2. Write a note on the features of procedural programming.
3. List some of the features of modular programming
4. What do you mean by modularization and software reuse?
5. Define information hiding.

SECTION - D
Explain in detail

1. Write the differences between Object Oriented Programming and procedural
programming

2. What are the advanatges of OOPs?
3 Write a note on the basic concepts that suppors OOPs?
Reference:
(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy, Mc.Graw

Hills.
(2) The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.
(3) Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora,

DhanpatRai& Co.
(4) A text book of CBSE XI and XII computer science by PreetiArora and Pinky Gupta.
(5) Computer Science with C++ Reeta shoo and Gagansahoo
(6) The C++ Programming Language,BjarneStroustrup
(7) C++ Primer (5th Edition) by S. B. Lippman, J. Lajoie

Chapter 13 Page 228-232.indd 232 3/24/2020 9:22:44 AM

233

Learining Objectives

After learning this chapter, the students
will be able to

• Understand the purpose of classes,
objects Constructors and Destructors

• able to construct C++ programs
using classes with Constructors and
Destructors

• Execute and debug class programs with
Constructors and Destructors

14.1 Introduction to Classes

 The most important feature of C++
is the “Class”. It is significance is highlighted
by the fact that Bjarne Stroustrup initially
gave the name 'C with classes'. C++ offers
classes, which provide the four features
commonly present in OOP languages:
Abstraction, Encapsulation, Inheritance,
and Polymorphism.

14.1.1 Need for Class

 Class is a way to bind the data and
its associated functions together. Classes
are needed to represent real world entities
that not only have data type properties but
also have associated operations. It is used to
create user defined data type

CHAPTER 14
Classes and objects

14.1.2 Declaration of a class

 A class is defined in C++ using the
keyword class followed by the name of the
class. The body of the class is defined inside
the curly brackets and terminated either by a
semicolon or a list of declarations at the end.

Note

The only difference between
structure and class is the members
of structure are by default public
where as it is private in class.

class class-name
{
private:
 variable declaration;
 function declaration;
protected:
 variable declaration;
 function declaration;
public:
 variable declaration;
 function declaration;
};

The General Form of a class definition

• The class body contains the declaration
of its members (Data member and
Member functions).

Unit IV
Object Oriented
Programming with C++

Chapter 14 Page 233-248.indd 233 3/24/2020 9:23:03 AM

234

• The class body has three access specifiers
(visibility labels) viz., private , public
and protected.

14.1.3 Class Access Specifiers

 Data hiding is one of the important
features of Object Oriented Programming
which allows preventing the functions of
a program to access directly the internal
representation of a class type. The access
restriction to the class members is specified
by public, private, and protected sections
within the class body. The keywords public,
private, and protected are called access
specifiers. The default access specifier for
members is private.

The Public Members

 A public member is accessible from
anywhere outside the class but within a
program.You can set and get the value of
public data members even without using
any member function.

The Private Members

 A private member cannot be
accessed from outside the class. Only the
class member functions can access private
members.By default all the members of a
class would be private.

The Protected Members

 A protected member is very similar
to a private member but it provides one
additional benefit that they can be accessed
in child classes which are called derived
classes (inherited classes).

Example

Keyword class intimates the compiler that it is a class definition

These are private access specifier members

These are protected access specifier members

That means these members cannot be accessed
from outside

These members also cannot be accessed from
outside

Members under this specifier can be accessed
from outside

}
}

Class name or tag name acts as a user defined data type. Using this,
object of the same class type will be created.

class student
{
private:
 char name [10];
 int rollno, mark1, mark2, total;
protected:
 void accept();
 void compute();
public:
 void display();
};

Chapter 14 Page 233-248.indd 234 3/24/2020 9:23:03 AM

235

Note

 If all members of the class are
defined as private ,then the object
of the class can not access anything
from the class.

Activity 1
State the reason for the invalidity of the
following code fragment

(i) (ii)

class count
{
 int first;
 int second;
 public:
 int first;
};

class item
{
int prd;
 };
item int prdno;

14.1.4 Definition of class members

 Class comprises of members.
Members are classified as Data Members
and Member functions. Data members are
the data variables that represent the features
or properties of a class. Member functions
are the functions that perform specific tasks
in a class. Member functions are called as
methods, and data members are also called
as attributes.

Example
Class result
{
Private;
 char name [10];
 int rollno,mark1, mark2, total;

Public:
 void accept();
 void display();
};

}
}

Member functions

Data members

Note

Classes also contain some special
member functions called as
constructors and destructors.

14.1.5 Defining methods of a class

 Without defining the methods
(functions), class definition will become
incomplete. The member functions of a
class can be defined in two ways.

(1) Inside the class definition

(2) Outside the class definition

(1) Inside the class definition

 When a member function is defined
inside a class, it behaves like inline functions.
These are called Inline member functions.

Note

If a function is inline, the compiler
places a copy of the code at each
point where the function is called at
compile time.

(2) Outside the class definition

 When Member function defined
outside the class just like normal function
definition (Function definitions you are
familiar with) then it is be called as outline
member function or non-inline member
function. Scope resolution operator (::)
is used for this purpose. The syntax for
defining the outline member function is

Chapter 14 Page 233-248.indd 235 3/24/2020 9:23:03 AM

236

Syntax

 return_type class_name :: function_name (parameter list)
 {
 function definition
 }

For example: Member function

Scope resolution operator

Data type of the member function

Class name / tag

void add :: display()

include <iostream>
using namespace std;
class Box
{
 double width; // no access specifier mentioned
public:
 double length;
 void printWidth() //inline member function definition
 {
 cout<<”\n The width of the box is...”<<width;
 }
 void setWidth(double w); //prototype of the function
};
void Box :: setWidth(double w) // outline member function definition
{
 width=w;
}
int main()
{
Box b; // object for class Box
b.setWidth(10.0); // Use member function to set the width.
b.printWidth(); //Use member function to print the width.
return 0;
}
Output:
The width of the box is... 10

Illustration 14.1 Inline and Outline member function

Absence of access specifier means
that members are private by default..

Chapter 14 Page 233-248.indd 236 3/24/2020 9:23:04 AM

237

Note

Declaring a member function having
looping construct, switch or goto
statement as inline is not advisable.

14.2 Creating Objects

 A class specification just defines
the properties of a class. To make use of a
class, the variables of that class type have to
be declared. The class variables are called
object. Objects are also called as instance of
class.

For example

 student s;

 In the above statement s is an instance
of the class student.

 Objects can be created in two
methods,

 (1) Global object

 (2) Local object

(1) Global Object

 If an object is declared outside all the
function bodies or by placing their names
immediately after the closing brace of the
class declaration then it is called as Global
object. These objects can be used by any
function in the program

(2) Local Object

 If an object is declared with in a
function then it is called local object.
It cannot be accessed from outside
the function.

include <iostream>
include <conio>
using namespace std
class add
{

int a,b;
public:

int sum;
void getdata()
{

a=5;
b=10;
sum = a+b;

}
} a1; //global object
add a2; //global object
int main()
{
add a3; // Local object
a1.getdata();
a2.getdata();
a3.getdata();
cout<<a1.sum;
cout<<a2.sum;
cout<<a3.sum;
return 0;
}
Output:
151515

Illustration 14.2 The use of local and
global object

ACTIVITY 2
Identify the error in the following code
fragment
class A
{
 float x;
 void init()
 {
 A a1;
 X1.5=1;
 }};
void main()
{ A1.init(); }

Chapter 14 Page 233-248.indd 237 3/24/2020 9:23:04 AM

238

14.3 Memory allocation of objects

 The member functions are created and placed in the memory space only when they
are defined as a part of the class specification. Since all the objects belonging to that class use
the same member function, no separate space is allocated for member functions when the
objects are created. Memory space required for the member variables are only allocated
separately for each object because the member variables will hold different data values for
different objects

include <iostream>
using namespace std;

class product
{
 int code, quantity;
 float price;
 public:
 void assignData();
 void Print();
};
int main()
{
 product p1, p2;
 cout<<”\n Memory allocation for object p1 ” <<sizeof(p1);
 cout<<”\n Memory allocation for object p2 ” <<sizeof(p2);
 return 0;
}

Output:
 Memory allocation for object p1 12
 Memory allocation for object p2 12

Illustration 14.3 Memory allocation for objects

 Member functions assignData() and Print() belong to the common pool in the sense
both the objects p1 and p2 will have access to the code area of the common pool.

Note

The members will be allocated with memory space only after the creation
of the class type object

Memory for Objects for p1 and p2 is illustrated:

Code quantity price Code quantity price{ {4 bytes 4bytes 4bytes

12 bytes 12 bytes

P2 objectP1 object

4 bytes 4bytes 4bytes

Chapter 14 Page 233-248.indd 238 3/24/2020 9:23:04 AM

239

ACTIVITY 3
What is the size of the objects s1, s2?
class sum
{
 int n1,n2;
 public:
 void add(){int n3=10;n1=n2=10;}
} s1,s2;

14.4 Referencing class members

 The members of a class are referenced
(accessed) by using the object of the class
followed by the dot (membership) operator
and the name of the member.

The general syntax for calling the member
function is:

Object_name . function_name(actual
parameter);

For example consider the following
illustration

Stud . execute();

Member function
Dot operator
Object name

#include<iostream>
using namespace std;
class compute
{
 int n1,n2; //private by default
 public :
 int n;
 int add (int a, int b) //inline member function

 {
 int c=a+b; //int c ; local variable for this function

 return c;
 }

}c1,c2;
int main()
{
 c1.n =c1.add(12,15); //member function is called

 c2.n =c2.add(8,4);
 cout<<"\n Sum of object-1 "<<c1.n;
 cout<<"\n Sum of object-2 "<<c2.n;
 cout<<"\n Sum of the two objects are "<<c1.n+c2.n;

 return 0;
}
Output:
 Sum of object-1 27
 Sum of object-2 12
 Sum of the two objects are 39

Illustration 14.4 C++ program to
illustrate the communication of object:

Note

Even an array of objects can be created for a class. It is declared and defined in the
same way as any other type of array.
Example :
student s[10];
Where student is the class name and s[10] is 10 objects created for the student class.

14.5 Introduction to Constructors

 The definition of a class only creates a new user defined data type. The instances of the
class type should be instantiated (created and initialized) . Instantiating object is done using
constructor.

Chapter 14 Page 233-248.indd 239 3/24/2020 9:23:04 AM

240

14.5.1 Need for Constructors

An array or a structure in c++ can be initialized during the time of their declaration.

For example

struct sum
 {
 int n1,n2;
 };
class add
 {
 int num1,num2;
 };
int main()
 {
 int arr[]={1,2,3}; //declaration and initialization of array
 sum s1={1,1}; //declaration and initialization of structure object
 add a1={0,0}; // class object declaration and initialization throws
 compilation error
 }

Member function of a class can access
all the members irrespective of their
associated access specifier.

 The initialization of class type object at the time of declaration similar to a structure
or an array is not possible because the class members have their associated access specifiers
(private or protected or public). Therefore Classes include special member functions called as
constructors. The constructor function initializes the class object.

14.6 Declaration and Definition

 When an instance of a class comes into scope, a special function called the constructor
gets executed. The constructor function name has the same name as the class name. The
constructors return nothing. They are not associated with any data type. It can be defined
either inside class definition or outside the class definition.

Example 1:

#include<iostream>
using namespace std;
class Sample
{
 int i,j;
 public :
 int k;
 Sample()
 {
 i=j=k=0; //constructor defined inside the class
 }
};

 Illustration 14.5 A constructor defined inside the class specification.

Chapter 14 Page 233-248.indd 240 3/24/2020 9:23:04 AM

241

14.6.1 Functions of constructor

 As we know now that the constructor is a special initialization member function of a
class that is called automatically whenever an instance of a class is declared or created. The
main function of the constructor is

1) To allocate memory space to the object and

2) To initialize the data member of the class object

 There is an alternate way to initialize the class objects but in that case we have to
explicitly call the member function.

14.7 Types of constructors

There are different types of constructors.

• Default Constructors

 A constructor that accepts no parameter is called default constructor. For example in
the class Data, Data ::Data() is the default constructor . Using this constructor Objects are
created similar to the way the variables of other data types are created. If a class does not
contain an explicit constructor (user defined constructor) the compiler automatically generate
a default constructor.

• Parameterized Constructors

 A constructor which can take arguments is called parameterized constructor .This type
of constructor helps to create objects with different initial values. This is achieved by passing
parameters to the function.

Example :

Data :: Data(int,int);

• Copy Constructors

 A constructor having a reference to an already existing object of its own class is called
copy constructor. It is usually of the form Data (Data&), where Data is the class name.

 A copy constructor can be called in meny ways:

1) When an object is passed as a parameter to any of the member functions

 Example void Data::putdata(Data x);

2) When a member function returns an object

 Example Data getdata() { }

3) When an object is passed by reference to an instance of its own class

 For example, Data d1, d2 (d1); // d2(d1) calls copy constructor

Chapter 14 Page 233-248.indd 241 3/24/2020 9:23:04 AM

242

#include<iostream>
using namespace std;
class Data
 {
 int i, j;
 public:
 int k;
 Data()
 {
 cout<<"Non Parametrerized constructor";
 i=0;
 j=0'
 }
 Data(int a,int b)
 {
 cout<<"Parametrerized constructor";
 i=a;
 j=b'
 }
 Data(Data &a)
 {
 cout<<"Copy constructor";
 i=a.i;
 j=b.j'
 }

 void display() //member function
 {
 cout<< i<<j;
 }
 };
int main()
{
 Data d1,d2(10,20),d3(d2);
 d1.display();
 d2.display();
 d3.display();
 return 0;

}

Illustration 14.6 Types of constructor

14.8 Invocation of constructors

There are two ways to create an object using parameterized constructor
• Implicit call
• Explicit call

Chapter 14 Page 233-248.indd 242 3/24/2020 9:23:04 AM

243

14.8.1 Implicit call
 In this method ,the parameterized constructor is invoked automatically whenever an
object is created. For example simple s1(10,20); in this for creating the object s1 parameterized
constructor is automatically invoked.
14.8.2 Explicit call
 In this method ,the name of the constructor is explicitly given to invoke the parameterized
constructor so that the object can be created and initialized .
For example

simple s1=simple(10,20); //explicit call

 Explicit call method is the most suitable method as it creates a temporary object ,the
chance of data loss will not arise.A temprory object lives in memory as long as it is being used
in an expression.After this it get destroyed.

14.9 Dynamic initialization of Objects
 When the initial values are provided during runtime then it is called dynamic
initialization.

#include<iostream>
using namespace std;
class X
{ int n;
 float avg;
 public:
 X(int p,float q)
 { n=p;
 avg=q; }
 void disp()
 { cout<<"\n Roll numbe:- " <<n;
 cout<<"\nAverage :- "<<avg; } };
int main()
{
int a ; float b;
 cout<<"\nEnter the Roll Number";
 cin>>a;
 cout<<"\nEnter the Average";
 cin>>b;
 X x(a,b); // dynamic initialization
 x.disp();
 return 0;
}

Output:
Enter the Roll Number 1201
Enter the Average 98.6
 Roll numbe:- 1201
Average :- 98.6

Illustration14.7 to illustrate dynamic initialization

Chapter 14 Page 233-248.indd 243 3/24/2020 9:23:04 AM

244

14.10 Characteristics of Constructors

• The name of the constructor must be
same as that of the class

• No return type can be specified for
constructor

• A constructor can have parameter list
• The constructor function can be

overloaded
• They cannot be inherited but a derived

class can call the base class constructor
• The compiler generates a constructor, in

the absence of a user defined constructor.
• Compiler generated constructor is public

member function
• The constructor is executed automatically

when the object is created
• A constructor can be used explicitly to

create new object of its class type
14.11 Destructors

 When a class object goes out of scope,
a special function called the destructor gets
executed. The destructor has the same name
as the class tag but prefixed with a ~(tilde).
Destructor function also return nothing and
it does not associated with anydata type.

14.11.1 Need of Destructors

 The purpose of the destructor is to
free the resources that the object may have
acquired during its lifetime. A destructor
function removes the memory of an object
which was allocated by the constructor at
the time of creating a object.

14.11.2 Declaration and Definition

 A destructor is a special member
function that is called when the lifetime
of an object ends and destroys the object
constructed by the constructor. Normally
declared under public.

#include<iostream>
using namespace std;
class simple
{
private:
int a, b;
public:
simple()
{
a= 0 ;
b= 0;
cout<< "\n Constructor of class-simple ";
}
void getdata()
{
cout<<"\n Enter values for a and b ";
cin>>a>>b;
}
void putdata()
{
cout<<"\nThe two integers are .. ";
cout<<<<a<<'\t'<< b<<endl;
cout<<"\n The sum = "<<a+b;
}
~simple()
{ cout<<”\n Destructor is executed ”;}
};
int main()
{
simple s;
s.getdata();
s.putdata();
return 0;
}

Output:
Constructor of class-simple
Enter values for a and b 6 7
The two integers are .. 6 7
The sum = 13
Destructor is executed

Illustration14.8 To illustrate
destructor function in a class

14.12 Characteristics of Destructors
• The destructor has the same name as that

class prefixed by the tilde character ‘~’.
• The destructor cannot have arguments
• It has no return type
• Destructors cannot be overloaded
• In the absence of user defined destructor,

it is generated by the compiler
• The destructor is executed automatically

when the control reaches the end of class
scope to destroy the object

• They cannot be inherited

Chapter 14 Page 233-248.indd 244 3/24/2020 9:23:04 AM

245

• A class binds data and associated
functions together.

• A class in C++ makes a user defined data
type using which objects of this type can
be created.

• While declaring a class data members ,
member functions ,access specifiers and
class tag name are given.

• The member functions of a class can
either be defined within the class (inline)
definition or outside the class definition.

• The public members of the class can be
accessed outside the class directly by
using object of this class type.

• A class binds data and associated
functions together.

• A class in C++ makes a user defined data
type using which objects of this type can
be created.

• While declaring a class data members ,
member functions, access specifiers and
class tag name are given.

• The member functions of a class can
either be defined within the class (inline)
definition or outside the class definition.

• The public members of the class can be
accessed outside the class directly by
using object of this class type.

• A class supports OOP features
ENCAPSULATION by binding data and
functionsassociated together.

• A class supports Data hiding by hiding
the information from the outside world

through private and protected members.

• When a member function is called by
another member function of the same
class , it is calledas nesting of member
functions.

• The scope resolution operator (::), when
used with the class name depicts that the
members belong to that class as in class_
name :: function_name and only used
with the variable name as in :: s variable
–name , depicts the global variable.(the
one with file scope).

• When an instance of a class comes into
scope, a special function called the
constructor gets executed.

• The constructor function allocates
memory and initializes the class object.

• When an instance of a class comes into
scope, a special function called the
constructor gets executed.

• When a class object goes out of scope,
a special function called the destructor
gets executed.

• The constructor function name and the
destructor have the same name as the
classtag.

• A constructor without parameters is
called as default constructor.

• A constructor with default argument is
equivalent to a default constructor

• Both the constructors and destructor
return nothing. They are not associated
with any data type.

• Objects can be initialized dynamically .

Points to Remember:

Chapter 14 Page 233-248.indd 245 3/24/2020 9:23:04 AM

246

3. A member function can call another
member function directly, without
using the dot operator called as

 (A) sub function
 (B) sub member
 (C) nesting of member function
 (D) sibling of member function
4. The member function defined within

the class behave like functions

 (A) inline (B) Non inline
 (C) Outline (D) Data
5. Which of the following access specifier

protects data from inadvertent
modifications?

 (A) Private (B) Protected
 (C) Public (D) Global
6. class x
 {
 int y;
 public:
 x(int z){y=z;}
 } x1[4];
 int main()
 { x x2(10);
 return 0;}
 How many objects are created for the above

program
 (A) 10 (B) 14 (C) 5 (D) 2

7. State whether the following statements
about the constructor are True or False.

 i) constructors should be declared in
the private section.

 ii) constructors are invoked
automatically when the objects are
created.

 (A) True, True (B) True, False
 (C) False, True (D) False, False

Hands on practice:

1 Define a class Employee with the
following specification

private members of class Employee
empno- integer
ename – 20 characters
basic – float
netpay, hra, da, - float
 calculate () – A function to find the
basic+hra+da with float return type
 public member functions of class employee
 havedata() – A function to accept values for
empno, ename, basic, hra, da and
call calculate() to compute netpay
dispdata() – A function to display all the
data members on the screen

Evaluation

SECTION – A
Choose the correct answer

1. The variables declared
inside the class are
known as

 (A) data (B) inline
 (C) method (D) attributes
2. Which of the following statements about

member functions are True or False?
 i) A member function can call another

member function directly with using
the dot operator.

 ii) Member function can access the
private data of the class.

 (A) i)True, ii)True (B) i)False, ii)True
 (C) i)True, ii)False (D) i)False,ii)False

Chapter 14 Page 233-248.indd 246 3/24/2020 9:23:04 AM

247

8. Which of the following constructor is
executed for the following prototype ?

 add display(add &); // add is
a class name

 (A) Default constructor
 (B) Parameterized constructor
 (C) Copy constructor
 (D) Non Parameterized constructor

SECTION-B

Very Short Answers

1. What are called members?
2. Differentiate structure and class though

both are user defined data type.
3. What is the difference between the

class and object in terms of oop?
4. Why it is considered as a good practice

to define a constructor though
compiler can automatically generate a
constructor ?

5. Write down the importance of
destructor.

SECTION-C
Short Answers

1. Rewrite the following program after
removing the syntax errors if any and
underline the errors:

 #include<iostream>
 $include<stdio>
 class mystud
 { int studid =1001;
 char name[20];
 public
 mystud() { }
 void register ()
 {cin>>stdid; gets(name); }
 void display ()
 {cout<<studid<<”: “<<name<<endl;}
 }

 int main()
 { mystud MS;
 register.MS();
 MS.display();
 }
2. Write with example how will you

dynamically initialize objects?

3. What are advantages of declaring
constructors and destructor under
public accessability?

4. Given the following C++ code, answer
the questions (i) & (ii).

class TestMeOut

{

 public:

 ~TestMeOut() //Function 1

 {cout<<“Leaving the exam hall”<<endl;}

 TestMeOut() //Function 2

 {cout<<“Appearing for exam”<<endl;}

 void MyWork() //Function 3

 {cout<<“Answering”<<endl;} };

 (i) In Object Oriented Programming,
what is Function 1 referred as and when
doesit get invoked / called ?

 (ii) In Object Oriented Programming,
what is Function 2 referred as and when
doesit get invoked / called ?

SECTION - D

Explain in detail

1. Mention the differences between
constructor and destructor

2. Define a class RESORT with the
following description in C++ :

 Private members:
 Rno // Data member to store room number

 Name //Data member to store user name

Chapter 14 Page 233-248.indd 247 3/24/2020 9:23:04 AM

248

 Charges //Data member to store per day charge

 Days //Data member to store the number of days

 Compute()/*A function to calculate total amount

as Days * Charges and if the total amount exceeds

11000 then total amount is 1.02 * Days *Charges */

 Public member:
 GetInfo() /* Function to Read the information

like name , room no, charges and days*/

 DispInfo()/* Function to display all entered

details and total amount calculated using COMPUTE

function*/

3. Write the output of the following
#include<iostream>
using namespace std;
class student
{
 int rno, marks;
 public:
 student(int r,int m)
 { cout<<"Constructor "<<endl;
 rno=r;
 marks=m;
 }
 void printdet()
 {
 marks=marks+30;
 cout<<"Name: Bharathi"<<endl;
 cout<<"Roll no : "<<rno<<"\n";
 cout<<"Marks : "<<marks<<endl;
 }
};
int main()
{
 student s(14,70);
 s.printdet();
 cout<< "Back to Main";
 return 0;
}

Reference:
(1) Object Oriented Programming

with C++ (4th Edition), Dr. E.
Balagurusamy,
Mc.Graw Hills.

(2) The Complete Reference C++ (Forth
Edition), Herbert Schildt.Mc.Graw
Hills.

Chapter 14 Page 233-248.indd 248 3/24/2020 9:23:04 AM

PB 249

Learning Objectives
After learning this chapter, the students will be able to
• Understand the purpose of overloading
• Construct C++ programs using function, constructor and operator overloading
• Execute and debug programs which contains the concept of polymorphism

15.1 Introduction
 The word polymorphism means many forms (poly – many, morph – shapes)
Polymorphism is the ability of a message or function to be displayed in more than one form. In
C++, polymorphism is achieved through function overloading and operator overloading. The
term overloading means a name having two or more distinct meanings. Thus an ‘overloaded
function’ refers to a function having more than one distinct meaning.

15.2 Function overloading
 The ability of the function to process the message or data in more than one form is
called as function overloading. In other words function overloading means two or more
functions in the same scope share the same name but their parameters are different. In this
situation, the functions that share the same name are said to be overloaded and the process
is called function overloading . The number and types of a function's parameters are called
the function's signature. When you call an overloaded function, the compiler determines the
most appropriate definition to use, by comparing the argument types you have used to call
the function with the parameter types specified in the definitions. The process of selecting the
most appropriate overloaded function or operator is called overload resolution
15.2.1 Need For Function overloading
 Sometimes it's hard to find many different meaningful names for a single action.
 Consider the situation to find the area of circle ,triangle and rectangle the following
function prototype is given
float area_circle(float radius) // to calculate the area of a circle
float area_triangle(float half,floatbase,float height) // to calculate the area of a triangle
float area_rectangle(float length , float breadth) // to calculate the area of a rectangle

CHAPTER 15
Polymorphism

Unit IV Object Oriented
Programming with C++

Chapter 15 Page 249-259.indd 249 3/24/2020 9:23:24 AM

250 251

This can be rewritten using a single function header in the following manner
float area (float radius);
float area (float half, float base, float height);
float area (float length , float breadth);

#include <iostream>
using namespace std;
void print(int i)
 {cout<< " It is integer " << i <<endl;}
void print(double f)
{ cout<< " It is float " << f <<endl;}
void print(string c)
{ cout<< " It is string " << c <<endl;}
int main() {
 print(10);
 print(10.10);
 print("Ten");
 return 0;
}
Output:
It is integer 10
 It is float 10.1
It is string Ten

Illustration 15.1 C++ Program to demonstrate function overloading

Tip Notes

Function overloading is not only implementing polymorphism but also
reduces the number of comparisons in a program and makes the program
to execute faster. It also helps the programmer by reducing the number of
function names to be remembered.

15.2.2 Rules for function overloading

1. The overloaded function must differ in the number of its arguments or data types
2. The return type of overloaded functions are not considered for overloading same data type

3. The default arguments of overloaded functions are not considered as part of the parameter
list in function overloading.

Chapter 15 Page 249-259.indd 250 3/24/2020 9:23:24 AM

250 251

#include <iostream>
using namespace std;
long add(long, long);
long add(long,long,long);
float add(float, float);
int main()
{
 long a, b, c,d;
 float e, f, g;
 cout << "Enter three integers\n";
cin >> a >> b>>c;
d=add(a,b,c); //number of arguments different but same data type
cout << "Sum of 3 integers: " << d << endl;
cout << "Enter two integers\n";
cin >> a >> b;
c = add(a, b); //two arguments with same data type
cout << "Sum of 2 integers: " << c << endl;
cout << "Enter two floating point numbers\n";
 cin >> e >> f;
 g = add(e, f); //two arguments with different data type
cout << "Sum of floats: " << g << endl;
}
long add(long c, long g)
{
 long sum;
 sum = c + g;
 return sum;
}
float add(float c, float g)
{
 float sum;
 sum = c + g;
 return sum;
}
long add(long c, long g,long h)
{
 long sum;
 sum = c + g+h;
 return sum;
}
Output
Enter three integers
3 4 5
Sum of 3 integers: 12
Enter two integers
4 6
Sum of 2 integers: 10
Enter two floating point numbers
2.1 3.1
Sum of floats: 5.2

Illustration 15.2 C++ Program to demonstrate function overloading

Chapter 15 Page 249-259.indd 251 3/24/2020 9:23:24 AM

252 253

15.3 Constructor overloading

 Function overloading can be applied for constructors, as constructors are special
functions of classes .A class can have more than one constructor with different signature.
Constructor overloading provides flexibility of creating multiple type of objects for a class.

#include<iostream>
using namespace std;
class add
{ int num1, num2, sum;
public:
add()
{ cout<<"\n Constructor without parameters.. ";
num1= 0; num2= 0; sum = 0; }
add (int s1, int s2)
{ cout<<"\n Parameterized constructor... ";
 num1= s1; num2=s2; sum=0; }
add (add &a)
{ cout<<"\n Copy Constructor ... ";
 num1= a.num1;
 num2=a.num2;
 sum = 0; }
void getdata()
{ cout<<"\nEnter data ... "; cin>>num1>>num2; }
void addition()
{ sum=num1+num2; }
void putdata() {
cout<<"\n The numbers are..";
cout<<num1<<'\t'<<num2;
cout<<"\n The sum of the numbers are.. "<< sum; } };
int main() {
add a, b (10, 20) , c(b);
a.getdata();
a.addition();
b.addition();
c.addition();
cout<<"\n Object a : ";
a.putdata();
cout<<"\n Object b : ";
b.putdata();
cout<<"\n Object c.. ";
c.putdata();
return 0; }

Illustration 15.3 Constructor overloading

Compiler identifies a given member function is
a constructor by its name and the return type.

Chapter 15 Page 249-259.indd 252 3/24/2020 9:23:24 AM

252 253

Output
Constructor without parameters..
 Parameterized constructor...
 Copy Constructor ...
Enter data ... 20 30
 Object a :
 The numbers are..20 30
 The sum of the numbers are.. 50
 Object b :
 The numbers are..10 20
 The sum of the numbers are.. 30
 Object c..
 The numbers are..10 20
 The sum of the numbers are.. 30

Note

Since, there are multiple constructors present, argument to the constructor
should also be passed while creating an object.

15.4 Operator overloading
The term Operator overloading, refers to giving additional functionality to the normal C++
operators like +,++,-,—,+=,-=,*.<,>. It is also a type of polymorphism in which an operator is
overloaded to give user defined meaning to it .
 For example '+' operator can be overloaded to perform addition on various data types,
like for Integer, String(concatenation) etc.
 Almost all operators can be overloaded in C++. However there are few operator which
can not be overloaded. Operator that are not overloaded are follows
• Scope operator (::)
• Sizeof
• Member selector (.)
• Member pointer selector (✳)
• Ternary operator (?:)
Operator Overloading Syntax

ReturnType classname :: Operator Operator Symbol (argument list)
{ \\ Function body }

Keyword Operator to be overloaded

Chapter 15 Page 249-259.indd 253 3/24/2020 9:23:24 AM

254 255

15.4.1 Restrictions on Operator Overloading
 Following are some restrictions to be kept in mind while implementing operator
overloading.
1. Precedence and Associativity of an operator cannot be changed.
2. No new operators can be created, only existing operators can be overloaded.
3. Cannot redefine the meaning of an operator’s procedure. You cannot change how integers

are added.Only additional functions can be given to an operator
4. Overloaded operators cannot have default arguments.
5. When binary operators are overloaded, the left hand object must be an object of the relevant

class

#include<iostream>
using namespace std;
class complex
{ int real,img;
 public:
void read()
{
cout<<"\nEnter the REAL PART : ";
cin>>real;
cout<<"\nEnter the IMAGINARY PART : ";
cin>>img;
}
complex operator +(complex c2)
{

complex c3;
c3.real=real+c2.real;
c3.img=img+c2.img;
return c3;

}
void display()

{ cout<<real<<"+"<<img<<"i"; }
};
int main()
{

complex c1,c2,c3;
int choice, cont;
cout<<"\n\nEnter the First Complex Number";
c1.read();
cout<<"\n\nEnter the Second Complex Number";
c2.read();
c3=c1+c2; // binary + overloaded
cout<<"\n\nSUM = ";
c3.display();
return 0;

 }

Output
Enter the First Complex Number
Enter the REAL PART : 3
Enter the IMAGINARY PART : 4
Enter the Second Complex Number
Enter the REAL PART : 5
Enter the IMAGINARY PART : 8
SUM = 8+12i

Illustration 15.5 Binary operator overloading using ‘+’in Complex number addition

Chapter 15 Page 249-259.indd 254 3/24/2020 9:23:24 AM

254 255

#include<string.h>
#include<iostream>
using namespace std;
class strings
{
 public:
 char s[20];
 void getstring(char str[])
{
 strcpy(s,str);
 }
 void operator+(strings);
};
void strings::operator+(strings ob)
{
 strcat(s,ob.s);
 cout<<"\nConcatnated String is:"<<s;
}
int main()
{
 strings ob1, ob2;
 char string1[10], string2[10];
 cout<<"\nEnter First String:";
 cin>>string1;
 ob1.getstring(string1);
 cout<<"\nEnter Second String:";
 cin>>string2;
 ob2.getstring(string2);
 //Calling + operator to Join/Concatnate strings
 ob1+ob2;
 return 0;
}
Output
Enter First String:COMPUTER
Enter Second String:SCIENCE
Concatnated String is:COMPUTERSCIENCE

Illustration 15.6 Concatenation of string using operator overloading

Chapter 15 Page 249-259.indd 255 3/24/2020 9:23:24 AM

256 257

Evaluation

SECTION – A
Choose the correct answer
1. Which of the following refers to a function having more than one distinct meaning?
 (A) Function Overloading (B) Member overloading
 (C) Operator overloading (D) Operations overloading

2. Which of the following reduces the number of comparisons in a program ?
 (A) Operator overloading (B) Operations overloading
 (C) Function Overloading (D) Member overloading

3. void dispchar(char ch=’$’,int size=10)

 {

 for(int i=1;i<=size;i++)

 cout<<ch;

 }

• In C++, polymorphism is achieved
through function overloading and
operator overloading.

• The term overloading means a name
having two or more distinct meanings.

• Overloaded function’ refers to a function
having more than one distinct meaning.

• Overloaded functions have same name
but different signatures (Number of
argument and type of argument)

• A function’s argument list is known as a
function signature

• Two function cannot be overloaded
when the only difference is that one takes
a reference parameter and the other takes
a normal, call-by-value parameter.

• Ordinary functions as well member
functions can be overloaded

• A class can have overloaded constructors
where as destructor function cannot be
overloaded.

• The mechanism of giving special
meaning to an operator is known as
operator overloading.

• Operator overloading provides new
definitions for most of the C++ operators.

• Even user defined types (objects) can be
overloaded.

• The definition of the overloaded operator
is given using the keyword 'operator'
followed by an operator symbol.

• We can overload all the C++ operators
except the following:

• Scope resolution operator (::), sizeof (),
Conditional operator (?:), Member
selection(.) and Member pointer selector
(✳) operator

Points to Remember

Chapter 15 Page 249-259.indd 256 3/24/2020 9:23:24 AM

256 257

How will you invoke the function dispchar() for the following input?

To print $ for 10 times

 (A) dispchar(); (B) dispchar(ch,size);

 (C) dispchar($,10); (D)dispchar(‘$’,10 times);

4. Which of the following is not true with respect to function overloading?
 (A) The overloaded functions must differ in their signature.
 (B) The return type is also considered for overloading a function.
 (C) The default arguments of overloaded functions are not considered for Overloading.
 (D) Destructor function cannot be overloaded.

5. Which of the following is invalid prototype for function overloading

(A) void fun (intx);
 void fun (char ch) ;

(B) void fun (intx);
 void fun (inty);

(C) void fun (double d);
 void fun (char ch);

(D) void fun (double d);
 void fun (inty);

SECTION-B

Very Short Answers

1. What is function overloading?
2. List the operators that cannot be overloaded.
3. class add{int x; public: add(int)}; Write an outline definition for the constructor.
4. Does the return type of a function help in overloading a function?
5. What is the use of overloading a function?

SECTION-C

Short Answers

1. What are the rules for function overloading?
2. How does a compiler decide as to which function should be invoked when there are

many functions? Give an example.
3. What is operator overloading? Give some examples of operators which can be

overloaded.
4. Discuss the benefits of constructor overloading ?
5. class sale (int cost, discount ;public: sale(sale &); Write a non inline definition for

constructor specified;

Chapter 15 Page 249-259.indd 257 3/24/2020 9:23:24 AM

258 259

SECTION - D

Explain in detail

1. What are the rules for operator overloading?
2. Answer the question (i) to (v) after going through the following class.

class Book {
int BookCode ; char Bookname[20];float fees;
public:
Book() //Function 1
{ fees=1000;
 BookCode=1;
 strcpy(Bookname,"C++"); }
void display(float C) //Function 2
{ cout<<BookCode<<":"<<Bookname<<":"<<fees<<endl; }
~Book() //Function 3
{ cout<<"End of Book Object"<<endl; }
 Book (intSC,char S[],float F) ; //Function 4
};

(i) In the above program, what are Function 1 and Function 4 combined together referred as?
(ii) Which concept is illustrated by Function3? When is this function called/ invoked?
(iii) What is the use of Function3?
(iv) Write the statements in main to invoke function1 and function2
 (v) Write the definition for Function4 .
3. Write the output of the following program

include<iostream>
using namespace std;
class Seminar
{ int Time;
public:
Seminar()
 { Time=30;cout<<"Seminar starts now"<<endl; }
void Lecture()
{ cout<<"Lectures in the seminar on"<<endl; }
Seminar(int Duration)
{ Time=Duration;cout<<"Welcome to Seminar "<<endl; }
Seminar(Seminar &D)
{ Time=D.Time;cout<<"Recap of Previous Seminar Content "<<endl;}
~Seminar()

Chapter 15 Page 249-259.indd 258 3/24/2020 9:23:24 AM

258 259

{cout<<"Vote of thanks"<<endl; } };
int main()
{ Seminar s1,s2(2),s3(s2);
 s1.Lecture();
 return 0;
}

4. Answer the questions based on the
following program

#include<iostream>
#include<string.h>
using namespace std;
class comp {
public:
char s[10];
void getstring(char str[10])
 { strcpy(s,str); }
void operator==(comp);
};
void comp::operator==(comp ob)
{ if(strcmp(s,ob.s)==0)
 cout<<"\nStrings are Equal";
else
 cout<<"\nStrings are not Equal"; }
int main()
{ comp ob, ob1;
char string1[10], string2[10];
cout<<"Enter First String:";
cin>>string1;
ob.getstring(string1);
cout<<"\nEnter Second String:";
cin>>string2;
ob1.getstring(string2);
ob==ob1;
return 0; }

(i) Mention the objects which will have the
scope till the end of the program.

(ii) Name the object which gets destroyed in
between the program

(iii) Name the operator which is over loaded
and write the statement that invokes it.

(iv) Write out the prototype of the overloaded

member function
(v) What types of operands are used for the

overloaded operator?
(vi) Which constructor will get executed in

the above program? Write the output of
the program

CASE STUDY

 Suppose you have a Kitty Bank with
an initial amount of Rs500 and you have
to add some more amount to it. Create a
class 'Deposit' with a data member named
'amount' with an initial value of Rs500.
Now make three constructors of this class as
follows:

1. without any parameter - no amount will
be added to the Kitty Bank

2. having a parameter which is the amount
that will be added to the Kitty Bank

3. whenever amount is added an additional
equal amount will be deposited
automatically

Create an object of the 'Deposit’ and
display the final amount in the Kitty Bank.

Reference:

1. Object Oriented Programming with
C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

2. The Complete Reference C++ (Forth
Edition), Herbert Schildt. Mc.Graw
Hills.

3. The C++ Programming
Language,BjarneStroustrup

Chapter 15 Page 249-259.indd 259 3/24/2020 9:23:24 AM

260 261

Learning Objectives

 After the completion of this chapter,
the student will be able to

• Understand the
purpose of Inheritance

• Construct C++
programs using
Inheritance

• Execute and debug programs which
contains the concept of Inheritance

16.1 Introduction to Inheritance

Inheritance is one of the most important
features of Object Oriented Programming.
In object-oriented programming, inheritance
enables new class and its objects to take on the
properties of the existing classes. A class that
is used as the basis for creating a new class is
called a superclass or base class. A class that
inherits from a superclass is called a subclass
or derived class

16.2 Need for Inheritance

 Inheritance is an important feature of
object oriented programming used for code
reusability. It is a process of creating new classes
called derived classes, from the existing or base
classes. Inheritance allows us to inherit all the
code (except declared as private) of one class to
another class. The class to be inherited is called
base class or parent class and the class which

CHAPTER 16
Inheritance

inherits the other class is called derived class or
child class. The derived class is a power packed
class, as it can add additional attributes and
methods and thus enhance its functionality.

Notes

The main advantage of inheritance is

• It represents real world
relationships well

• It provides reusability of code

• It supports transitivity

16.3 Types of Inheritance

 There are different types of
inheritance viz., Single Inheritance, Multiple
inheritance, Multilevel inheritance, hybrid
inheritance and hierarchical inheritance.

1. Single Inheritance
 When a derived class inherits only
from one base class, it is known as single
inheritance

2. Multiple Inheritance
 When a derived class inherits from
multiple base classes it is known as multiple
inheritance

3. Hierarchical inheritance
 When more than one derived classes
are created from a single base class , it is
known as Hierarchical inheritance.

Unit IV Object Oriented
Programming with C++

Chapter 16 Page 260-274.indd 260 3/24/2020 9:23:56 AM

260 261

4. Multilevel Inheritance

 The transitive nature of inheritance is reflected by this form of inheritance. When a class
is derived from a class which is a derived class – then it is referred to as multilevel inheritance.

5. Hybrid inheritance

 When there is a combination of more than one type of inheritance, it is known as
hybrid inheritance. Hence, it may be a combination of Multilevel and Multiple inheritance or
Hierarchical and Multilevel inheritance or Hierarchical, Multilevel and Multiple inheritance.

The following diagram represents the different types of inheritance

A

B

B

C

A

A

B C

D

A B

C

A

B C D

Multilevel Inheritance

Hybrid Inheritance

Hierarchical Inheritance

Single Inheritance Multiple Inheritance

16.4 Derived Class and Base class

 While defining a derived class, the derived class should identify the class from which it
is derived.The following points should be observed for defining the derived class.
i The keyword class has to be used
ii The name of the derived class is to be given after the keyword class
iii A single colon (:)
iv The type of derivation (the visibility mode), namely private, public or protected. If no

visibility mode is specified ,then by default the visibility mode is considered as private.

Chapter 16 Page 260-274.indd 261 3/24/2020 9:23:56 AM

262 263

v The name of the base class(parent class), if more than one base class, then it can be given
separated by comma.

class derived_class_name :visibility_mode base_class_name

{ // members of derivedclass };

The following are some of the examples for different forms of inheritance

16.4.1 Single Inheritance

include <iostream>
using namespace std;
class student //base class
{ private :
 char name[20];
 int rno;
 public:
 void acceptname()
 { cout<<"\n Enter roll no and name .. "; cin>>rno>>name; }
 void displayname()
 { cout<<"\n Roll no :-"<<rno;
 cout<<"\n Name :-"<<name<<endl; } };
class exam : public student //derived class with single base class
 {
 public:
 int mark1,mark2,total;
 void acceptmark()
 { cout<<"\n Enter mark1 and mark2.... "; cin>>mark1>>mark2; }
void displaymark()
{ cout<<"\n\t\t Marks Obtained ";
 cout<<"\n Subject1.. "<<mark1;
 cout<<"\n Subject2 .. "<<mark2;
 cout<<"\n Total .. "<<mark1+mark2; } };
int main()
{ exam e1;
 e1.acceptname(); //calling base class function using derived class object

 e1.acceptmark();
 e1.displayname(); //calling base class function using derived class object

 e1.displaymark();
 return 0;
}

Illustration 16.1 Single inheritance

Chapter 16 Page 260-274.indd 262 3/24/2020 9:23:56 AM

262 263

Output
Enter roll no and name .. 1201 KANNAN
Enter lang,eng,phy,che,csc,mat marks.. 100 100 100 100 100 100
Roll no :-1201
Name :-KANNAN
 Marks Obtained
 Language.. 100
English .. 100
Physics .. 100
 Chemistry.. 100
Comp.sci.. 100
Maths .. 100

 In the above program the derived class “exam” inherits all the members of the base class
“student”. But it has access privilege only to the non private members of the base class.

16.4.3 Multilevel Inheritance

include <iostream>
using namespace std;
class student //base class
{
private :
char name[20];
int rno;
public:
void acceptname()
{ cout<<"\n Enter roll no and name .. "; cin>>rno>>name;
}
void displayname()
{ cout<<"\n Roll no :-"<<rno;
cout<<"\n Name :-"<<name<<endl; }};
 class exam : public student //derived class with single base class
 {
 total=mark1+mark2+mark3;
 cout<<"\nTOTAL MARK SCORED : "<<total;
 }
 };

Illustration 16.2 Multilevelw inheritance

Chapter 16 Page 260-274.indd 263 3/24/2020 9:23:56 AM

264 265

{
 public:
 int mark1, mark2 ,mark3;
 void acceptmark()
 { cout<<"\n Enter 3 subject marks.. ";
 cin>>mark1>>mark2>>mark3; }
void displaymark(){
cout<<"\n\t\t Marks Obtained ";
cout<<"\n Subject1... "<<mark1;
cout<<"\n Subject2... "<<mark2;
cout<<"\n Subject3... "<<mark3; } };
class result : public exam
{
int total;
public:
void showresult()
{
total=mark1+mark2+mark3;
cout<<"\nTOTAL MARK SCORED : "<<total;
}
};
int main()
{
 result r1;
r1.acceptname(); //calling base class function using derived class object
r1.acceptmark(); //calling base class function which itself is a derived
 // class function using its derived class object
r1.displayname(); //calling base class function using derived class object
r1.displaymark(); /*calling base class function which itself is a derived
 class function using its derived class object*/
r1.showresult(); //calling the child class function
return 0;
}

Output:
Enter roll no and name .. 1201 Lohit Sarathi
 Enter 3 subject marks.. 98 100 100
 Roll no :-1201
 Name :-Lohith Sarathi
 Marks Obtained
Subject1 ... 98
Subject 2 ... 100
Subject 3... 100
TOTAL MARK SCORED : 298

Chapter 16 Page 260-274.indd 264 3/24/2020 9:23:56 AM

264 265

In the above program class “result “ is derived from class “exam” which itself is derived from
class student.

Note

In multilevel inheritance the level of inheritance can be extended to any
number of level depending upon the relation. Multilevel inheritance is
similar to relation between grandfather, father and child.

A class without any declaration will have 1 byte size.class x{}; X occupies
1 byte.

 In the above program the derived class “result” has acquired the properties of class
“detail” and class “exam” which is derived from “student”. So this inheritance is a combination
of multi level and multiple inheritance and so it is called hybrid inheritance

16.5 VISIBILITY MODES

 An important feature of Inheritance is to know which member of the base class will be
acquired by the derived class. This is done by using visibility modes.

 The accessibility of base class by the derived class is controlled by visibility modes. The
three visibility modes are private, protected and public. The default visibility mode is private.
Though visibility modes and access specifiers look similar, the main difference between them
is Access specifiers control the accessibility of the members with in the class where as visibility
modes control the access of inherited members with in the class.

16.5.1 Private visibility mode

 When a base class is inherited with private visibility mode the public and protected
members of the base class become ‘private’ members of the derived class

BASE CLASS when inherited with
private visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

Chapter 16 Page 260-274.indd 265 3/24/2020 9:23:56 AM

266 267

16.5.2 protected visibility mode
 When a base class is inherited with protected visibility mode the protected and public
members of the base class become 'protected' members of the derived class

BASE CLASS when inherited with
protected visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

16.5.3 public visibility mode
 When a base class is inherited with public visibility mode , the protected members
of the base class will be inherited as protected members of the derived class and the public
members of the base class will be inherited as public members of the derived class.

BASE CLASS when inherited with
public visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

Tip Notes

When classes are inherited with public, protected or private the private
members of the base class are not inherited they are only visible i.e
continue to exist in derived classes, and cannot be accessed

//Implementation of Single Inheritance using public visibility mode
#include <iostream>
using namespace std;
class Shape
{ private:
 int count;
 protected:
 int width, height;
 public:
 void setWidth(int w)
 { width = w; }
void setHeight(int h)
{ height = h; } };

Illustration 16.3 Explains the significance of different visibility modes.

Chapter 16 Page 260-274.indd 266 3/24/2020 9:23:56 AM

266 267

class Rectangle: public Shape
{
public:
int getArea()
{
return (width * height);
}
};
int main()
{
Rectangle Rect;
Rect.setWidth(5);
Rect.setHeight(7);
// Print the area of theobject.
cout<< "Total area: "<<Rect.getArea() <<endl;
return 0;
}

Output
Total area: 35

The following table contain the members defined inside each class before inheritance

MEMBERS of class
visibility modes

Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int)
void setHeight(int)

Rectangle (derived
class only with its
defined members)

int getArea();

The following table contains the details of members defined after inheritance

MEMBERS of class
visibility modes –public for acquiring the properties of the

base class
Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int)
void setHeight(int)

Rectangle (derived
class acquired the
properties of base
class with public
visibility)

Private members of
base classes are not
directly accessible
by the derived class

int width;
int height;

int getArea();
void setWidth(int)
void setHeight(int)

 Suppose the class rectangle is derived with protected visibility then the properties of
class rectangle will change as follows

Chapter 16 Page 260-274.indd 267 3/24/2020 9:23:56 AM

268 269

MEMBERS of class
visibility modes –protected for acquiring the properties of the

base class
Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int)
void setHeight(int)

Rectangle (derived
class acquired the
properties of base
class with protected
visibility)

Private members of
base classes are not
directly accessible
by the derived class

int width;
int height;
void setWidth(int)
void setHeight(int)

int getArea();

 In case the class rectangle is derived with private visibility mode from its base class
shape then the property of class rectangle will change as follows

MEMBERS of class
visibility modes –private for acquiring the properties of the

base class
Private Protected Public

Shape(base class) int count;
void setWidth(int)
void setHeight(int)

Rectangle (derived
class acquired the
properties of base
class with private
visibility)

int width;
int height;
void setWidth(int)
void setHeight(int)

int getArea();

 When you derive a class from an existing base class,it may inherit the properties of the
base class based on its visibility mode.So one must give appropriate visibility mode depending
on the need.
 Private inheritance should be used when you want the features of the base class to be
available to the derived class but not to the classes that are derived from the derived class.
 Protected inheritance should be used when features of base class to be available only to
the derived class members but not to the outside world.
 Public inheritance can be used when features of base class to be available to the derived
class members and also to the outside world.
 16.6 Inheritance and constructors and destructors
 When an object of the derived class is created ,the compiler first call the base class
constructor and then the constructor of the derived class. This is because the derived class is
built up on the members of the base class. When the object of a derived class expires first the
derived class destructor is invoked followed by the base class destructor.

Chapter 16 Page 260-274.indd 268 3/24/2020 9:23:56 AM

268 269

#include<iostream>
using namespace std;
class base
{
public:
base()
{ cout<<"\nConstructor of base class..."; }
~base()
{ cout<<"\nDestructor of base class.... "; }
};
class derived:public base
{
public :
derived()
{ cout << "\nConstructor of derived ..."; }
~derived()
{ cout << "\nDestructor of derived ..."; }};
class derived1 :public derived
{
public :
derived1()
{ cout << "\nConstructor of derived1 ...";}
~derived1()
{ cout << "\nDestructor of derived1 ...";}
};
int main()
{
derived1 x;
return 0;
}

Output:
Constructor of base class...
Constructor of derived ...
Constructor of derived1 ...
Destructor of derived1 ...
Destructor of derived ...
Destructor of base class....

Illustration 16.4 The order of constructors and destructors

Notes

• The constructors are executed in the order of inherited class i.e.,
from base constructor to derived. The destructors are executed in
the reverse order.

• The size of derived class object=size of all base class data members +
size of all data members in derived class.

16.7 Overriding / Shadowing Base class functions in derived class

 In case of inheritance there are situations where the member function of the base
class and derived classes have the same name. If the derived class object calls the overloaded

Chapter 16 Page 260-274.indd 269 3/24/2020 9:23:56 AM

270 271

member function it leads to confusion to the compiler as to which function is to be invoked.
The derived class member function have higher priority than the base class member function.
This shadows the member function of the base class which has the same name like the member
function of the derived class. The scope resolution (::) operator resolves this problem.

#include<iostream>
#include<string>
using namespace std;
class Employee
{
 private:
 char name[50];
 int code;
 public:
 void getdata();
 void display();
};
class staff: public Employee
{
 private:
 int ex;
 public:
 void getdata();
 void display();
};
void Employee::display()
{
 cout<<"Name:"<<name<<endl;
 cout<<"Code:"<<code<<endl;
}
void staff::display()
{ Employee :: display();//overriding
 cout<<"Experience:"<<ex<<" Years"<<endl;
}
int main()
{
 staff s;
 cout<<"Enter data"<<endl;
 s.getdata();
 cout<<endl<<endl<<"\tDisplay Data"<<endl;
 s.display();
 return 0;
}

Output
Enter data
Name: SUGANYA
Code: 1201
Experience: 30
 Display Data
Name: SUGANYA
Code:1201
Experience:30 Years

Illustration 16.5 The use of scope resolution operator in derived class

Chapter 16 Page 260-274.indd 270 3/24/2020 9:23:56 AM

270 271

 In the above program getdata() and display() are defined both in base and in derived
class. So when the derived class staff inherits the properties of Employee class it will have
two getdata() and display() each. To differentiate the derived getdata() and display() from the
defined getdata() and display() :: (scope resolution) operator is given along with the base class
name to the base class members

Note

When a derived class member function has the same name as
that of its base class member function ,the derived class member
function shadows/hides the base class’s inherited function .This
situation is called function overriding and this can be resolved
by giving the base class name followed by :: and the member
function name.

• The mechanism of deriving new class from
an existing class is called inheritance.

• The main advantage of Inheritance is it
supports reusability of code.

• The derived class inherits all the properties
of the base class. It is a power packed class,
as it can add additional attributes and
methods and thus enhance its functionality.

• The various types of Inheritance are
Single inheritance, multiple inheritance,
multilevel inheritance, hierarchical
inheritance and hybrid inheritance

• When a derived class inherits only from one
base class, it is known as single inheritance

• When a derived class inherits from
multiple base classes itis known as multiple
inheritance

• When a class is derived from a class which
is a derived class itself – then this is referred
to as multilevel inheritance. The transitive
nature of inheritance is reflected by this
form of inheritance.

• When more than one derived classes are
created from a single base class , it is known
as Hierarchical inheritance.

• When there is a combination of more than
one type of inheritance, it is known as
hybrid inheritance.

• In multiple inheritance, the base classes
are constructed in the order in which they

appear in the declaration of the derived
class.

• A sub-class can derive itself publicly,
privately or protectedly.

• The private member of a class cannot be
inherited .

• In publicly derived class,the public
members of the base class remain public
and protected members of base class remain
protected in derived class.

• In privately derived class, the public and
the protected members of the base class
become private in derived class

• When class is derived in protected mode,
the public and protected members of base
class become protected in derived class.

• constructors and destructors of the base
class are not inherited but during the
creation of an object for derived class the
constructors of base class will automatically
be invoked.

• The destructors are invoked in reverse
order .The destructors of the derived classes
are invoked first and then the base class.

• The size of derived class object=size of all
base class data members + size of all data
members in derived class

• overriding of the members are resolved by
using Scope resolution operator(::).

• this pointer is used to refer to the current
objects members

Points to Remember:

Chapter 16 Page 260-274.indd 271 3/24/2020 9:23:56 AM

272 273

Evaluation

SECTION – A

Choose the correct answer

1. Which of the following is the process of
creating new classes from an existing
class

 (a) Polymorphism (b) Inheritance
(c) Encapsulation (d) super class

2. Which of the following derives a class
student from the base class school

 (a) school: student
 (b) class student : public school
 (c) student : public school
 (d) class school : public student
3. The type of inheritance that reflects the

transitive nature is
 (A) Single Inheritance
 (B) Multiple Inheritance
 (C) Multilevel Inheritance
 (D) Hybrid Inheritance
4. Which visibility mode should be used

when you want the features of the base
class to be available to the derived class
but not to the classes that are derived
from the derived class?

 (A) Private (B) Public
 (C) Protected (D) All of these
5. Inheritance is a process of creating new

class from
 (A) Base class (B) abstract
 (C) derived class (D) Function
6. A class is derived from a class which

is a derived class itself, then this is
referred to as

 (A) multiple inheritance
 (B) multilevel inheritance
 (C) single inheritance
 (D) double inheritance

7. Which amongst the following is
executed in the order of inheritance?

 (A) Destructor (B) Member function
 (C) Constructor (D) Object
8. Which of the following is true with

respect to inheritance?
 (A) Private members of base class are

inherited to the derived class with
private

 (B) Private members of base class are
not inherited to the derived class with
private accessibility

 (C) Public members of base class are
inherited but not visible to the derived
class

 (D) Protected members of base class
are inherited but not visible to the
outsideclass

9. Based on the following class declaration
answer the questions (from9.1 to 9.4)

class vehicle
{ int wheels;
public:
void input_data(float,float);
void output_data();
protected:
int passenger;
 };
class heavy_vehicle : protected vehicle {
int diesel_petrol;
protected:
 int load;
public:
void read_data(float,float)
void write_data(); };
class bus: private heavy_vehicle {
char Ticket[20];
public:
void fetch_data(char);
void display_data(); };

Chapter 16 Page 260-274.indd 272 3/24/2020 9:23:56 AM

272 273

9.1. Which is the base class of the class
heavy_vehicle?

 (a) Bus (b) heavy_vehicle
 (c) vehicle (d) both (a) and (c)
9.2. The data member that can be accessed

from the function displaydata()
 (a) passenger (b) load
 (c) Ticket (d) All of these
9.3. The member function that can be

accessed by an objects of bus Class is
 (a) input_data(), output_data()
 (b) read_data() ,write_data()
 (c) fetch_data(), display_data()
 (d) All of these
9.4. The member function that is inherited

as public by Class Bus
 (a) input_data(), output_data()
 (b) read_data(), write_data()
 (c) fetch_data(), display_data()
 (d) none of these

SECTION-B
Very Short Answers

1. What is inheritance?
2. What is a base class?
3. Why derived class is called power

packed class?
4. In what multilevel and multiple

inheritance differ though both contains
many base class?

5. What is the difference between public
and private visibility mode?

SECTION-C
Short Answers
1. What are the points to be noted while

deriving a new class?
2. What is difference between the

members present in the private
visibility mode and the members
present in the public visibility mode

3. What is the difference between
polymorphism and inheritance though
are usedfor reusability of code?

4. What do you mean by overriding?
5. Write some facts about the execution

of constructors and destructors in
inheritance

SECTION - D
Explain in detail
1. Explain the different types of

inheritance
2. Explain the different visibility mode

through pictorial representation
3. Consider the following c++ code and

answer the questions

class Personal
{
int Class,Rno;
char Section;
protected:
char Name[20];
public:
personal();
void pentry();
void Pdisplay(); };
class Marks:private Personal
{ float M{5};
protected:
char Grade[5];
public:
Marks();
void Mentry();
void Mdisplay(); };
class Result:public Marks
{
float Total,Agg;
public:
char FinalGrade, Commence[20];
Result();
void Rcalculate();
void Rdisplay();
};

3.1. Which type of Inheritance is shown in
the program?

3.2. Specify the visibility mode of base
classes.

Chapter 16 Page 260-274.indd 273 3/24/2020 9:23:56 AM

274 PB

3.3 Give the sequence of Constructor/
Destructor Invocation when object of
class Result is created.

3.4. Name the base class(/es) and derived
class (/es).

3.5 Give number of bytes to be occupied
by the object of the following class:

 (a) Personal (b) Marks
(c) Result

3.6. Write the names of data members
accessible from the object of class
Result.

3.7. Write the names of all member
functions accessible from the object of
class Result.

3.8 Write the names of all members
accessible from member functionsof
class Result.

4. Write the output of the following
program

#include<iostream>
using namespace std;
class A
{ protected:
 int x;
 public:
 void show()
 {cout<<"x = "<<x<<endl;}
 A()
 { cout<<endl<<" I am class A "<<endl;}
 ~A()
 { cout<<endl<<" Bye ";} };
class B : public A
{protected:
 int y;
 public:
 B(int x1, int y1)
 { x = x1;
 y = y1; }

B()
{ cout<<endl<<" I am class B "<<endl; }
~B()
{ cout<<endl<<" Bye "; }
void show()
{ cout<<"x = "<<x<<endl;
 cout<<"y = "<<y<<endl; } };
int main()
{A objA;
B objB(30, 20);
objB.show();
return 0; }

5. Debug the following program

%include(iostream.h)
#include<conio.h>
class A()
{ public;
int a1,a2:a3;
void getdata[]
{ a1=15; a2=13; a3=13; } }
class B:: public A()
{ PUBLIC
 voidfunc()
 { int b1:b2:b3;
 A::getdata[];
 b1=a1;
 b2=a2;
 a3=a3;
 cout<<b1<<’\t’<<b2<<’t\’<<b3; }
void main()
{ B der;
 der1:func(); }

CASE STUDY
Write a class for a class Stock
Each Stock has a data member which holds the
net price, and a constructor which sets this price.
Each Stock has a method get_Price(), which
calculates and returns the gross price (the gross
price includes VAT at 21%)

Reference:
Object Oriented Programming with C++ (4th
Edition), Dr. E. Balagurusamy, Mc.Graw Hills.

Chapter 16 Page 260-274.indd 274 3/24/2020 9:23:56 AM

PB 275

Learning Objectives

After learning this chapter, the students will be able to

• To know about cyber-crimes.

• To understand the guidelines and need for ethics in cyber-world.

• To understand issues related to cyber-crimes.

• To know the functionality of firewalls and proxy servers.

• To learn about encryption and decryption.

• To gain knowledge on IT Act.

17.1 INTRODUCTION

 Internet is a communication media which is easily accessible and open to all. Information
Technology is widespread through computers, mobile phones and internet. There is a lot of
scope and possibility for misuse of Information Technology.

 Computer systems in general are vulnerable. They play an important role in the daily
lives of individuals and businesses. Special care must be taken explicitly in order to ensure that
the valuable data do not get into wrong hands. Hence, the data need to be protected.

 A cyber-crime is a crime which involves computer and network.This is becoming a
growing threat to society and is caused by criminals or irresponsible action of individuals who
are exploiting the widespread use of Internet. It presents a major challenge to the ethical use of
information technologies. Cyber-crime also poses threats to the integrity, safety and survival
of most business systems.

Figure. 17.1 presents the types of cyber-crimes that happen across the world.

Computer Ethics And Cyber Security

CHAPTER 17Unit V COMPUTER ETHICS AND
CYBER SECURITY

Chapter 17 Page 275-285.indd 275 3/24/2020 9:24:13 AM

276 277

PHISHING

CYBER CRIMES

VIRUSES

PIRACY

HACKING

PHARMING

IDENTITY THEFTS

ONLINE FINANCIAL
TRANSACTIONS

Figure 17.1 Types of cyber – crimes

ETHICS

 Ethics means “What is wrong and
What is Right”. It is a set of moral principles
that rule the behavior of individuals who use
computers. An individual gains knowledge
to follow the right behavior, using morals
that are also known as ethics. Morals refer
to the generally accepted standards of right
and wrong in the society. Similarly, in cyber-
world, there are certain standards such as

• Do not use pirated software

• Do not use unauthorized user accounts

• Do not steal others’ passwords

• Do not hack

 The core issues in computer ethics
are based on the scenarios arising from the
use of internet such as privacy, publication
of copyrighted content, unauthorized
distribution of digital content and user
interaction with web sites, software and
related services.

COMPUTER ETHICS

 With the help of internet, world has
now become a global village. Internet has

been proven to be a boon to individuals as
well as various organizations and businesses.
e-Commerce is becoming very popular
among businesses as it helps them to reach
a wide range of customers faster than any
other means.

 Computer ethics deals with the
procedures, values and practices that
govern the process of consuming computer
technology and its related disciplines without
damaging or violating the moral values and
beliefs of any individual, organization or
entity.

GUIDELINES OF ETHICS

 Generally, the following guidelines
should be observed by computer users:

1. Honesty: Users should be truthful while
using the internet.

2. Confidentiality: Users should not
share any important information with
unauthorized people.

3. Respect: Each user should respect the
privacy of other users.

Chapter 17 Page 275-285.indd 276 3/24/2020 9:24:13 AM

276 277

4. Professionalism: Each user should maintain professional conduct.

5. Obey The Law: Users should strictly obey the cyber law in computer usage.

6. Responsibility: Each user should take ownership and responsibility for their actions

Ethics is a set of moral principles that govern the behavior of
an individual in a society, and Computer ethics is set of moral
principles that regulate the use of computers by users.

17.2 ETHICAL ISSUES

 An Ethical issue is a problem or issue that requires a person or organization to choose
between alternatives that must be evaluated as right (ethical) or wrong (unethical). These
issues must be addressed and resolved to have a positive influence in society.

Some of the common ethical issues are listed below:

• Cyber crime

• Software Piracy

• Unauthorized Access

• Hacking

• Use of computers to commit fraud

• Sabotage in the form of viruses

• Making false claims using computers

CYBER CRIME

 Cybercrime is an intellectual, white-collar crime. Those who commit such crimes
generally manipulate the computer system in an intelligent manner.

For example – illegal money transfer via internet.

Examples of some Computer crimes and their functions are listed below in Table 17.1:

Chapter 17 Page 275-285.indd 277 3/24/2020 9:24:13 AM

278 279

Table 17.1 Computer Crime

Crime Function

Cyber Terrorism
Hacking, threats, and blackmailing towards a
business or a person.

Cyber stalking Harassing through online.

Malware

Malicious programs that can perform a variety of
functions including stealing, encrypting or deleting
sensitive data, altering or hijacking core computing
functions and monitoring user’s computer activity
without their permission.

Denial of service attack
Overloading a system with fake requests so that it
cannot serve normal legitimate requests.

Fraud
Manipulating data, for example changing the banking
records to transfer money to an unauthorized account.

Harvesting
A person or program collects login and password
information from a legitimate user to illegally gain
access to others’ account(s).

Identity theft
It is a crime where the criminals impersonate
individuals, usually for financial gain.

Intellectual property theft
Stealing practical or conceptual information
developed by another person or company.

Salami slicing Stealing tiny amounts of money from each transaction.

Scam
Tricking people into believing something that is not
true.

Spam
Distribute unwanted e-mail to a large number
ofinternet users.

Spoofing
It is a malicious practice in which communication
is send from unknown source disguised as a source
known to the receiver.

SOFTWARE PIRACY

 Software Piracy is about the copyright
violation of software created originally by
an individual or an institution. It includes
stealing of codes / programs and other
information illegally and creating duplicate
copies by unauthorized means and utilizing

this data either for one’s own benefit or for
commercial profit.

In simple words,Software Piracy is
“unauthorized copying of software”.
Figure 17.2 shows a diagrammatical
representation of software piracy.

Chapter 17 Page 275-285.indd 278 3/24/2020 9:24:13 AM

278 279

SOFTWARE PIRACY

Duplicating and
selling copyrighted
programs

D o w n l o a d i n g
software illegally
through network

Figure 17.2- Diagrammatic representation
of Software piracy

 An entirely different approach to
software piracy is called Shareware, this
acknowledges the futility of trying to stop
people from copying software and instead
relies on people’s honesty. Shareware
publishers encourage users to give copies of
programs to friends and colleagues but ask
everyone who uses that program regularly
to pay a registration fee to the program’s
author directly. Commercial programs that
are made available to the public illegally are
often called Warez.

UNAUTHORIZED ACCESS

 Unauthorized access is when
someone gains access to a website, program,
server, service, or other system by breaking
into a legitimate user account. For example,
if someone tries guessing a password or
username for an account that was not theirs
until they gained access, it is considered an
unauthorized access.

 To prevent unauthorized access,
Firewalls, Intrusion Detection Systems
(IDS), Virus and Content Scanners, Patches
and Hot fixes are used.

HACKING

 Hacking is intruding into a computer
system to steal personal data without the
owner’s permission or knowledge (like
to steal a password). It is also gaining
unauthorized access to a computer system,
and altering its contents. It may be done
in pursuit of a criminal activity or it may
be a hobby. Hacking may be harmless if
the hacker is only enjoying the challenge
of breaking systems’ defenses, but such
ethical hacking should be practiced only as
controlled experiments. Figure 17.3 shows
a diagrammatic representation of Hacking.

The act of gaining illegal
access to a computer

Identity theft or
gaining personal
information

Firewalls, passwords
and user Id’s , anti
hacking software

HACKING

Leads to Protected by

Figure 17.3 Diagramatic representation of
Hacking

CRACKING

 Cracking is where someone edits
a program source so that the code can be
exploited or modified. A cracker (also called

Chapter 17 Page 275-285.indd 279 3/24/2020 9:24:13 AM

280 281

a black hat or dark side hacker) is a malicious
or criminal hacker. “Cracking” means trying
to get into computer systems in order to steal,
corrupt, or illegitimately view data.

 A cracker is someone who breaks into
someone else's computer system, often on a
network, bypassing passwords or licenses in
computer programs.

 They may send official e-mail requesting
some sensitive information. It may look like a
legitimate e-mail from bank or other official
institution.

17.3 Cyber Security and Threats

 Cyber attacks are launched primarily
for causing significant damage to a computer
system or for stealing important information
from an individual or from an organization.
Cyber security is a collection of various
technologies, processes and measures that
reduces the risk of cyber attacks and protects
organizations and individuals from computer
based threats.

TYPES OF CYBER ATTACKS

 Malware is a type of software designed
through which the criminals gain illegal access

to software and cause damage. Various types
of cyber-attacks and their functions are
given inTable 17.2.

Table 17.2 – Cyber Attacks and Functions

Cyber Security Threats

 In recent years, most of the
individuals and enterprises are facing
problems due to the weaknesses inherent
in security systems and compromised
organizational infrastructures. Different
types of Cyber Security Threats are
categorized as below:

Phishing

 Phishing is a type of computer crime
used to attack, steal user data, including
login name, password and credit card
numbers. It occurs when an attacker targets
a victim into opening an e-mail or an instant
text message. The attacker uses phishing to
distribute malicious links or attachments
that can perform a variety of functions,
including the extraction of sensitive login
credentials from victims.

PHISHING

This can lead
to fraud or
identity theft

Users should always
be cautious when
opening emails or
attachments

Figure 17.4 Diagrammatic representation
of Phishing

Pharming
 Pharming is a scamming practice in
which malicious code is installed on a personal
computer or server, misdirecting users to
fraudulent web sites without their knowledge
or permission. Pharming has been called
"phishing without a trap”. It is another way
hackers attempt to manipulate users on the
Internet. It is a cyber-attack intended to redirect
a website's traffic to a fake site.

Chapter 17 Page 275-285.indd 280 3/24/2020 9:24:13 AM

280 281

PHARMING

This can lead
to fraud or
identity theft

Users should
always be cautious
when redirected to
a fake site.

Figure 17.5 Diagrammatic representation of Pharming
Man In The Middle (MITM)

 Man-in-the-middle attack (MITM; also Janus attack) is an attack where the attacker
secretly relays and possibly alters the communication between two parties who believe they
are directly communicating with each other.

Example: Suppose Alice wishes to communicate with Bob. Meanwhile, Mallory wishes to
intercept the conversation to overhear and optionally to deliver a false message to Bob.

Alice Mallory Bob

Figure 17.6 - An illustration of the Man-In-The-Middle attack
Cookies
 A cookie (also called HTTP cookie, web cookie, Internet cookie, browser cookie, or
simply cookie) is a small piece of data sent from a website and stored on the user's computer
memory (Hard drive) by the user's web browser while the user is browsing internet. Cookies

were designed to be a reliable mechanism for
websites to remember stateful information
(such as items added in the shopping cart
in an online store) or to record the user's
browsing activity (including clicking
particular buttons, logging in etc.). They can
also be used to remember arbitrary pieces of
information that the user previously entered
into form fields such as names, addresses,
passwords, and credit card numbers. From
the security point of view, if cookie data
is not encrypted, any anonymous user
(hacker) can access the cookie information
and misuse it.

Web sites typically use cookies for the
following reasons:
• To collect demographic information

about who has visited the Web site.
• Sites often use this information to track

how often visitors come to the site and
how long they remain on the site.

• It helps to personalize the user's
experience on the Web site.

• Cookies can help store personal
information about users so that when
a usersubsequently returns to the site,
a more personalized experience is
provided.

Chapter 17 Page 275-285.indd 281 3/24/2020 9:24:13 AM

282 283

Restricted Area

Trusted Users

LAN

R e q u e s t
Permitted

Request Denied

Connection to internet (Point of vulnerability)

Internet

Firewall servers
as a filter Unrestricted Area

 If you ever returned to a site and have
seen your name mysteriously appear on
the screen, it is because on a previous visit,
you gave your name to the site and it was
stored in a cookie. A good example of this
is the way some online shopping sites will
make recommendations to users based on
their previous purchases. It helps to monitor
advertisements. Cookies do not act maliciously
on computer system. They are merely text files
that can be deleted at any time.
 Cookies cannot be used to spread
viruses and they cannot access your hard
drive. However, any personal information
that you provide to a Web site, including
credit card information, will most likely be
stored in a cookie unless the cookie feature
is explicitly turned off in your browser. This
is the way in which cookies threaten privacy.
Firewall and Proxy Servers
 A firewall is a computer network
security based system that monitors and

controls incoming and outgoing network
traffic based on predefined security rules.
A firewall commonly establishes a block
between a trusted internal computer
network and entrusted computer outside
the network. Figure 17.7 shows the working
of firewall server.
 A proxy server acts as an intermediary
between the end users and a web server.
A client connects to the proxy server,
requesting some service, such as a file,
connection, web page, or other resources
available from a different server. The
proxy server examines the request, checks
authenticity and grants the request based
on that. Proxy servers typically keep the
frequently visited site addresses in its cache
which leads to improved response time.
Figure 17.8 shows the working of a proxy
server.

Figure 17.7 Firewall Server

Users computer

web browser
sends request

web browser
request forwarded

web servers send back
response to proxy server

web server
response is filtered

Proxy server web server

Figure 17.8 Working of Proxy server

Chapter 17 Page 275-285.indd 282 3/24/2020 9:24:13 AM

282 283

Encryption and Decryption

 Encryption and decryption are processes that ensure confidentiality that only authorized
persons can access the information.

Encryption is the process of translating the plain text data (plaintext) into random and mangled
data (called cipher-text).

Decryption is the reverse process of converting the cipher-text back to plaintext.Encryption
and decryption are done by cryptography. In cryptography a key is a piece of information
(parameter) that determines the functional output of a cryptographic algorithm.

Figure 17.9 shows the encryption and decryption process.
Basic Encryption & Decryption

decryptionencryption

Plain text Plain textCipher text

Figure 17.9 Encryption and Decryption

 Encryption has been used by militaries and governments to facilitate secret
communication. It is now commonly used in protecting information within many kinds of
civilian systems. It is also used to protect data in communication system, for example data
being transferred via networks (e.g. the Internet, ecommerce), mobile telephones, wireless
microphones, wireless intercom systems, Bluetooth devices and bank automatic teller
machines. There have been numerous reports of data in communication being intercepted
in recent years. Data should also be encrypted when transmitted across networks in order to
protect against the network traffic by unauthorized users.

17.4 INTRODUCTION TO INFORMATION TECHNOLOGY ACT

 In the 21st century, Computer, Internet and ICT or e-revolution has changed the life style
of the people. Today paper based communication has been substituted by e-communication.
Accordingly we have new terminologies like cyber world, e-transaction, e-banking, e-return
and e-contracts. Apart from positive side of e-revolution there is also negative side of computer,
that is, the internet and ICT in the hands of criminals which has become a weapon of offence.
Accordingly a new panel of members emerged to tackle the problems of cyber crimes in cyber
space i.e. Cyber Law or Cyber Space Law or Information Technology Law or Internet Law.

 In India Cyber law and IT Act 2000 , modified in 2008 are being articulated to prevent
computer crimes. IT Act 2000 is an act to provide legal recognition for transactions carried out
by means of ElectronicData Interchange(EDI) and other means of electronic communication.
It is the primary law in India dealing with cybercrime and electronic commerce(e-Commerce).
e-Commerce is electronic data exchange or electronic filing of information.

Chapter 17 Page 275-285.indd 283 3/24/2020 9:24:13 AM

284 285

“Cyber law or Internet law is a term that encapsulates the legal
issues related to use of the Internet.

PREVENTION

25% of cyber crime remains unsolved. To protect the information the following points are to
be noted:

• Complex password setting can make your surfing secured.

• When the internet is not in use, disconnect it.

• Do NOT open spam mail or emails that have an unfamiliar sender.

• When using anti-virus software, keep it up-to-date.

• Awareness is the key to security.

• Information security is the immune system in the body of business.

• A check that does not bounce is called the Security Check. Do it every day before you leave!

• Do Your Part - Be Security Smart !!!

• Don’t be Quick to Click… be wary when you shop online.

• Restart is Smart job

• Passwords are like toothbrushes. They are best when new and should never be shared.

• When you and your system part away, your system should be first off for the day.

• Your mind is a storage room of information, keep the door locked.

• _ a _ _word is not a PaSSword without Protect, Save and Secure!

• Link Link stop neglect….Think Think before connect…..

Evaluation

SECTION – A
Choose the correct answer

1. Which of the following deals with procedures, practices and values?
 a. piracy b. programs c. virus d. computer ethics

2. Commercial programs made available to the public illegally are known as
 a. freeware b. warez c. free software d. software

3. Which one of the following are self-repeating and do not require a computer program to
attach themselves?

 a. viruses b. worms c. spyware d. Trojans

4. Which one of the following tracks a user visits a website?
 a. spyware b. cookies c. worms d. Trojans

Chapter 17 Page 275-285.indd 284 3/24/2020 9:24:13 AM

284 285

5. Which of the following is not a malicious program on computer systems?
 a. worms d. Trojans c. spyware d. cookies

6. A computer network security that monitors and controls incoming and outgoing traffic is
 a. Cookies b.Virus c. Firewall d. worms

7. The process of converting cipher text to plain text is called
 a. Encryption b. Decryption c. key d. proxy server

8. e-commerce means
 a. electronic commerce b. electronic data exchange
 c. electric data exchange d. electronic commercialization.

9. Distributing unwanted e-mail to others is called.
 a. scam b. spam c. fraud d. spoofing

10. Legal recognition for transactions are carried out by
 a. Electronic Data Interchange b. Electronic Data Exchange
 c. Electronic Data Transfer d. Electrical Data Interchange

SECTION-B

Very Short Answers
1. What is harvesting?
2. What are Warez?
3. Write a short note on cracking.
4. Write two types of cyber attacks.
5. What is a Cookie?

SECTION-C
Short Answers
1. What is the role of firewalls?
2. Write about encryption and decryption.
3. Explain about proxy server.
4. What are the guidelines to be followed by any computer user?
5. What are ethical issues? Name some.

SECTION - D
Explain in detail
1. What are the various crimes happening using computer?
2. What is piracy? Mention the types of piracy? How can it be prevented?
3. Write the different types of cyber attacks.

Reference Books :
• Computer Network Security and Cyber Ethics by Joseph MiggaKizza
• “Investigating Cyber Law and Cyber Ethics: Issues, Impacts and Practices: 1” by Alfreda

Dudley and James Braman

Chapter 17 Page 275-285.indd 285 3/24/2020 9:24:13 AM

286 287

18.1 Introduction

“ பிறநாட்டு நல்லறிஞர் சாத்ிரங்கள்

்மிழ்மாழியிற் ்பயர்த்ல வேண்டும்;

இறோ் பு்கழுடைய புதுநூல்கள்

்மிழ்மாழியில இயற்றல வேண்டும்;

மடறோ்க நமக்குள்வளே பழங்கட்்கள்

்சாலே்ிவ்லார் ம்கிடம இலட்ல;

்ிறமான பு்லடம்யனில ்ேளேிநாட்வைார்;

அட் ேணக்்கஞ் ்சய்ல வேண்டும்.”

- ம்கா்கேி பார்ி

 Human civilization developed with the innovation of computer in the twentieth century.
Computer development began as a early calculating tool and has now become a essential
ingredient for gigantic growth for the existence of human life without computers.

 It is true that any language will be outdated when it does not have the ability to adapt itself
to the changing technologies. Tamil is a living language for thousands of years. Development
of modern technologies, does not affect the growth of classical Tamil as it is ready to adopt the
growing technological changes. Tamil is not just a language, it is our identity, our life and
our sense.

“எங்கள் ோழவும், எங்கள் ேளேமும் மங்கா் ்மி்ழன்று சஙவ்க முழஙகு” – புரட்சி ்கேி.

18.2 Tamil in Internet

 We know that the internet today plays a vital role in every man's life. Internet is the best
information technological device, through which we get know information.

 In 2017 a study conducted by KPMG a Singapore based organization along with google,
reported that, Tamil topped the list, among the most widely used languages in India, where
42% are using the Internet in Tamil

CHAPTER 18
Tamil Computing

Unit V COMPUTER ETHICS AND
CYBER SECURITY

SECTION – A
Choose the correct answer

SECTION-B

Very Short Answers

SECTION-C
Short Answers

SECTION - D
Explain in detail

Chapter 18 Page 286-297.indd 286 3/24/2020 9:24:35 AM

286 287

As per study, by 2021, 74% of people in India will access internet using Tamil and it will be in
the top usage of Internet in India.

These statistical data will be useful to improve internet services in Tamil.

Chapter 18 Page 286-297.indd 287 3/24/2020 9:24:35 AM

288 289

18.3 Search Engines in Tamil

 The “Search Engines” are used to search any information from the cyber space. Although
there are many search engines, but only a few of them are frequently in use. In the top ten
search engines, Google, Bing and Yahoo take first three places respectively. Google and Bing
provide searching facilities in Tamil, which means you can search everything through Tamil.
The Google search engine gives you an inbuilt Tamil virtual keyboard.

உள்ளீட்டுக் கருவிகள்

Figure 18.1(a) Google Search Engine (India)

உள்ளீட்டுக் கருவிகள்

Figure 18.1(b) Google Search Engine (Singapore)

Chapter 18 Page 286-297.indd 288 3/24/2020 9:24:36 AM

288 289

Figure 18.2 Searching in Tamil

18.4 e – Governance:

 Getting Government services through internet is known as e-Governance. Govt. of
Tamilnadu has been giving its services through Internet. One can communicate with Govt. of
Tamilnadu from any corner of the World. One can get important announcements, government
orders, and government welfare schemes from the web portal of Govt. of. Tamilnadu.

Figure 18.3 Official Website of Govt. of Tamilnadu

Chapter 18 Page 286-297.indd 289 3/24/2020 9:24:36 AM

290 291

E-Governance through Tamil Web Address
Official Website of Govt. of Tamilnadu http://www. tn.gov. in/ta
Department of Agricultural Engineering http://www. aed.tn.gov. in/
Department of Environment http://www. environment.tn.nic. in/
Directorate of Govt. Examinations http://www. dge.tn.nic. in/
Tamilnadu Health Department http://www. tnhealth. org/
Tamilnadu Micro, Small and Medium
Enterprises Department

http://www. msmeonline.tn.gov. in/

Rural Development and Panchayat Raj
Department

http://www. tnrd.gov. in/

Backward, Most Backward and Minorities
Welfare Department

http://www. bcmbcmw.tn.gov. in/

Tamilnadu Forest Department https://www. forests.tn.gov. in/
Hindu Religious and Charitable
Endowments Department.

http://www. tnhrce. org/

Tamil Nadu Public Service Commission
(TNPSC)

http://www. tnpsc.gov.in/ tamilversion/
index. html

Official Website of Govt. of Srilanka https://www. gov.lk/index. php

Outside India, Government of Srilanka provides all their services through the official
website in Tamil.

18.5 e-Library

E-Libraries are portal or website of collection of e-books. Tamil e-Library services
provide thousands of Tamil Books as ebooks mostly at free of cost. It is the most useful service
to Tamil people who live far away from their home land.

Tamil e-Library Website address
Tamilnadu School Education
and Teacher Education Training
Textbooks and Resource Books

http://www. textbooksonline. tn.nic. in/

Tamil Virtual Academy http://www. tamilvu.org/library/libindex .htm

Connemara Public Library
http:// connemarapubliclibrarychennai.
com/Veettukku_oru_noolagam/index .html

Tamil Digital Library http:// tamildigitallibrary. in/
Chennai Library http:// www.chennailibrary .com/

Thamizhagam
http:// www.thamizhagam. net/
parithi/parithi. html

Chapter 18 Page 286-297.indd 290 3/24/2020 9:24:36 AM

290 291

Project Madurai
http://www. projectmadurai.org/
pmworks. html

Old Books and Manuscripts
http://www. tamilheritage.org/old/
text/ ebook/ebook. html

Noolaham http://www. noolaham.org/wiki/index .php/
Anna Centenary Libraray http://www. annacentenarylibrary. org/

18.6 Tamil Typing and Interface software

Tamil is mostly used to type documents in word processors and search information on
the internet. Typing Tamil using Tamil interface software is a familiar one among the different
methods of typing. This is the simplest method of typing Tamil in both Computer and Smart
phones.

18.6.1 Familiar Tamil Keyboard Interface:

• NHM Writer, E-Kalappai and Lippikar – are familiar Tamil keyboard interfaces software
that is used for Tamil typing which works on Tamil Unicode, using phonetics.

• Sellinam and Ponmadal – are familiar Tamil keyboard layouts that works on Android
operating system in Smart phone using phonetics.

Figure 18.4 eKalappai Opening screen

18.7 Tamil Office Automation Applications

Famous Office automation software like Microsoft Office, Open Office etc., provides
complete Tamil interface facility. These softwares are downloadable and installed in your
computer. After installation, your office automation software environment will completely

Chapter 18 Page 286-297.indd 291 3/24/2020 9:24:36 AM

292 293

change to Tamil. Menu bars, names of icons, dialog boxes will be shown in Tamil. Moreover,
you can save files with Tamil names and create folders with Tamil names.

Figure 18.5 Libra Office Writer Environments in Tamil

 Apart from that Tamil Libra Office, Tamil Open Office, Azhagi Unicode Editor,
Ponmozhi, Menthamiz, Kamban, Vani are office automation software working exclusively for
Tamil. You can use these applications to work completely in Tamil.

18.8 Tamil Translation Applications

 Thamizpori (்மிழ்பாறி) is a Tamil tranlation application having more than 30000
Tamil words equalent to English words. Using this application, we can translate small english
sentences into Tamil. Google also gives an online translation facility, using this online facility
we can translate from Tamil to any other language and vice versa.

18.9 Tamil Programming Language

 Programming languages to develop software in computers and smart phones are
available only in English. Now, efforts are taken to develop programming languages in Tamil.
Based on Python programming language, the first Tamil programming language “Ezhil” (எழில)
is designed. With the help of this programming language, you can write simple programs in
Tamil.

Chapter 18 Page 286-297.indd 292 3/24/2020 9:24:36 AM

292 293

18.10 Tamil Information Interchange Coding Systems

TSCII (Tamil Script Code for Information Interchange)

 Computers handle data and information as binary system. Every data should be
converted into binary when it is fed into a computer system. You have learnt about all these
things in the first unit of this text book. Computers use ASCII encoding system to handle data
and information. The ASCII encoding system is applicable only for handling English language.
Therefore, TSCII (Tamil Script Code for Information Interchange) is the first coding system
to handle our Tamil language in an analysis of an encoding scheme that is easily handled in
electronic devices, including non-English computers. This encoding scheme was registered in
IANA (Internet Assigned Numbers Authority) a unit of ICANN.

ISCII (Indian Script Code for Information Interchange)

 This is one of the encoding schemes specially designed for Indian languages including
Tamil. It was unified with Unicode.

Unicode:

 Unicode is an encoding system, designed to handle various world languages, including
Tamil. Its first version 1.0.0 was introduced in October 1991. When Unicode was introduced
it could handle nearly 23 languages including Tamil. Among the various encoding scheme,
Unicode is the best suitable to handle Tamil.

18.11 Tamil Operating System

 An operating system is needed to access electronic systems such as computer and
smart phone. Microsoft Windows is very popular operating system for personal computers.
Linux is another popular open source operating system. Operating systems are used to access
a computer easily. An operating system should be easy to work and its environment should be
in an understandable form. Thus, all operating systems used in computers and smart phones
are offered in Tamil environment.

 Windows Tamil Environment interface should be downloaded and installed from the
internet. It displays all window elements such as Taskbar, desktop elements, names of icons,
commands in Tamil.

18.12 Organisation and projects to develop Tamil

Tamil Virtual Academy:

 With the objectives of spreading Tamil to the entire world through internet, Tamil
Virtual University was established on 17th February 2001 by the Govt. of Tamilnadu. Now, this
organisation functions with the name of “Tamil Virtual Academy”. It offers different courses
in Tamil language, Culture, heritage etc., from kindergarten to under graduation level.

Chapter 18 Page 286-297.indd 293 3/24/2020 9:24:36 AM

295

Website: http://www. tamilvu.org/index .php

Tamil Language Council, Singapore

With the objectives of promoting the awareness and greater use of Tamil among the
Singaporeans, in 2001 the council of Tamil Language was formed by the ministry of Information
Communications and Arts, Govt. of Singapore. The council is called as “ேளேர்்மிழ இயக்்கம்”.

Website: http://tamil.org.sg/ta

Madurai Project

Project Madurai is an open and voluntary initiative to collect and publish free electronic
editions of ancient tamil literary classics. This means either typing-in or scanning old books
and archiving the text is one of the most readily accessible formats for use on all popular
computer platforms.

Since its launch in 1998, Project Madurai etexts released are in Tamil script form as per
TSCII encoding. Since 2004 we have started releasing etexts in Tamil unicode as well.

Web Site: http://www. projectmadurai. org/

Tamil Wikipedia:

Wikipedia is a open source encyclopedia where any person can write an article about
any subject. There are more than One lakh articles in Tamil Wikipedia.

Web Site: https:// ta.wikipedia .org/

In order to make Tamil as a living language, it is the duty of every Tamilian to actively
use Tamil in the development of technology.

294

Chapter 18 Page 286-297.indd 294 3/24/2020 9:24:36 AM

294 295

• Tamil topped the list of the most widely used regional languages in India by the end of
2016, among 42% are using the Internet.

• Google and Bing provide searching facilities in Tamil.

• Getting Government services through internet is known as e-Governance.

• Tamil e-Library services provide thousands of Tamil Books as ebooks mostly at free of
cost.

• Thamizpori (்மிழ்பாறி) is a Tamil tranlation application having more than 30000
Tamil words equalent to English words.

• The first Tamil programming language is “Ezhil” (எழில)

• Unicode is an encoding system, designed to handle various world languages, including
Tamil.

• Windows Tamil Environment interface should be downloaded and installed from
internet.

Points to Remember:

Evaluation

Very Short Answers

1. List the search engines supported by Tamil language.

2. What are the keyboard layouts used in Android?

3. Write a short note about Tamil Programming Language.

4. What is TSCII?

5. Write a short note on Tamil Virtual Academy.

Chapter 18 Page 286-297.indd 295 3/24/2020 9:24:36 AM

296 297

WORD MEANING

Paradigm Organizing principle of a program.

Abstraction
Abstraction refers to showing only the essential features without re-
vealing background details

Modularity
Designing a system that is divided into a set of functional units
(named modules) that can be composed into a larger application.

Base class
A class whose properties are inherited by other newly created classes
.Also called as parent class

Derived class
A class which inherits the properties of the base class. Also called as
child class or subclass.

Class Class represents a group of similar objects that share common properties

Object Identifiable entity with some characteristics and behaviour

Encapsulation
Mechanism by which the data and function sare bound together into
a single unit

Inheritance
Process of creating new classes called derived classes, from the exist-
ing or base classes.

Signature Number of argument and type of argument
Polymorphism many forms
Default argument Initializing the argument with a value

Base Class:
A class from which another class inherits (Also called Super class or
parent class)

Derived Class: A class inheriting properties from another class. (Also called Sub class)

Inheritance The process of one class to inherit properties from another class

Inheritance
Hierarchy
(Inheritance Path):

The chain depicting relationship between a base class and the derived
class (Also called Derivation Hierarchy)

Visibility mode
The public, private or protected specifier that controls the visibility
and availability of a member in a class

Vulnerability The possibility of being attacked or harmed.

Ethics
Moral principles that govern a person's behaviour or the conducting of
an activity.

GLOSSARY

Chapter 18 Page 286-297.indd 296 3/24/2020 9:24:36 AM

296 297

Cyber
Characteristic of the culture of computers, information technology,
and virtual reality.

Computer Crime Computer crime is an intellectual crime to manipulate computer system.

Authenticity The quality of being real or true.
Sabotage Deliberately destroy, damage, or obstruct.
Perpetrator A person who carries out a harmful, illegal, or immoral act.

Software Piracy
Software Piracy is the copyright violation of software created original-
ly by one person and illegally used by someone else.

Hacking
Hacking is gaining unauthorized access to computer system without
the owner’s permission.

Cracking
Cracking is gaining unauthorized access to computer systems to
commit a crime, such as stealing the code to make a copy-protected
program run thus denying service to legitimate users.

Malicious Intentionally doing harm.
Freeware Freeware is a software available free of charge.

Shareware
Shareware is a software that is distributed free of charge on a trial
basis for a limited time.

Phishing

Phishing is a term used to describe a malicious individual or group of
individuals who scam users by sending e-mails or creating web pages
that are designed to collect an individual's online bank, credit card, or
other login information.

Fraudulent Dishonest, cheating, swindling, corrupt, criminal, illegal, unlawful.
Anonymous Unnamed, nameless, unidentified, unspecified.

Cookies
Cookies are messages that web servers pass to your web browser
when you visit Internet sites

Tampering Interfere in order to cause damage.
Immune Resistant to a particular infection or toxin.

Firewall
A firewall is a network security system that monitors and controls incom-
ing and outgoing network traffic based on predetermined security rules.

Proxy server
A proxy server is a gateway between a local network and a larg-
er-scale network such as the Internet. Proxy servers provide increased
performance and security.

Encryption
Encryption is the process of encoding a message or information so
that only authorized users can decrypt it

Decryption
Decryption is theprocess of decoding the encrypted text by converting
it back into normal text.

Chapter 18 Page 286-297.indd 297 3/24/2020 9:24:36 AM

298

Instructions:

 1. Ten exercises from C++ are practiced in the practical classes

 2. One question from C++ with internal choice

 3. Distribution of Marks

I. Internal Assessment: 5 Marks

Record Book 5 Marks

II. External Assessment: 15 Marks

(a) C++ Program coding 10 Marks

(b) Execution & Output 5 Marks

Total 20 Marks

COMPUTER SCIENCEPRACTICAL 11

Computer Science Practical Page 298-321.indd 298 3/24/2020 9:24:58 AM

299

INDEX

Sl.
No.

Question
Number Program Name Page

Number

1 CS1 Gross Salary 300

2 CS2 Percentage 301

3 CS3 Palindrome 302

4 CS4 Number Conversion 303

5 CS5 Fibonacci Prime Series 305

6 CS6 Insert / Delete elements in an array 307

7 CS7 Boundary element of a matrix 310

8 CS8 ABC Publishers 312

9 CS9 Employee details using class 316

10 CS10 Student Details 318

Computer Science Practical Page 298-321.indd 299 3/24/2020 9:24:58 AM

300

CS1 - GROSS SALARY

CS-1 Write a C++ program to input basic salary of an employee and calculate its Gross
salary according to following:

Basic Salary <25000 : HRA = 20%, DA = 80%
Basic Salary >= 25000 : HRA = 25%, DA = 90%
Basic Salary >= 40000 : HRA = 30%, DA = 95%

Coding

#include <iostream>
using namespace std;
int main()
{
float basic, gross, da,hra;
cout<<"Enter basic salary of an employee: ";
cin>>basic;
if (basic <25000)
{
da = basic *80/100;
hra= basic *20/100;
}
else if (basic >=25000 && basic<40000)
{
da = basic *90/100;
hra= basic *25/100;
}
else if (basic>=40000)
{
da = basic *95/100;
hra= basic *30/100;
}
gross= basic +hra+ da;
cout<< "\n\t Basic Pay"<< basic<<endl;
cout<< "\t Dearness Allowance" << da <<endl;
cout<< "\t House Rent Allowance......"<< hra <<endl;
cout<< "\t --"<<endl;
cout<< "\t Gross Salary.............."<<gross <<endl;

Computer Science Practical Page 298-321.indd 300 3/24/2020 9:24:58 AM

301

CS1 - GROSS SALARY

CS-1 Write a C++ program to input basic salary of an employee and calculate its Gross
salary according to following:

Basic Salary <25000 : HRA = 20%, DA = 80%
Basic Salary >= 25000 : HRA = 25%, DA = 90%
Basic Salary >= 40000 : HRA = 30%, DA = 95%

Coding

#include <iostream>
using namespace std;
int main()
{
float basic, gross, da,hra;
cout<<"Enter basic salary of an employee: ";
cin>>basic;
if (basic <25000)
{
da = basic *80/100;
hra= basic *20/100;
}
else if (basic >=25000 && basic<40000)
{
da = basic *90/100;
hra= basic *25/100;
}
else if (basic>=40000)
{
da = basic *95/100;
hra= basic *30/100;
}
gross= basic +hra+ da;
cout<< "\n\t Basic Pay"<< basic<<endl;
cout<< "\t Dearness Allowance" << da <<endl;
cout<< "\t House Rent Allowance......"<< hra <<endl;
cout<< "\t --"<<endl;
cout<< "\t Gross Salary.............."<<gross <<endl;

cout<< "\t --"<<endl;
return 0;
}

Output
Enter basic salary of an employee: 25000
 Basic Pay : 25000
 Dearness Allowance : 22500
 House Rent Allowance : 6250

 Gross Salary : 53750

CS2 - PERCENTAGE

CS-2
Write a C++ program to check percentage of a student and display the division
(distinction, first, second, third or fail) scored using switch case

Percentage Division
>=80 Distinction
>=60 and <80 First division
>=50 and <60 Second Division
>=40 and <50 Third Division
<40 Fail

Coding

#include <iostream>
using namespace std;
int main()
{
float percent;
int x;
cout<<"Enter your percentage: ";
cin>>percent;
cout<<"You scored "<<percent<<"%"<<endl;
 x = percent/10;
switch (x)
{
case 10:
case 9:

Computer Science Practical Page 298-321.indd 301 3/24/2020 9:24:58 AM

302

case 8:
cout<<"You have passed with Distinction";
break;
case 7:
case 6:
cout<<"You have passed with First division";
break;
case 5:
cout<<"You have passed with Second division";
break;
case 4:
cout<<"You have passed with Third division";
break;
default:
cout<<"Sorry: You have failed";
}
return 0;
}

Output 1

Enter your percentage: 79
You scored 79%
You have passed with First division

Output 2

Enter your percentage: 39
You scored 39%
Sorry: You have failed

CS3 - PALINDROME

CS-3
Write a C++ program to enter any number and check whether the number is palindrome
or not using while loop.

Coding

#include <iostream>
using namespace std;
int main()
{
int n,num, digit, rev =0;
cout<<"Enter a positive number: ";

Computer Science Practical Page 298-321.indd 302 3/24/2020 9:24:58 AM

303

case 8:
cout<<"You have passed with Distinction";
break;
case 7:
case 6:
cout<<"You have passed with First division";
break;
case 5:
cout<<"You have passed with Second division";
break;
case 4:
cout<<"You have passed with Third division";
break;
default:
cout<<"Sorry: You have failed";
}
return 0;
}

Output 1

Enter your percentage: 79
You scored 79%
You have passed with First division

Output 2

Enter your percentage: 39
You scored 39%
Sorry: You have failed

CS3 - PALINDROME

CS-3
Write a C++ program to enter any number and check whether the number is palindrome
or not using while loop.

Coding

#include <iostream>
using namespace std;
int main()
{
int n,num, digit, rev =0;
cout<<"Enter a positive number: ";

cin>>num;
 n =num;
while (num)
{
digit=num%10;
rev=(rev *10)+ digit;
num=num/10;
}
cout<<" The reverse of the number is: "<< rev <<endl;
if (n == rev)
cout<<" The number is a palindrome";
else
cout<<" The number is not a palindrome";
return 0;
}

Output 1

Enter a positive number to reverse: 1234
 The reverse of the number is: 4321
 The number is not a palindrome

Output 2

Enter a positive number to reverse: 1221
The reverse of the number is: 1221
The number is a palindrome

CS4 - NUMBER CONVERSION

CS-4 Using do while loop create the following menu based C++ program

1.Convert a Decimal to binary number
2.Convert a binary number to Decimal
3. Exit
 Depending on the choice accept the value and display the result .The
program should continue till the userselect the third option

Coding

#include <iostream>
#include <cmath>
using namespace std;
int main()
{

Computer Science Practical Page 298-321.indd 303 3/24/2020 9:24:58 AM

304

 int dec,d,i,temp,ch;
 long int bin;
do
{
 dec=bin=d=i=0;
 cout<<"\n\n\t\tMENU\n1. Decimal to Binary number\n2.Binary to Decimal number\

n3.Exit\n";
 cout <<"Enter your choice(1/2/3)";
 cin>>ch;
 switch (ch)
 {
 case 1: cout << "Enter a decimal number: "; cin >> dec;
 temp=dec;
 while (dec!=0)
 {
 d = dec%2;
 bin += d * pow(10,i);
 dec /= 2;
 i++;
}
 cout << temp << " in decimal = " << bin << " in binary" << endl ;break;
 case 2: cout << "Enter a binary number: "; cin >> bin;
 temp=bin;
 while (bin!=0)
 {
 d = bin%10;
 dec += d*pow(2,i);
 bin /= 10;
 i++;
}
 cout << temp << " in binary = " <<dec << " in decimal";
 break;
 case 3: break;
 default : cout<<"Invalid choice";
 }
} while (ch!=3);
return 0;
}

Output 1

 MENU
1.Decimal to Binary number

Computer Science Practical Page 298-321.indd 304 3/24/2020 9:24:58 AM

305

2.Binary to Decimal number
3.Exit
Enter your choice(1/2/3)1
Enter a decimal number: 23
23 in decimal = 10111 in binary
 MENU
1.Decimal to Binary number
2.Binary to Decimal number
3.Exit
Enter your choice(1/2/3)2
Enter a binary number: 11001
11001 in binary = 25 in decimal
 MENU
1.Decimal to Binary number
2.Binary to Decimal number
3.Exit
Enter your choice(1/2/3)3

Output 2

 MENU
1.Decimal to Binary number
2.Binary to Decimal number
3.Exit
Enter your choice(1/2/3)4
Invalid choice
 MENU
1.Decimal to Binary number
2.Binary to Decimal number
3.Exit
Enter your choice(1/2/3)3

CS5 - FIBONACCI PRIME SERIES

CS-5
Write a C++ program using a user defined function to generate the Fibonacci series till
n terms and print if each term is prime or Composite.

Coding

#include <iostream>
#include <stdlib.h>

Computer Science Practical Page 298-321.indd 305 3/24/2020 9:24:58 AM

306

using namespace std;
void Primechk (int a)
{ int j;
 if (a == 0 || a == 1)
 { cout<< " NEITHER PRIME NOR COMPOSITE ";}
 else
{
 for (j = 2 ; j<a; j++)
 { if (a%j==0)
 { cout<< "\tCOMPOSITE" ;
 break ;
}
 }
 if (a==j)
 cout<< "\tPRIME" ;
 }
}
 void fibo (int n)
 { int a = -1 , b = 1 ,c=0 ;
 for (int i = 1 ; i <= n ; i++)
 {
 cout<<endl;
 c = a + b ;
 cout<<c;
 Primechk(c);
 a = b;
 b = c ;
 }
 }
 int main ()
 {
 int n ;
 cout << " ENTER THE NUMBER OF REQUIRED FIBO TERMS " ;
 cin >> n ;
 cout<< "\n\tFIBONACCI SERIES\n " ;
 fibo (n) ;
return 0;
 }

Computer Science Practical Page 298-321.indd 306 3/24/2020 9:24:58 AM

307

Output

ENTER THE NUMBER OF TERMS 10
 FIBONACCI SERIES
0 NEITHER PRIME NOR COMPOSITE
1 NEITHER PRIME NOR COMPOSITE
1 NEITHER PRIME NOR COMPOSITE
2 PRIME
3 PRIME
5 PRIME
8 COMPOSITE
13 PRIME
21 COMPOSITE
34 COMPOSITE

CS6 - INSERT / DELETE ELEMENTS IN AN ARRAY

CS-6
Write a menu driven C++ program to Insert and Delete elements in a single dimension
array of integers and print the array after insertion or deletion

Coding

#include<iostream>
using namespace std;
int a[20],b[20],c[40];
int m,n,p,val,i,j,key,pos,temp;
/*Function Prototype*/
void display();
void insert();
void del();
int main()
{
int choice;
cout<<"\nEnter the size of the array elements:\t";
cin>>n;
cout<<"\nEnter the elements for the array:\n";
for (i=0;i<n;i++)

Computer Science Practical Page 298-321.indd 307 3/24/2020 9:24:58 AM

308

{
cin>>a[i];
}
do {
cout<<"\n\n--------Menu-----------\n";
cout<<"1.Insert\n";
cout<<"2.Delete\n";
cout<<"3.Exit\n";
cout<<"-----------------------";
cout<<"\nEnter your choice:\t";
cin>>choice;
switch (choice)
{
 case 1: insert();
 break;
 case 2: del();
 break;
 case 3:break;
 default :cout<<"\nInvalid choice:\n";
}
} while (choice!=3);
return 0;
}
void display()//displaying an array elements
{
 int i;
 cout<<"\nThe array elements are:\n";
 for(i=0;i<n;i++)
{
 cout<<a[i]<<" ";
}
}//end of display()
 void insert()//inserting an element in to an array
{
 cout<<"\nEnter the position for the new element:\t";
 cin>>pos;

Computer Science Practical Page 298-321.indd 308 3/24/2020 9:24:59 AM

309

 cout<<"\nEnter the element to be inserted :\t";
 cin>>val;
 for (i=n; i>=pos-1; i--)
{
 a[i+1]=a[i];
}
a[pos-1]=val;
 n=n+1;
display();
}//end of insert()
void del()//deleting an array element
{
 cout<<"\n Enter the position of the element to be deleted:\t";
 cin>> pos;
 val= a [pos];
 for (i= pos;i<n-1;i++)
{
 a[i]=a[i+1];
}
 n=n-1;
cout<<"\nThe deleted element is = "<<val;
display();
}//end of delete()

Output

Enter the size of the array elements: 5
Enter the elements for the array:
1
2
3
4
5
--------Menu-----------
1.Insert
2.Delete
3.Exit

Computer Science Practical Page 298-321.indd 309 3/24/2020 9:24:59 AM

310

Enter your choice: 1
Enter the position for the new element: 3
Enter the element to be inserted : 26
The array elements are:
1 2 26 3 4 5
--------Menu-----------
1.Insert
2.Delete
3.Exit

Enter your choice: 2
Enter the position of the element to be deleted: 2
The deleted element is = 2
The array elements are:
1 3 26 4 5
--------Menu-----------
1.Insert
2.Delete
3.Exit

Enter your choice: 3

CS 7 - Boundary Element of a Matrix

CS-7 Write a C++ program to print boundary elements of a matrix

Coding

#include <iostream>
using namespace std;
void printBoundary (int a[][10], int m, int n)
{
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++)
{
if (i==0|| j==0||i==m-1||j==n-1)

Computer Science Practical Page 298-321.indd 310 3/24/2020 9:24:59 AM

311

Enter your choice: 1
Enter the position for the new element: 3
Enter the element to be inserted : 26
The array elements are:
1 2 26 3 4 5
--------Menu-----------
1.Insert
2.Delete
3.Exit

Enter your choice: 2
Enter the position of the element to be deleted: 2
The deleted element is = 2
The array elements are:
1 3 26 4 5
--------Menu-----------
1.Insert
2.Delete
3.Exit

Enter your choice: 3

CS 7 - Boundary Element of a Matrix

CS-7 Write a C++ program to print boundary elements of a matrix

Coding

#include <iostream>
using namespace std;
void printBoundary (int a[][10], int m, int n)
{
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++)
{
if (i==0|| j==0||i==m-1||j==n-1)

cout<<a[i][j]<<" ";
else
cout<<" ";
}
cout <<endl ;
}
}
// Driver code
int main()
{
 int a[10][10] ,i,j,m,n;
 cout<<"Enter more than 3 number of rows and columns"<<endl;
 cin>>m>>n;
 for (i=0;i<m;i++)
 {
 for (j=0;j<n;j++)
 {
 cout<<"enter the value for array["<<i+1<<"]"<<"["<<j+1<<"] :";
 cin>>a[i][j];
 }
}
system("cls");
 cout<<"\n\nOriginal Array\n";
 for (i=0;i<m;i++)
{
 for (j=0;j<n;j++)
 {
 cout<<a[i][j]<<" ";
 }
 cout<<endl;
}
 cout<<"\n\n The Boundry element\n";
 printBoundary(a, m, n);
return 0;
}

Output

Enter more than 3 number of rows and columns
4 4

Computer Science Practical Page 298-321.indd 311 3/24/2020 9:24:59 AM

312

enter the value for array[1][1] :1
enter the value for array[1][2] :2
enter the value for array[1][3] :3
enter the value for array[1][4] :4
enter the value for array[2][1] :5
enter the value for array[2][2] :6
enter the value for array[2][3] :7
enter the value for array[2][4] :8
enter the value for array[3][1] :9
enter the value for array[3][2] :0
enter the value for array[3][3] :1
enter the value for array[3][4] :2
enter the value for array[4][1] :3
enter the value for array[4][2] :4
enter the value for array[4][3] :5
enter the value for array[4][4] :6
Original Array
1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6
The Boundary element
1 2 3 4
5 8
9 2
3 4 5 6

CS8 - ABC PUBLISHERS

CS-8 Define a class named Publisher in C++ with the following descriptions

private members
Bookno integer
Title 20 characters

Computer Science Practical Page 298-321.indd 312 3/24/2020 9:24:59 AM

313

enter the value for array[1][1] :1
enter the value for array[1][2] :2
enter the value for array[1][3] :3
enter the value for array[1][4] :4
enter the value for array[2][1] :5
enter the value for array[2][2] :6
enter the value for array[2][3] :7
enter the value for array[2][4] :8
enter the value for array[3][1] :9
enter the value for array[3][2] :0
enter the value for array[3][3] :1
enter the value for array[3][4] :2
enter the value for array[4][1] :3
enter the value for array[4][2] :4
enter the value for array[4][3] :5
enter the value for array[4][4] :6
Original Array
1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6
The Boundary element
1 2 3 4
5 8
9 2
3 4 5 6

CS8 - ABC PUBLISHERS

CS-8 Define a class named Publisher in C++ with the following descriptions

private members
Bookno integer
Title 20 characters

Author 10 characters
price float
Totamt float
Define a member function called calculate() to calculate the number of copies and the
price and return the total amount.
Public members

• A default constructor function to initialize all data members.The book number must be
automatically generated staring from 1001

• Readdata() function to accept values for Title,Author and price.Get the number of copies
from the user and invoke calculate().

• Display data () function display all the data members in the following format

ABC PUBLISHERS
~~~~~~~~~~~~~~~~~

INVOICE
~~~~~~~~~

==================================
Book Number :
Title :
Author Name :
Price Per Book :
Total Amount :
==================================

Coding

#include<iostream>
#include<stdlib.h>
using namespace std;
int id=1001;
class Publisher
{
int Bookno;
char Title[20];
char Author [10];
float Price;
float Totamt;
float calculate (int);
public:
Publisher()

Computer Science Practical Page 298-321.indd 313 3/24/2020 9:24:59 AM

314

{Bookno=id;
Title[0]='\0';
Author[0]='\0';
 Price=0;
Totamt=0;
id++;
}
void Readdata();
void Displaydata();
};
void Publisher::Readdata()
{
int nocopies;
cout<<"Enter the Title name ";cin>>Title;
cout<<"Enter the Author name ";cin>>Author;
cout<<"Enter the Price ";cin>>Price;
cout<<"Enter the Number of copies ";cin>>nocopies;
Totamt=calculate(nocopies);
}
float Publisher::calculate(int x)
{
 return x*Price;
}
void Publisher::Displaydata()
{
cout<<"\n\t\tABC PUBLISHERS\n";
cout<<"\t\t~~~~~~~~~~~~~~\n";
cout<<"\t\t INVOICE\n";
cout<<"\t\t ~~~~~~~\n";
cout<<"\n==================================\n";
cout<<" Book Number : "<<Bookno<<endl;
cout<<"Title : "<<Title<<endl;
cout<<"Author Name : "<<Author<<endl;
cout<<"Price Per Book : "<<Price<<endl;
cout<<"Total Amount : "<<Totamt<<endl;
cout<<"\n==================================\n";

Computer Science Practical Page 298-321.indd 314 3/24/2020 9:24:59 AM

315

}
int main()
{
 int n,i;
 Publisher p[10];
 cout<<"Enter the number of object to be created";cin>>n;
 for (i=0;i<n;i++)
 p[i].Readdata();
 for (i=0;i<n;i++)
 p[i].Displaydata();
 return 0;
}

Output

Enter the number of object to be created2
Enter the Title name C++Programming
Enter the Author name Balaguru
Enter the Price 500
Enter the Number of copies 3
Enter the Title name CoreJava
Enter the Author name Xavier
Enter the Price 250
Enter the Number of copies 5

ABC PUBLISHERS
~~~~~~~~~~~~~~

INVOICE
~~~~~~~

==================================
Book Number : 1001
Title : C++Programming
Author Name : Balaguru
Price Per Book : 500
Total Amount : 1500
=================================
 ABC PUBLISHERS
  ~~~~~~~~~~~~~~
  INVOICE

Computer Science Practical Page 298-321.indd   315 3/24/2020   9:24:59 AM



316

  ~~~~~~~
==================================
Book Number : 1002
Title : CoreJava
Author Name : Xavier
Price Per Book : 250
Total Amount : 1250
==================================

CS9 - EMPLOYEE DETAILS USING CLASS

CS-9 Create a C++ program to create a class employee containg the following members
in public.

Public members
eno integer
name 20 characters
des 20 characters
member Function
void get() to accept values for all data members
Declare the derived class called Salary which contain the following details.
Public members
bp, hra, da, pf, np float
member Function
void get1() to accept values for bp,hra,da and pf and invoke calculate()
calculate() calculate the np by adding bp,hra,da subtracting pf
display() Display all the details
Create the derived class object and read the number of employees.Call the function
get(),get1() for each employee and display the details

Coding

#include<iostream>
using namespace std;
class emp{
public:
int eno;
char name[20], des[20];
void get(){

Computer Science Practical Page 298-321.indd 316 3/24/2020 9:24:59 AM

317

  ~~~~~~~
==================================
Book Number : 1002
Title   : CoreJava
Author Name  : Xavier
Price Per Book : 250
Total Amount : 1250
==================================

CS9 - EMPLOYEE DETAILS USING CLASS

CS-9 Create a C++ program to create a class employee containg the following members 
in public.

Public members
eno integer
name 20 characters
des 20 characters
member Function
void  get() to accept values for all data members
Declare the derived class called Salary which contain the following details.
Public members
bp, hra, da, pf, np float
member Function
void  get1() to accept values for bp,hra,da and pf and invoke calculate()
calculate() calculate the np by adding bp,hra,da subtracting pf
display() Display all the details
Create the derived class object and read the number of employees.Call the function 
get(),get1() for each employee and display the details

Coding

#include<iostream>
using namespace std;
class emp{
public:
int eno;
char name[20], des[20];
void get(){

cout<<"Enter the employee number:";
cin>>eno;
cout<<"Enter the employee name:";
cin>>name;
cout<<"Enter the designation:";
cin>>des;
}
};
class salary :public emp
{
float bp,hra, da,pf,np;
public:
void get1()
{
cout<<"Enter the basic pay:";
cin>>bp;
cout<<"Enter the HouseRent Allowance:";
cin>>hra;
cout<<"Enter the Dearness Allowance :";
cin>>da;
cout<<"Enter the Provident Fund:";
cin>>pf;
}
void calculate()
{
np=bp+hra+ da -pf;
}
void display()
 {
cout<<eno<<"\t"<<name<<"\t"<<des<<"\t"<<bp<<"\t"<<hra<<"\t"<<da<<"\t"<<pf<<"\
t"<<np<<"\n";
}
};
int main(){
int i, n;
char ch;
salary s[10];
cout<<"Enter the number of employee:";
cin>>n;
for (i =0; i < n; i++){

Computer Science Practical Page 298-321.indd   317 3/24/2020   9:24:59 AM



318

s[i].get();
s[i].get1();
s[i].calculate();
}
 cout<<"\n\t\t\tEmployee Details\n";
 cout<<"\ne_no \t e_name\t des \t bp \t hra \t da \t pf \t np \n";
 for (i =0; i < n; i++){
 s[i].display();
}
return 0;
}

Output

Enter the number of employee:2
Enter the employee number:1201
Enter the employee name:Ramkumar
Enter the designation:Engineer
Enter the basic pay:50000
Enter the House Rent Allowance:10000
Enter the Dearness Allowance :5000
Enter the Provident Fund:1000
Enter the employee number:1202
Enter the employee name:Viswanathan
Enter the designation:Engineer-Tech
Enter the basic pay:40000
Enter the House Rent Allowance:9000
Enter the Dearness Allowance :4500
Enter the Provident  Fund:1000
   Employee Details
e_noe_name          des          bp          hra              da          pf          np
1201    Ramkumar        Engineer         50000   10000    5000    1000    64000
1202    Viswanathan     Engineer-Tech    40000   9000     4500    1000    52500

CS10 -STUDENT DETAILS

CS-10 Write a C++ program to create a class called Student with the following details 

Protected member
Rno integer
Public members

Computer Science Practical Page 298-321.indd   318 3/24/2020   9:24:59 AM



319

s[i].get();
s[i].get1();
s[i].calculate();
}
 cout<<"\n\t\t\tEmployee Details\n";
 cout<<"\ne_no \t e_name\t des \t bp \t hra \t da \t pf \t np \n";
 for (i =0; i < n; i++){
 s[i].display();
}
return 0;
}

Output

Enter the number of employee:2
Enter the employee number:1201
Enter the employee name:Ramkumar
Enter the designation:Engineer
Enter the basic pay:50000
Enter the House Rent Allowance:10000
Enter the Dearness Allowance :5000
Enter the Provident Fund:1000
Enter the employee number:1202
Enter the employee name:Viswanathan
Enter the designation:Engineer-Tech
Enter the basic pay:40000
Enter the House Rent Allowance:9000
Enter the Dearness Allowance :4500
Enter the Provident  Fund:1000
   Employee Details
e_noe_name          des          bp          hra              da          pf          np
1201    Ramkumar        Engineer         50000   10000    5000    1000    64000
1202    Viswanathan     Engineer-Tech    40000   9000     4500    1000    52500

CS10 -STUDENT DETAILS

CS-10 Write a C++ program to create a class called Student with the following details 

Protected member
Rno integer
Public members

void  Readno(int); to accept roll number and assign to Rno
void  Writeno(); To display Rno.
The class Test is derived  Publically from the Student class contains the following details  
Protected member
Mark1 float
Mark2 float
Public members
void  Readmark(float,float); To accept mark1 and mark2
void  Writemark(); To display the marks
 Create a class called Sports  with the following  detail 
Protected members
score integer
Public members
void  Readscore(int); To accept the score
void  Writescore(); To display the score
The class Result is derived  Publically from Test and Sports  class contains the following 
details  
Private member
Total float
Public member
void  display() assign the sum of mark1 ,mark2,score in total.
invokeWriteno(),Writemark() and Writescore() .Display the total also.

Coding

#include<iostream>
using namespace std;
class Student
{
 protected:
 int Rno;
 public:
 void Readno(int r)
 {
 Rno=r;
 }
 void Writeno()
 {
  cout<<"\nRoll no : "<<Rno;
 }
};
class Test :public Student

Computer Science Practical Page 298-321.indd   319 3/24/2020   9:24:59 AM



320

{
 protected:
 float Mark1,Mark2;
 public:
 void Readmark (float m1,float m2)
 {
  Mark1=m1;
  Mark2=m2;
 }
void Writemark()
{
cout<<"\n\n\tMarks Obtained\n ";
cout<<"\n Mark1        : "<<Mark1;
cout<<"\n Mark2        : "<<Mark2;
}
};
class Sports
{
protected:
int score;// score = Sports mark
public:
void  Readscore (int s)
{
score=s;
}
void  Writescore()
 {
cout<<"\n Sports Score : "<<score;
 }
};
class Result :public Test,public Sports 
{
int Total;
public:
void display()
{
 Total = Mark1 + Mark2 + score;
Writeno();
Writemark();
Writescore();

Computer Science Practical Page 298-321.indd   320 3/24/2020   9:24:59 AM



321

cout<<"\n\n Total Marks Obtained    : "<< Total<<endl;
}
};
int main()
{
    Result stud1;
stud1.Readno(1201);
stud1.Readmark(93.5,95);
stud1.Readscore(80);
cout<<"\n\t\t\t HYBRID INHERITANCE PROGRAM\n";
stud1.display();
return 0;
}

Output

HYBRID INHERITANCE PROGRAM
Roll no : 1201
        Marks Obtained
 Mark1         : 93.5
 Mark2         : 95
 Sports Score  : 80
 Total Marks Obtained    : 268

Computer Science Practical Page 298-321.indd   321 3/24/2020   9:24:59 AM



322

COMPUTER SCIENCE – XI
List of Authors and Reviewers

Reviewers
Dr. Ranjani Parthasarathi  
Professor, Dept of Info Sci and Tech, College of Engineering, Guindy, Anna University, 
Chennai

Mr. Munivel E  
Scientist/Engineer ‘C’ IT Group (Information Security), NIELIT  
Calicut (MeitY, Govt. of India), NIT Campus, Calicut - KL (IN).

Academic Coordinators
Mrs. Nevedha Selvaraj 
Assistant Professor, SCERT, Chennai

Mrs. Tamil Selvi R 
B.T. Assistant,  
Government High School, Poonampalayam, Trichy District

Domain Experts
Dr. T.V.Gopal  
Professor ,Dept. of Computer Science and Technology, 
College of Engineering, Guindy, Anna University, Chennai.

Dr. Chitra Babu 
Professor and Head of the Department,  
Dept of Computer Science and Engineering, SSN College of Engineering , Chenna

Mrs. Bagyalakshmi P 
Asst. Professor and Head of the Department, Dept of Computer  
Applications, Queen Mary’s College, Chennai

Mrs. Sasikala k 
Associate Professor, Dept of Computer Science,  
Queen Mary’s College, Chennai

Dr. Radha P  
Assistant Professor, Dept of  Information Technology,  
Govt. Arts & Science College (A), Coimbatore

Dr. Nester Jeyakumar M 
Associate Professor and  Head Of the Department,  
Dept of Computer Science, Loyola College, Chennai

Dr. Srinivasan N 
Professor, Dept of Computer Science and Engineering,  
Sathyabama Institute of Science & Technology, Chennai

Dr. Chandra Mohan B 
Associate Professor, School of Computer Science and Engineering, 
Vellore Institute of Technology, Vellore

Mr. Sethuraman R 
Assistant Professor, Dept of  Computer Science and Engineering,  
Sathyabama Institute of Science & Technology, Chennai

Mr. Sankar K 
Assistant Professor, Dept of Computer Science,  
RKM Vivekananda College, Mylapore, Chennai

Art and Design Team
Layout
THY designers and computers  
Chennai.

In-House 
Gopu Rasuvel 
Rajesh Thangapan 
C. Prasanth 
Adaikkala Stephen S

Cover Design  
Kathir Arumugam

Co-ordination 
Ramesh Munisamy This book has been printed on 80 G.S.M.  

Elegant Maplitho paper.

Printed by offset at:

Authors
Mr. Kannan K 
Post Graduate Teacher, Chennai Girls Hr Sec School,  
Rotler street , Chennai

Mr. Ramakrishnan V G 
Post Graduate Teacher, Karnataka Sangha Hr Sec School,   
T Nagar, Chennai

Mrs. Bindhu Mohandas 
Post Graduate Teacher, Vijayanta Model Hr Sec School,  
H.V.F Estate , Avadi, Chennai

Mr. Gowrisankar N.V 
Post Graduate Teacher, Chennai Girls Hr Sec School,  
Nungambakkam, Chennai

Mr. Sreenivasan R 
Post Graduate Teacher, Santhome  Hr Sec School, Mylapore, Chennai

Mr. Lenin K 
Post Graduate Teacher, Chennai Girls Hr Sec School, Saidapet, Chennai

Miss. Sangeetha A 
Post Graduate Teacher, Govt. Hr Sec School, Rajanthangal,  
Thiruvannamalai Dt

Dr. Valarmathi K E 
Post Graduate Teacher, Velammal Vidhyashram, Surapet, Chennai

Mrs. Gajalakshmi R 
Post Graduate Teacher, Jaigopal Garodia Hindu Vidyalaya Hr Sec School, 
West Mambalam, Chennai

Dr.Mrs. Vidhya H.
Post Graduate Teacher,
DAV Boys Senior Secodnary School, Gopalapuram, Chennai.

Experts Co-ordinator
Mr. Ravikumar Arumugam 
Deputy Director,  
SCERT, Chennai

QR Code Management Team
 R. Jaganathan, SGT,   
PUMS -  Ganesapuram,  Polur,  
Thiruvannamalai.

S. Albert Valavan Babu, B.T. Asst, 
GHS, Perumal Kovil, Paramakudi, 
Ramanathapuram

M. Murugesan, B.T. Asst.,  
PUMS., Pethavelankottagam, 
Muttupettai, Thiruvarur.

Acknowledgement.indd   322 3/24/2020   9:26:52 AM


	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114
	Chapter 9 Page 115-151
	Chapter 10 Page 152-179
	Chapter 11 Page 180-205
	Chapter 12 Page 206-227
	Chapter 13 Page 228-232
	Chapter 14 Page 233-248
	Chapter 15 Page 249-259
	Chapter 16 Page 260-274
	Chapter 17 Page 275-285
	Chapter 18 Page 286-297
	Computer Science Practical Page 298-321
	Acknowledgement



