Question 1: Perpendiculars are drawn from points on the line $(x+2) / 2=(y+1) /-1=z / 3$ to the plane $x+y+z=3$. The feet of perpendiculars lie on the line is
(a) $\mathrm{x} / 5=(\mathrm{y}-1) / 8=(\mathrm{z}-2) /-13$
(b) $x / 2=(y-1) / 3=(z-2) /-5$
(c) $x / 4=(y-1) / 3=(z-2) /-7$
(d) $x / 2=(y-1) /-7=(z-2) / 5$

Solution:

Given that the equation of the line is $(x+2) / 2=(y+1) /-1=z / 3=\lambda$
So any point P on the line is $\mathrm{x}=2 \lambda-2, \mathrm{y}=-\lambda-1, \mathrm{z}=3 \lambda . .(\mathrm{i})$
It lies on the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=3$
$=>(2 \lambda-2)+(-\lambda-1)+3 \lambda=3$
$\Rightarrow 4 \lambda-6=0$
$\Rightarrow \lambda=3 / 2$
Substitute λ in (i) and get P
So $\mathrm{P}=(1,-5 / 2,9 / 2)$..(ii)
We can observe that $(-2,-1,0)$ is a point on the line.
Let (x, y, z) be the foot of the perpendicular from point $(-2,-1,0)$ on the plane $x+y+z=3$.
$\Rightarrow(\mathrm{x}+2) / 1=(\mathrm{y}+1) / 1=(\mathrm{z}-0) / 1$
$=-(1(-2)+1(-1)+0(1)-3) /\left(1^{2}+1^{2}+1^{2}\right)$
$\Rightarrow \mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0,1,2)$..(iii)
Direction ratios of $\mathrm{PQ}=(1,-7 / 2,5 / 2)($ from (ii) and (iii) $)$
$=(2,-7,5) . .(i v)$
From (iii) and (iv), equation of required line is $x / 2=(y-1) /-7=(z-2) / 5$
Hence option d is the answer.
Question 2: Two lines $L_{1}: x=5, y /(3-\alpha)=z /-2$ and $L_{2}: x=\alpha, y /-1=z /(2-\alpha)$ are coplanar. Then α can take values

The Learning App
(a) 1
(b) 2
(c) 3
(d) 4

Solution:

Given lines $L_{1}: x=5, y /(3-\alpha)=z /-2$ and
$\mathrm{L}_{2}: \mathrm{x}=\alpha, \mathrm{y} /-1=\mathrm{z} /(2-\alpha)$
L_{1} and L_{2} are coplanar.

So

$$
\begin{array}{rl}
& 5-\alpha \\
0 & 0 \\
0 & -\alpha-2 \\
& \\
=> & (5-\alpha)(3-\alpha)(2-\alpha)-2=0 \\
= & (5-\alpha)\left(6-3 \alpha-2 \alpha+\alpha^{2}-2\right)=0 \\
= & (5-\alpha)(\alpha-1)(\alpha-4)=0 \\
=> & \alpha=1,4,5
\end{array}
$$

Hence option a and d is the answer.
Question 3: Let P be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through P and containing the straight line $x / 1=y / 2=z / 1$ is
(a) $x+y-3 z=0$
(b) $3 x+z=0$
(c) $x-4 y+7 z=0$
(d) $2 x-y=0$

Solution:

Equation of line passing through P is $(\mathrm{x}-3) / 1=(\mathrm{y}-1) /-1=(\mathrm{z}-7) / 1$

Distance of point P from the given plane $=-2(6) / 3=-4$
$(\mathrm{x}-3) 1=(\mathrm{y}-1) /-1=(\mathrm{z}-7) / 1=-4$
$\Rightarrow \mathrm{x}=-1, \mathrm{y}=5, \mathrm{z}=3$
$\Rightarrow \mathrm{P}=(-1,5,3)$
Equation of plane passing through P is $a(x+1)+b(y-5)+c(z-3)=0$
Normal of the plane is perpendicular to the line from which this plane passes through.
So $a+2 b+c=0$..(i)
The plane will also pass through the origin since the line passes through the origin.
So $\mathrm{a}-5 \mathrm{~b}-3 \mathrm{c}=0$..(ii)
Solving (i) and (ii)
$\mathrm{a} / 1=\mathrm{b} /-4=\mathrm{c} / 7$
Required equation of plane is $(x+1)-4(y-5)+7(z-3)=0$
$=>x-4 y+7 z=0$
Hence option c is the answer.
Question 4: The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x$ $+y-2 z=5$ and $3 x-6 y-2 z=7$ is
(a) $14 x+2 y+15 z=31$
(b) $14 x+2 y-15 z=1$
(c) $-14 x+2 y+15 z=3$
(d) $14 x-2 y+15 z=27$

Solution:

Let plane $P_{1}=>2 x+y-2 z=5$
$\mathrm{P}_{2}=>3 \mathrm{x}-6 \mathrm{y}-2 \mathrm{z}=7$
Let P be the plane perpendicular to P_{1} and P_{2}
Also P passes through ($1,1,1$).
Hence required equation $=$

$$
\begin{aligned}
& x-1 \quad y-1 \quad z-1 \\
& 2 \quad 1 \quad-2=0 \\
& 3 \quad-6 \quad-2 \\
& =>(x-1)(-2-12)-(y-1)(-4+6)+(z-1)(-12-3)=0 \\
& =>14 x-14+2 y-2+15 z-15=0 \\
& =>14 x+2 y+15 z=31
\end{aligned}
$$

Hence option a is the answer.
Question 5: If for some $\alpha \in R$, the lines $L_{1}:(x+1) / 2=(y-2) /-1=(z-1) / 1$ and $L_{2}:(x+2) / \alpha=(y+1) /(5-\alpha)=$ $(\mathrm{z}+1) / 1$ are coplanar, then the line L_{2} passes through the point:
(a) $(2,-10,-2)$
(b) $(10,-2,-2)$
(c) $(10,2,2)$
(d) $(-2,10,2)$

Solution:
$\mathrm{A}(-1,2,1), \mathrm{B}(-2,-1,-1)$

$-1(-1+\alpha-5)+3(2-\alpha)-2(10-2 \alpha+\alpha)=0$
$6-\alpha+6-3 \alpha+2 \alpha-20=0$
$-8-2 \alpha=0$

The Learning App
$\alpha=-4$
$\mathrm{L}_{2}:(\mathrm{x}+2) /-4=(\mathrm{y}+1) / 9=(\mathrm{z}+1) / 1$
Check options. (2, $-10,-2$) satisfies above equation.
Hence option a is the answer.
Question 6: The distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $(x / 2)=$ $(y / 3)=(z /-6)$ is:
(a) $1 / 7$
(b) 7
(c) $7 / 5$
(d) 1

Solution:
Equation of line through $(1,-2,3)$ whose d.r.s. are $(2,3,-6)$
$(x-1) / 2=(y+2) / 3=(z-3) /-6=\lambda$
Any point on the line $(2 \lambda+1,3 \lambda-2,-6 \lambda+3)$
Substitute in equation of plane
$x-y+z=5$
$2 \lambda+1-3 \lambda+2-6 \lambda+3=5$
$-7 \lambda=-1$
$\lambda=1 / 7$
Distance $=\sqrt{ }\left((2 \lambda)^{2}+(3 \lambda)^{2}+(6 \lambda)^{2}\right)$
$=\sqrt{ }\left(4 \lambda^{2}+9 \lambda^{2}+36 \lambda^{2}\right)$
$=7 \lambda$
$=1$
Hence option d is the answer.
Question 7: Let P be a point in the first octant, whose image Q in the plane $x+y=3$ (that is, the line segment $P Q$ is perpendicular to the plane $x+y=3$ and the mid-point of $P Q$ lies in the plane $x+y=3$) lies on the z-axis. Let the distance of P from the x axis be 5 . If R is the image of P in the $x y$-plane, then the length of $P R$ is

Solution:

Let the coordinates of P are $(\mathrm{a}, \mathrm{b}, \mathrm{c})$.
Coordinates of Q are $(0,0, c)$ and coordinates of R are $(\mathrm{a}, \mathrm{b},-\mathrm{c})$.
Given $P Q$ is perpendicular to the plane $x+y=3$
So PQ parallel to the normal of the given plane.
($\mathrm{ai}+\mathrm{bj}$) is parallel to $(\mathrm{i}+\mathrm{j}) .(\mathrm{i}, \mathrm{j}$ are unit vectors)

Comparing we get $\mathrm{a}=\mathrm{b}$.
Since the midpoint of PQ lies on plane $x+y=3$
So $a / 2+b / 2=3$
$=>a+b=6$
$=>a=3, b=3$
So distance of P from x axis $=\sqrt{ }\left(\mathrm{b}^{2}+\mathrm{c}^{2}\right)=5$ (given)
$=>\left(b^{2}+c^{2}\right)=25$
$c^{2}=25-9=16$
$=>\mathrm{c}= \pm 4$
So $P R=|2 c|$
$=8$

Question 8: Let $\alpha, \beta, \gamma, \delta$ be real numbers such that $\alpha^{2}+\beta^{2}+\gamma^{2} \neq 0$ and $\alpha+\gamma=1$. Suppose the point (3, $\left.2,-1\right)$ is the mirror image of the point $(1,0,-1)$ with respect to the plane $\alpha x+\beta y+\gamma z=\delta$. Then which of the following statements is/are TRUE?
(a) $\alpha+\beta=2$
(b) $\delta-\gamma=3$
(c) $\delta+\beta=4$
(d) $\alpha+\beta+\gamma=\delta$

Solution:

Midpoint of $\mathrm{PQ}=\mathrm{A}(2,1,-1)$
Direction ratios of $\mathrm{PQ}=2,2,0$

As PQ perpendicular to plane and midpoint lies on plane.
The equation of the plane is
$2(x-2)+2(y-1)+0(z+1)=0$
$=>x+y=3$

Comparing with $\alpha \mathrm{x}+\beta \mathrm{y}+\gamma \mathrm{z}=\delta$
We get $\alpha=1, \beta=1, \gamma=0$ and $\delta=3$
Hence options a, b, c are true.
Question 9: In R^{3}, consider the planes $P_{1}: y=0$ and $P_{2}: x+z=1$. Let P_{3} be a plane, different from P_{1} and P_{2}, which passes through the intersection of P_{1} and P_{2}. If the distance of the point $(0,1,0)$ from P_{3} is 1 and the distance of a point (α, β, γ) from P_{3} is 2 , then which of the following relation is (are) true?
(a) $2 \alpha+\beta+2 \gamma+2=0$
(b) $2 \alpha-\beta+2 \gamma+4=0$
(c) $2 \alpha+\beta-2 \gamma-10=0$
(d) $2 \alpha-\beta+2 \gamma-8=0$

Solution:

Let P_{3} be $\mathrm{P}_{2}+\lambda \mathrm{P}_{1}=0$
$=>(x+z-1)+\lambda y=0$
$=>x+\lambda y+z-1=0$
Distance of the point $(0,1,0)$ from P_{3} is $\left|(\lambda-1) / \sqrt{ }\left(2+\lambda^{2}\right)\right|=1$
$\Rightarrow(\lambda-1)^{2}=\left(2+\lambda^{2}\right)$
$\Rightarrow-2 \lambda+1=2$
$\Rightarrow-2 \lambda=1$
$\Rightarrow \lambda=-1 / 2$
Distance of point (α, β, γ) from $P_{3}:\left|(\alpha+\lambda \beta+\gamma-1) / \sqrt{ }\left(2+\lambda^{2}\right)\right|=2$
$|(\alpha-(\beta / 2)+\gamma-1) /(3 / 2)|= \pm 2$
$\alpha-(\beta / 2)+\gamma-1= \pm 3$
$\Rightarrow 2 \alpha-\beta+2 \gamma-2= \pm 6$
$\Rightarrow 2 \alpha-\beta+2 \gamma-8=0$ or $2 \alpha-\beta+2 \gamma+4=0$
Hence option b and d are the answers.
Question 10: If the straight lines $(x-1) / 2=(y+1) / k=z / 2$ and $(x+1) / 5=(y+1) / 2=z / k$ are coplanar, then the plane(s) containing these two lines is (are)
(a) $y+2 z=-1$
(b) $y+z=-1$
(c) $y-z=-1$
(d) $y-2 z=-1$

Solution:

Given that lines are coplanar.

$$
\begin{aligned}
& \begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
& a_{1} & b_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}=0 \\
& \\
& => \\
& 2
\end{aligned} 0_{2} 00
$$

For $\mathrm{k}=2$, equation of the plane is given by

$$
\begin{aligned}
& \begin{array}{ccc}
x-1 & y+1 & z \\
2 & 2 & 2 \\
5 & 2 & 2 \\
=>y-z+1=0
\end{array} \\
& =>y-z=-1
\end{aligned}
$$

For $k=-2$, equation of the plane is given by

$$
\begin{array}{ccc}
x-1 & y+1 & z \\
2 & -2 & 2 \\
5 & 2 & -2
\end{array}=0
$$

Hence option b and c are correct.

