PART-II : CHEMISTRY

SECTION - 1 (Maximum marks : 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the correct numerical value is entered;
Zero Marks : $0 \quad$ In all other cases.

1. 2 mol of $\mathrm{Hg}(\mathrm{g})$ is combusted in a fixed volume bomb calorimeter with excess of O_{2} at 298 K and 1 atm into $\mathrm{HgO}(\mathrm{s})$. During the reaction, temperature increases from 298.0 K to 312.8 K . If heat capacity of the bomb calorimeter and enthalpy of formation of $\mathrm{Hg}(\mathrm{g})$ are $20.00 \mathrm{~kJ} \mathrm{~K}^{-1}$ and $61.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K , respectively, the calculated standard molar enthalpy of formation of $\mathrm{HgO}(\mathrm{s})$ at $298 \mathrm{~K} \mathrm{is}^{\mathrm{X} \mathrm{kJ} \mathrm{mol}}{ }^{-1}$. The value of $|\mathrm{X}|$ is \qquad . [Given: Gas constant $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]

Answer (90.39)
Sol. $2 \mathrm{Hg}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HgO}(\mathrm{s})$
Heat capacity of calorimeter $=20 \mathrm{~kJ} \mathrm{~K}^{-1}$
Rise in temperature $=14.8 \mathrm{~K}$
Heat evolved $=20 \times 14.8=296 \mathrm{~kJ}$

$$
\begin{aligned}
\Delta H^{\circ} & =\Delta U^{\circ}+\Delta n_{g} R T \\
& =-296-3 \times 8.3 \times 298 \times 10^{-3} \\
& \simeq-303.42 \mathrm{~kJ}
\end{aligned}
$$

$$
\Delta \mathrm{H}^{\circ}=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{HgO}(\mathrm{~s}))-\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{Hg}(\mathrm{~g}))
$$

$$
-303.42=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{HgO}(\mathrm{~s}))-2 \times 61.32
$$

$$
\Delta H_{f}^{\circ}(\mathrm{HgO}(\mathrm{~s}))=-303.42+122.64
$$

$$
=-180.78 \mathrm{~kJ}
$$

$\left|\Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{HgO}(\mathrm{s}))\right|=90.39 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. The reduction potential $\left(\mathrm{E}^{0}\right.$, in V$)$ of $\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{Mn}(\mathrm{s})$ is \qquad .
[Given: $\mathrm{E}_{\left(\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{MnO}_{2}(\mathrm{~s})\right)}^{0}=1.68 \mathrm{~V} ; \mathrm{E}_{\left(\mathrm{MnO}_{2}(\mathrm{~s}) / \mathrm{Mn}^{2+}(\mathrm{aq})\right)}^{0}=1.21 \mathrm{~V} ; \mathrm{E}_{\left(\mathrm{Mn}^{2+}(\mathrm{aq}) / \mathrm{Mn}(\mathrm{s})\right)}^{0}=-1.03 \mathrm{~V}$]
Answer (0.77)
Sol. (1) $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}+3 \mathrm{e} \longrightarrow \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O} ; \quad \mathrm{E}^{\circ}=1.68 \mathrm{~V}$

$$
\Delta G_{1}^{0}=-3 F(1.68)=-5.04 F
$$

(2) MnO_{2} (s) $+4 \mathrm{H}^{+}+2 \mathrm{e} \longrightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$;
$E^{\circ}=1.21 \mathrm{~V}$

$$
\Delta G_{2}^{\circ}=-2 F(1.21)=-2.42 F
$$

(3) $\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e} \longrightarrow \mathrm{Mn}(\mathrm{s})$;

$$
\mathrm{E}^{\circ}=-1.03 \mathrm{~V}
$$

$$
\Delta G_{3}^{\circ}=-2 F(-1.03)=+2.06 \mathrm{~F}
$$

Adding (1), (2) and (3),

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}+7 \mathrm{e} \longrightarrow \mathrm{Mn}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O} \\
& \begin{aligned}
& \Delta \mathrm{G}=\Delta \mathrm{G}_{1}^{\circ}+\Delta \mathrm{G}_{2}^{\circ}+\Delta \mathrm{G}_{3}^{\circ} \\
&=(-5.04-2.42+2.06) \mathrm{F} \\
&-7 \mathrm{FE}^{\circ}=-5.4 \mathrm{~F} \\
& \mathrm{E}^{\circ}=0.77 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

3. A solution is prepared by mixing 0.01 mol each of $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, and NaOH in 100 mL of water. pH of the resulting solution is \qquad .
[Given: $\mathrm{pK}_{\mathrm{a}_{1}}$ and $\mathrm{pK}_{\mathrm{a}_{2}}$ of $\mathrm{H}_{2} \mathrm{CO}_{3}$ are 6.37 and 10.32 , respectively; $\log 2=0.30$]
Answer (10.02)
Sol. First acid base reaction between $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaOH takes place.

In the final solution, we have 0.01 mole $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 0.02 moles of NaHCO_{3}.
Here, we have a buffer of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

$$
\begin{aligned}
\therefore \quad \mathrm{pH} & =\mathrm{pK}_{\mathrm{a}_{2}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
& =10.32+\log \frac{\left(\frac{0.01}{0.1}\right)}{\left(\frac{0.02}{0.1}\right)} \\
& =10.32+\log \frac{1}{2} \\
& =10.32-\log 2 \\
& =10.32-0.3 \\
& =10.02
\end{aligned}
$$

$\therefore \mathrm{pH}=10.02$
4. The treatment of an aqueous solution of 3.74 g of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ with excess KI results in a brown solution along with the formation of a precipitate. Passing $\mathrm{H}_{2} \mathrm{~S}$ through this brown solution gives another precipitate \mathbf{X}. The amount of X (ing) is \qquad -
[Given: Atomic mass of $\mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{~K}=39, \mathrm{Cu}=63, \mathrm{I}=127$]
Answer (1.58)

Sol. Number of moles of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=\frac{3.74}{187}=0.02$

$$
2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow+\mathrm{I}_{2}+4 \mathrm{KNO}_{3}
$$

Number of moles of $\mathrm{Cu}_{2} \mathrm{l}_{2}$ precipitated $=0.01$

$$
\mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S} \downarrow+2 \mathrm{HI}
$$

Number of moles of $\mathrm{Cu}_{2} \mathrm{~S}$ precipitated $=0.01$
Mass of $\mathrm{Cu}_{2} \mathrm{~S}$ precipitates $=(0.01 \times 158) \mathrm{g}$

$$
=1.58 \mathrm{~g}
$$

5. Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas \mathbf{Q}. The amount of CuSO_{4} (in g) required to completely consume the gas \mathbf{Q} is \qquad .
[Given: Atomic mass of $\mathrm{H}=1, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{P}=31, \mathrm{~S}=32, \mathrm{Cu}=63$]
Answer (2.38)
Sol. $\underset{\substack{1.24 \mathrm{~g} \\ \text { or } \\ 0}}{\mathrm{P}_{4}}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$
0.01 mole

As NaOH is present in excess. So, amount of phosphine formed is 0.01 mole (as P_{4} is limiting)

$$
\underset{0.01 \text { mole }}{2 \mathrm{PH}_{3}}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}_{3} \mathrm{P}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Amount of CuSO_{4} required $=\frac{3 \times 0.01}{2}$ mole
Mass of CuSO_{4} (in g) required $=\frac{0.03}{2} \times(63+32+16 \times 4)$

$$
\begin{aligned}
& =\frac{0.03}{2} \times 159 \\
& =2.38 \mathrm{~g}
\end{aligned}
$$

6. Consider the following reaction.

On estimation of bromine in 1.00 g of \mathbf{R} using Carius method, the amount of AgBr formed (in g) is \qquad .
[Given: Atomic mass of $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{P}=31, \mathrm{Br}=80, \mathrm{Ag}=108$]
Answer (01.50)
Sol. $2 \mathrm{P}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{PBr}_{3}$

(R)

Number of moles in 1 gm of $(\mathrm{R})=\frac{1}{250}$
Number of moles of AgBr formed from $(\mathrm{R})=\frac{2}{250}$
Mass of AgBr formed $=\frac{2 \times 188}{250}=1.50 \mathrm{gm}$
7. The weight percentage of hydrogen in \mathbf{Q}, formed in the following reaction sequence, is \qquad .

[Given: Atomic mass of $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{Cl}=35$]
Answer (1.31)

Sol.

(Q)

Formula of compound $=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$
Molar Mass of compound $=(12 \times 6+3+14 \times 3+16 \times 7) \mathrm{g}$

$$
=229 \mathrm{~g}
$$

Weight $\%$ of $\mathrm{H}=\frac{3}{229} \times 100=1.31$
8. If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product \mathbf{D} formed (in g) is \qquad .

The yields of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are given in parentheses.
[Given: Atomic mass of $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Cl}=35$]
Answer (136.00)

Sol.

Molecular formula of D is $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$
Molar mass of D is $(12 \times 8+8 \times 1+16 \times 2)=136 \mathrm{~g}$
$\therefore \quad$ Mass of D is 136

SECTION - 2 (Maximum marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	$:$	+4	ONLY if (all) the correct option(s) is(are) chosen;					
Partial Marks	$:$	+3 If all the four options are correct but ONLY three options are chosen;						
Partial Marks	$:$	+2 If three or more options are correct but ONLY two options are chosen, both of which						
are correct;								
:---	:---	:---	:---					
Partial Marks	$:$	+1	If two or more options are correct but ONLY one option is chosen and it is a correct option;					
Zero Marks	$:$	0	If none of the options is chosen (i.e. the question is unanswered);					
Negative Marks	$:$	-2	In all other cases.					

9. For diatomic molecules, the correct statement(s) about the molecular orbitals formed by the overlap of two $2 p_{z}$ orbitals is(are)
(A) σ orbital has a total of two nodal planes.
(B) σ^{*} orbital has one node in the xz-plane containing the molecular axis.
(C) π orbital has one node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule.
(D) π^{*} orbital has one node in the xy-plane containing the molecular axis.

Answer (A, D)

Sol. (A)

 [2 nodal plane]
(B)

(C)
 [1 nodal plane]
(D)

\longrightarrow
plane of nodal plane is $x y$ plane which is parallel to molecular axis

It has two nodal plane and its one nodal plane is in the xy-plane containing the molecular axis
10. The correct option(s) related to adsorption processes is(are)
(A) Chemisorption results in a unimolecular layer.
(B) The enthalpy change during physisorption is in the range of 100 to $140 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(C) Chemisorption is an endothermic process.
(D) Lowering the temperature favours physisorption processes.

Answer (A, D)
Sol. (A) First statement is correct as chemisorption results in a unimolecular layer and physisorption result in a multimolecular layer.
(B) Second statement is incorrect as enthalpy change during physisorption is of the range of $(20-40) \mathrm{kJ} \mathrm{mol}^{-1}$.
(C) Chemisorption is an exothermic process with $(80-240) \mathrm{kJ} \mathrm{mol}^{-1}$ as the enthalpy of adsorption.
(D) Lowering the temperature results in increase in the extent of physisorption.

Hence (A) and (D) are correct.
11. The electrochemical extraction of aluminium from bauxite ore involves
(A) the reaction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with coke (C) at a temperature $>2500^{\circ} \mathrm{C}$.
(B) the neutralization of aluminate solution by passing CO_{2} gas to precipitate hydrated alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$.
(C) the dissolution of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in hot aqueous NaOH .
(D) the electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ mixed with $\mathrm{Na}_{3} \mathrm{AIF}_{6}$ to give Al and CO_{2}.

Answer (B, D)

Sol. (A) The reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with coke (C) at a temperature $>2500^{\circ} \mathrm{C}$ is not carried out due to the formation of carbides.
(B) It is correct as neutralisation of aluminate solution is done by passing CO_{2} gas to precipitate hydrated alumina.
(C) Reaction of powdered one is carried out with hot concentrated NaOH at $473 \mathrm{~K}-523 \mathrm{~K}$ and $35-36$ bar pressure. As pressure conditions are not mentioned, this statement is not absolutely correct.
(D) Electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is done mixed with $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ to produce Al and CO_{2}. It is a correct statement.
12. The treatment of galena with HNO_{3} produces a gas that is
(A) paramagnetic
(B) bent in geometry
(C) an acidic oxide
(D) colorless

Answer (A, D)
Sol. $\mathrm{PbS}+$ dil. $\mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{S}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
NO is paramagnetic due to the presence of unpaired electron. It is a neutral oxide. It is colourless.
Hence, (A) and (D) are correct statements.
13. Considering the reaction sequence given below, the correct statement(s) is(are)

(A) \mathbf{P} can be reduced to a primary alcohol using NaBH_{4}.
(B) Treating \mathbf{P} with conc. $\mathrm{NH}_{4} \mathrm{OH}$ solution followed by acidification gives \mathbf{Q}.
(C) Treating \mathbf{Q} with a solution of NaNO_{2} in aq. HCl liberates N_{2}.
(D) \mathbf{P} is more acidic than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$.

Answer (C, D)

Sol.

(P)

(Q)
$\rightarrow \mathrm{NaBH}_{4}$ cannot reduce acids

$\rightarrow 1^{\circ}$ amine on reaction with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ liberates N_{2} gas.

14. Considering the following reaction sequence,

the correct option(s) is(are)
(A) $\mathbf{P}=\mathrm{H}_{2} / \mathrm{Pd}$, ethanol
$\mathbf{R}=\mathrm{NaNO}_{2} / \mathrm{HCl}$
$\mathbf{R}=\mathrm{HNO}_{2}$
(B) $\mathbf{P}=\mathrm{Sn} / \mathrm{HCl}$
R
$\mathbf{U}=1 . \mathrm{H}_{3} \mathrm{PO}_{2}$
2. $\mathrm{KMnO}_{4}-\mathrm{KOH}$, heat
(C) $\mathbf{S}=$

$\mathbf{T}=$

$\mathbf{U}=1 . \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
2. $\mathrm{KMnO}_{4}-\mathrm{KOH}$, heat
(D) $\mathbf{Q}=$

$\mathbf{R}=\mathrm{H}_{2} / \mathrm{Pd}$, ethanol

Answer (A, B, C)

(Q)
(S)

\rightarrow P may be $\rightarrow \mathrm{H}_{2} / \mathrm{Pd}$, ethanol; $\mathrm{Sn} / \mathrm{HCl}$
$\rightarrow \mathrm{R}$ may be $\rightarrow \mathrm{NaNO}_{2} / \mathrm{HCl} ; \mathrm{HNO}_{2}$
\rightarrow U may be \rightarrow (i) $\mathrm{H}_{3} \mathrm{PO}_{2}$, (ii) $\mathrm{KMnO}_{4}-\mathrm{KOH}, \Delta$ or (i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$, (ii) $\mathrm{KMnO}_{4}-\mathrm{KOH}, \Delta$

SECTION - 3 (Maximum marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	$:$	+3	ONLY if the option corresponding to the correct combination is chosen;
Zero Marks	$:$	0	If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	$:$	-1	In all other cases.

15. Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. X_{s} and k are constants having appropriate units.

LIST-I

(I) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
(P)

under all possible initial concentrations of X
(II) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
where initial concentrations of X are much less than X_{s}
(III) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
where initial concentrations of X are much higher than X_{s}
(IV) rate $=\frac{\mathrm{k}[\mathrm{X}]^{2}}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
(S)

where initial concentration of X is much higher than X_{s}
(T)

(A) $\quad \mathrm{I} \rightarrow \mathrm{P} ; \mathrm{II} \rightarrow \mathrm{Q} ; \mathrm{III} \rightarrow \mathrm{S} ; \mathrm{IV} \rightarrow \mathrm{T}$
(B) \quad I \rightarrow R; II \rightarrow S; III \rightarrow S; IV \rightarrow T
(C) $\quad \mathrm{I} \rightarrow \mathrm{P}$; II $\rightarrow \mathrm{Q}$; III $\rightarrow \mathrm{Q}$; IV $\rightarrow \mathrm{R}$
(D) I $\rightarrow \mathrm{R}$; II $\rightarrow \mathrm{S}$; III $\rightarrow \mathrm{Q}$; IV $\rightarrow \mathrm{R}$

Answer (A)
Sol. (I) rate $=\frac{k[X]}{X_{s}+[X]}$
Case-1: $[\mathrm{X}] \gg \mathrm{X}_{\mathrm{s}} ;[\mathrm{X}]+\mathrm{X}_{\mathrm{s}} \approx[\mathrm{X}]$
rate $=\frac{k[X]}{[X]}=k \quad$ (Zero order w.r.t. $\left.X\right)$
$I \rightarrow P, S$

Case-2: $[\mathrm{X}] \ll \mathrm{X}_{\mathrm{s}} ;[\mathrm{X}]+\mathrm{X}_{\mathrm{s}} \approx \mathrm{X}_{\mathrm{s}}$
$\therefore \quad$ rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}}=\mathrm{k}^{\prime}[\mathrm{X}] \quad\left(1^{\text {st }}\right.$ order w.r.t. X$)$
$\therefore \quad \mathrm{I} \rightarrow \mathrm{Q}, \mathrm{T}$
Case-3: $[\mathrm{X}] \approx \mathrm{X}_{\mathrm{s}}$
rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
In this case curve-R given in List-II will match.
$\therefore \quad \mathrm{I} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ (The graph of half-life should start from origin)
(II) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
$\because \quad[\mathrm{X}] \ll \mathrm{X}_{\mathrm{s}}$
$\therefore \quad \mathrm{X}_{\mathrm{s}}+[\mathrm{X}] \approx \mathrm{X}_{\mathrm{s}}$
$\therefore \quad$ rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}}=\mathrm{k}^{\prime}[\mathrm{X}] \quad$ (1 ${ }^{\text {st }}$ order w.r.t. X$)$
$\therefore \quad \mathrm{II} \rightarrow \mathrm{Q}, \mathrm{T}$
(III) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
$\because \quad[\mathrm{X}] \gg \mathrm{X}_{\mathrm{s}}$
$\therefore \quad \mathrm{X}_{\mathrm{s}}+[\mathrm{X}] \approx[\mathrm{X}]$
$\therefore \quad$ rate $=\frac{\mathrm{k}[\mathrm{X}]}{[\mathrm{X}]}=\mathrm{k} \quad$ (Zero order w.r.t. X)
$\therefore \quad \mathrm{III} \rightarrow \mathrm{P}, \mathrm{S}$
(IV) rate $=\frac{k[X]^{2}}{X_{s}+[X]}$
$\because \quad[\mathrm{X}] \gg \mathrm{X}_{\mathrm{s}}$
$\therefore \quad \mathrm{X}_{\mathrm{s}}+[\mathrm{X}] \approx[\mathrm{X}]$
$\therefore \quad$ rate $=\frac{k[X]^{2}}{[X]}=k[X] \quad$ (1st order w.r.t. X)
$\therefore \quad \mathrm{IV} \rightarrow \mathrm{Q}, \mathrm{T}$
16. LIST-I contains compounds and LIST-II contains reactions

LIST-I

(I) $\mathrm{H}_{2} \mathrm{O}_{2}$
(II) $\mathrm{Mg}(\mathrm{OH})_{2}$
(III) BaCl_{2}
(IV) CaCO_{3}

LIST-II

(P) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$
(Q) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
(R) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{MgCl}_{2} \rightarrow$
(S) $\mathrm{BaO}_{2}+\mathrm{HCl} \rightarrow$
(T) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$

Match each compound in LIST-I with its formation reaction(s) in LIST-II, and choose the correct option
(A) I \rightarrow Q; II $\rightarrow P$; III \rightarrow S; IV $\rightarrow R$
(B) I \rightarrow T; II $\rightarrow \mathrm{P}$; III $\rightarrow \mathrm{Q}$; IV $\rightarrow \mathrm{R}$
(C) I \rightarrow T; II \rightarrow R; III \rightarrow Q; IV $\rightarrow P$
(D) I \rightarrow Q; II \rightarrow R; III \rightarrow S; IV $\rightarrow P$

Answer (D)
Sol. (P) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow 2 \mathrm{CaCO}_{3} \downarrow+\mathrm{Mg}(\mathrm{OH})_{2} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
(Q) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
(R) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{MgCl}_{2} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{CaCl}_{2}$
(S) $\mathrm{BaO}_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$
(T) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{I} \rightarrow \mathrm{Q}$
II $\rightarrow R$
III \rightarrow S
IV $\rightarrow P$
Option (D) is correct.
17. LIST-I contains metal species and LIST-II contains their properties.

LIST-I

(I) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$
(II) $\left[\mathrm{RuCl}_{6}\right]^{2-}$
(III) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(IV) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

LIST-II

(P) $t_{2 g}$ orbitals contain 4 electrons
(Q) μ (spin-only) $=4.9 \mathrm{BM}$
(R) low spin complex ion
(S) metal ion in 4+ oxidation state
(T) d^{4} species
[Given: Atomic number of $\mathrm{Cr}=24, \mathrm{Ru}=44, \mathrm{Fe}=26$]
Match each metal species in LIST-I with their properties in LIST-II, and choose the correct option
(A) I $\rightarrow R, T$; II $\rightarrow P, S$; III $\rightarrow Q, T ; I V \rightarrow P, Q$
(B) I \rightarrow R, S; II $\rightarrow P$, T; III $\rightarrow P, Q$; IV \rightarrow Q, T
(C) I $\rightarrow P, R$; II $\rightarrow R, S$; III $\rightarrow R, T$; IV $\rightarrow P, T$
(D) I \rightarrow Q, T; II \rightarrow S, T; III $\rightarrow P, T ;$ IV \rightarrow Q, R

Answer (A)

Sol. (I) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$
$\mathrm{Cr}^{+2}=[\mathrm{Ar}] 3 d^{4} 4 s^{0}$
It is $d^{2} s p^{3}$ hybridised as CN^{-}is a strong field ligand.
(II) $\left[\mathrm{RuCl}_{6}\right]^{2-}$
$R u^{+4}=[K r] 4 d^{4} 5 s^{0}$
$t_{2 g}$ set contains 4 electron.
(III) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{Cr}^{+2}=[\mathrm{Ar}] 3 d^{4} 4 s^{0}$
It has 4 unpaired e^{-}as $\mathrm{H}_{2} \mathrm{O}$ is weak field ligand.
So, its $\mu=4.9$ B.M.
(IV) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

$$
\begin{aligned}
\mathrm{Fe}^{2+} & =[\mathrm{Ar}] 3 d^{6} 4 \mathrm{~s}^{0} \\
& =t_{2 \mathrm{~g}}{ }^{4} \mathrm{e}_{\mathrm{g}}^{2}
\end{aligned}
$$

It has 4 unpaired e^{-}, its $\mu=4.9$ B.M.
18. Match the compounds in LIST-I with the observations in LIST-II, and choose the correct option.

LIST-I

(I) Aniline
(II) o-Cresol
(III) Cysteine
(IV) Caprolactam

LIST-II

(P) Sodium fusion extract of the compound on boiling with FeSO_{4}, followed by acidification with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, gives Prussian blue color.
(Q) Sodium fusion extract of the compound on treatment with sodium nitroprusside gives blood red color.
(R) Addition of the compound to a saturated solution of NaHCO_{3} results in effervescence.
(S) The compound reacts with bromine water to give a white precipitate.
(T) Treating the compound with neutral FeCl_{3} solution produces violet color.
(A) I \rightarrow P, Q; II \rightarrow S; III \rightarrow Q, R; IV $\rightarrow P$
(B) I $\rightarrow P$; II $\rightarrow R$, S; III $\rightarrow R$; IV \rightarrow Q, S
(C) $I \rightarrow Q, S ; I I \rightarrow P, T ; I I I P$; IV $\rightarrow S$
(D) I $\rightarrow \mathrm{P}, \mathrm{S} ; \mathrm{II} \rightarrow \mathrm{T} ; \mathrm{III} \rightarrow \mathrm{Q}, \mathrm{R} ; \mathrm{IV} \rightarrow \mathrm{P}$

Answer (D)

Sol. (I)

Since it contains both carbon and nitrogen so its sodium fusion extract with boiling FeSO_{4}, followed by acidification with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives Prussian blue colour.
$\mathrm{Fe}^{2+}+6 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

white ppt
I-(P, S)
(II) o-Cresol

(III) Cysteine

Since it has both, sulphur and nitrogen, so its sodium fusion extract will give blood red colour with Fe^{3+} and it has carboxylic group so it will give effervescence with NaHCO_{3}.
(IV) Caprolactam

Its sodium fusion extract will give Prussian blue colour on boiling with FeSO_{4} followed by acidification with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

