

PART-II : CHEMISTRY

SECTION – 1 (Maximum marks : 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+3	ONLY if the correct numerical value is entered;
Zero Marks	:	0	In all other cases.

2 mol of Hg(g) is combusted in a fixed volume bomb calorimeter with excess of O₂ at 298 K and 1 atm into HgO(s). During the reaction, temperature increases from 298.0 K to 312.8 K. If heat capacity of the bomb calorimeter and enthalpy of formation of Hg(g) are 20.00 kJ K⁻¹ and 61.32 kJ mol⁻¹ at 298 K, respectively, the calculated standard molar enthalpy of formation of HgO(s) at 298 K is X kJ mol⁻¹. The value of |X| is ______.

[Given: Gas constant R = 8.3 J K⁻¹ mol⁻¹]

Answer (90.39)

Sol. $2Hg(g) + O_2(g) \longrightarrow 2HgO(s)$

Heat capacity of calorimeter = 20 kJ K⁻¹

Rise in temperature = 14.8 K

Heat evolved = 20 × 14.8 = 296 kJ

$$\Delta H^{\circ} = \Delta U^{\circ} + \Delta n_{g}RT$$

 $= -296 - 3 \times 8.3 \times 298 \times 10^{-3}$

 $\simeq -303.42 \text{ kJ}$

 $\Delta H^{\circ} = \Delta H^{\circ}_{f}(HgO(s)) - \Delta H^{\circ}_{f}(Hg(g))$

 $-303.42 = \Delta H_{f}^{o}(HgO(s)) - 2 \times 61.32$

 $\Delta H_{f}^{o}(HgO(s)) = -303.42 + 122.64$

```
= -180.78 kJ
```

 $|\Delta H_{f}^{o}(HgO(s))| = 90.39 \text{ kJ mol}^{-1}$

2. The reduction potential (E^0 , in V) of $MnO_4^-(aq)/Mn(s)$ is _____.

[Given: $E^{0}_{(MnO_{4}^{-}(aq)/MnO_{2}(s))} = 1.68 \text{ V}; E^{0}_{(MnO_{2}(s)/Mn^{2+}(aq))} = 1.21 \text{ V}; E^{0}_{(Mn^{2+}(aq)/Mn(s))} = -1.03 \text{ V}$]

Answer (0.77)

Sol. (1) $MnO_4^-(aq) + 4H^+ + 3e \longrightarrow MnO_2(s) + 2H_2O; E^\circ = 1.68 V$

 $\Delta G_1^o = -3F(1.68) = -5.04 F$

(2)
$$MnO_{2}(s) + 4H^{+} + 2e \longrightarrow Mn^{2+} + 2H_{2}O;$$
 $E^{\circ} = 1.21 V$
 $\Delta G_{2}^{\circ} = -2F (1.21) = -2.42 F$
(3) $Mn^{2+}(aq) + 2e \longrightarrow Mn(s);$ $E^{\circ} = -1.03 V$
 $\Delta G_{3}^{\circ} = -2F (-1.03) = +2.06 F$
Adding (1), (2) and (3),
 $MnO_{4}^{-}(aq) + 8H^{+} + 7e \longrightarrow Mn(s) + 4H_{2}O$
 $\Delta G = \Delta G_{1}^{\circ} + \Delta G_{2}^{\circ} + \Delta G_{3}^{\circ}$
 $= (-5.04 - 2.42 + 2.06) F$
 $-7F E^{\circ} = -5.4F$
 $E^{\circ} = 0.77 V$

3. A solution is prepared by mixing 0.01 mol each of H₂CO₃, NaHCO₃, Na₂CO₃, and NaOH in 100 mL of water. pH of the resulting solution is ______.

[Given: pK_{a_1} and pK_{a_2} of $\mathsf{H}_2\mathsf{CO}_3$ are 6.37 and 10.32, respectively; log2 = 0.30]

Answer (10.02)

Sol. First acid base reaction between H₂CO₃ and NaOH takes place.

 $\begin{array}{c} H_2CO_3 + NaOH \\ \begin{array}{c} 0.01 \text{ mole} \end{array} \xrightarrow[]{} 0.01 \text{ mole} \end{array} \xrightarrow[]{} 0.01 \text{ mole} \end{array} \xrightarrow[]{} 0.01 \text{ mole}$

In the final solution, we have 0.01 mole Na_2CO_3 and 0.02 moles of $NaHCO_3$.

Here, we have a buffer of NaHCO₃ and Na₂CO₃.

$$\therefore \quad pH = pK_{a_2} + \log \frac{[Salt]}{[Acid]}$$
$$= 10.32 + \log \frac{\left(\frac{0.01}{0.1}\right)}{\left(\frac{0.02}{0.1}\right)}$$
$$= 10.32 + \log \frac{1}{2}$$
$$= 10.32 - \log 2$$
$$= 10.32 - 0.3$$
$$= 10.02$$

- ∴ pH = 10.02
- 4. The treatment of an aqueous solution of 3.74 g of Cu(NO₃)₂ with excess KI results in a brown solution along with the formation of a precipitate. Passing H₂S through this brown solution gives another precipitate X. The amount of X (in g) is _____.

[Given: Atomic mass of H = 1, N = 14, O = 16, S = 32, K = 39, Cu = 63, I = 127]

Answer (1.58)

Sol. Number of moles of $Cu(NO_3)_2 = \frac{3.74}{187} = 0.02$ $2Cu(NO_3)_2 + 4KI \rightarrow Cu_2I_2 \downarrow + I_2 + 4KNO_3$ Number of moles of Cu_2I_2 precipitated = 0.01 $Cu_2I_2 + H_2S \rightarrow Cu_2S \downarrow + 2HI$ Number of moles of Cu_2S precipitated = 0.01 Mass of Cu_2S precipitates = (0.01 × 158) g

Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas Q. The amount of CuSO₄ (in g) required to completely consume the gas Q is _____.

[Given: Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63]

Answer (2.38)

Sol. $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$ 1.24 g or 0.01mole

As NaOH is present in excess. So, amount of phosphine formed is 0.01 mole (as P4 is limiting)

$$\begin{array}{l} 2\mathsf{PH}_3 + 3\mathsf{CuSO}_4 \rightarrow \mathsf{Cu}_3\mathsf{P}_2 + 3\mathsf{H}_2\mathsf{SO}_4\\ \text{Amount of }\mathsf{CuSO}_4 \text{ required} = \frac{3 \times 0.01}{2} \text{ mole}\\ \text{Mass of }\mathsf{CuSO}_4 \text{ (in g) required} = \frac{0.03}{2} \times (63 + 32 + 16 \times 4)\\ = \frac{0.03}{2} \times 159\\ = 2.38 \text{ g}\\ \text{Consider the following reaction.} \end{array}$$

On estimation of bromine in 1.00 g of R using Carius method, the amount of AgBr formed (in g) is ______

[Given: Atomic mass of H = 1, C = 12, O = 16, P = 31, Br = 80, Ag = 108]

Answer (01.50)

6.

Sol.
$$2P + 3Br_2 \rightarrow 2PBr_3$$

$$3 \bigoplus_{Br}^{CH_2-OH} + PBr_3 \longrightarrow 3 \bigoplus_{Br}^{CH_2-Br} + H_3PO_3$$

Number of moles in 1 gm of (R) = $\frac{1}{250}$

Number of moles of AgBr formed from (R) = $\frac{2}{250}$

Mass of AgBr formed = $\frac{2 \times 188}{250} = 1.50 \text{ gm}$

7. The weight percentage of hydrogen in **Q**, formed in the following reaction sequence, is ______.

CI

$$1. \text{ NaOH, 623 K, 300 atm}$$

 $2. \text{ conc. H}_2\text{SO}_4 \text{ and then}$
 $2. \text{ conc. HNO}_3$

[Given: Atomic mass of H = 1, C = 12, N = 14, O = 16, S = 32, Cl = 35]

Answer (1.31)

Molar Mass of compound = $(12 \times 6 + 3 + 14 \times 3 + 16 \times 7)$ g

= 229 g

Weight % of H =
$$\frac{3}{229} \times 100 = 1.31$$

If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product D formed (in g) is ______.

The yields of A, B, C and D are given in parentheses.

[Given: Atomic mass of H = 1, C = 12, O = 16, Cl = 35]

Answer (136.00)

Molar mass of D is (12 × 8 + 8 × 1 + 16 × 2) = 136 g

∴ Mass of D is 136

SECTION – 2 (Maximum marks : 24)

- This section contains **SIX (06)** questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+4	ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks	:	+3	If all the four options are correct but ONLY three options are chosen;
Partial Marks	:	+ 2	If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks	:	+1	If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks	:	0	If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	:	-2	In all other cases.

- **9.** For diatomic molecules, the correct statement(s) about the molecular orbitals formed by the overlap of two 2p_z orbitals is(are)
 - (A) σ orbital has a total of two nodal planes.
 - (B) σ^* orbital has one node in the xz-plane containing the molecular axis.
 - (C) π orbital has one node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule.
 - (D) π^* orbital has one node in the xy-plane containing the molecular axis.

Answer (A, D)

It has two nodal plane and its one nodal plane is in the xy-plane containing the molecular axis

- **10.** The correct option(s) related to adsorption processes is(are)
 - (A) Chemisorption results in a unimolecular layer.
 - (B) The enthalpy change during physisorption is in the range of 100 to 140 kJ mol⁻¹.
 - (C) Chemisorption is an endothermic process.
 - (D) Lowering the temperature favours physisorption processes.

Answer (A, D)

- **Sol.** (A) First statement is correct as chemisorption results in a unimolecular layer and physisorption result in a multimolecular layer.
 - (B) Second statement is incorrect as enthalpy change during physisorption is of the range of (20 40) kJ mol⁻¹.
 - (C) Chemisorption is an exothermic process with (80 240) kJ mol⁻¹ as the enthalpy of adsorption.
 - (D) Lowering the temperature results in increase in the extent of physisorption.

Hence (A) and (D) are correct.

- **11.** The electrochemical extraction of aluminium from bauxite ore involves
 - (A) the reaction of Al_2O_3 with coke (C) at a temperature > 2500°C.
 - (B) the neutralization of aluminate solution by passing CO₂ gas to precipitate hydrated alumina (Al₂O₃.3H₂O).
 - (C) the dissolution of Al₂O₃ in hot aqueous NaOH.
 - (D) the electrolysis of AI_2O_3 mixed with Na_3AIF_6 to give AI and CO_2 .

Answer (B, D)

JEE (Advanced)-2022 (Paper-1)

- **Sol.** (A) The reduction of Al₂O₃ with coke (C) at a temperature > 2500°C is not carried out due to the formation of carbides.
 - (B) It is correct as neutralisation of aluminate solution is done by passing CO₂ gas to precipitate hydrated alumina.
 - (C) Reaction of powdered one is carried out with hot concentrated NaOH at 473 K 523 K and 35 36 bar pressure. As pressure conditions are not mentioned, this statement is not absolutely correct.
 - (D) Electrolysis of Al₂O₃ is done mixed with Na₃AlF₆ to produce Al and CO₂. It is a correct statement.
- 12. The treatment of galena with HNO3 produces a gas that is
 - (A) paramagnetic(C) an acidic oxide

(D) colorless

(B) bent in geometry

Answer (A, D)

Sol. PbS + dil. HNO₃ \rightarrow Pb(NO₃)₂ + S + NO + H₂O

NO is paramagnetic due to the presence of unpaired electron. It is a neutral oxide. It is colourless.

Hence, (A) and (D) are correct statements.

13. Considering the reaction sequence given below, the correct statement(s) is(are)

$$H_{3}C \frown COOH \xrightarrow{1. Br_{2}, red phosphorous}_{2. H_{2}O} P \xrightarrow{0}_{1. \text{ br}} Q + (COOH \\ \xrightarrow{0}_{2. NaOH}_{3. H_{3}O^{+}} Q + (COOH \\ \xrightarrow{0}_{3. H_{3}O^{+}} Q + (COOH \\$$

- (A) P can be reduced to a primary alcohol using NaBH₄.
- (B) Treating P with conc. NH₄OH solution followed by acidification gives Q.
- (C) Treating \mathbf{Q} with a solution of NaNO₂ in aq. HCl liberates N₂.
- (D) \mathbf{P} is more acidic than CH₃CH₂COOH.

Answer (C, D)

Sol.

ash

 \rightarrow 1° amine on reaction with NaNO₂/HCI liberates N₂ gas.

14. Considering the following reaction sequence,

Answer (A, B, C)

JEE (Advanced)-2022 (Paper-1)

- \rightarrow P may be \rightarrow H₂/Pd, ethanol; Sn/HCl
- \rightarrow R may be \rightarrow NaNO₂/HCI; HNO₂
- \rightarrow U may be \rightarrow (i) H₃PO₂, (ii) KMnO₄ KOH, Δ or (i) CH₃ CH₂ OH, (ii) KMnO₄ KOH, Δ

SECTION – 3 (Maximum marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 **ONLY** if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

15. Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. X_s and k are constants having appropriate units.

LIST-I

(I) rate =
$$\frac{k[X]}{X_s + [X]}$$

LIST-II

under all possible initial concentrations of X

- 9 -

(II) rate =
$$\frac{k[X]}{X_s + [X]}$$

where initial concentrations of X are much less than Xs

(III) rate =
$$\frac{k[X]}{X_s + [X]}$$

(IV) rate = $\frac{k[X]^2}{X_s + [X]}$

much higher than Xs

much higher than Xs

time $I \rightarrow \mathsf{R}; \, II \rightarrow \mathsf{S}; \, III \rightarrow \mathsf{S}; \, \mathsf{IV} \rightarrow \mathsf{T}$

 $(D) \quad I \rightarrow R; II \rightarrow S; III \rightarrow Q; IV \rightarrow R$

half life (t1/2)

(Q)

$$\begin{array}{ll} (A) & I \rightarrow P; \ II \rightarrow Q; \ III \rightarrow S; \ IV \rightarrow T \\ (C) & I \rightarrow P; \ II \rightarrow Q; \ III \rightarrow Q; \ IV \rightarrow R \end{array}$$

Sol. (I) rate =
$$\frac{k[X]}{X_s + [X]}$$

Case-1: [X] >> X_s; [X] + X_s ≈ [X]
rate = $\frac{k[X]}{[X]}$ = k (Zero order w.r.t. X)
I → P, S

(B)

 $\textbf{Case-2:} ~ [X] << X_s; ~ [X] + X_s \approx X_s$

$$\therefore \quad \text{rate} = \frac{k[X]}{X_s} = k'[X] \qquad (1^{\text{st}} \text{ order w.r.t. } X)$$

 \therefore I \rightarrow Q, T

 $\textbf{Case-3:} [X] \approx X_s$

rate =
$$\frac{k[X]}{X_s + [X]}$$

In this case curve-R given in List-II will match.

 \therefore I \rightarrow P, Q, R, S, T (The graph of half-life should start from origin)

(II) rate =
$$\frac{k[X]}{X_s + [X]}$$

 $\therefore [X] << X_s$
 $\therefore X_s + [X] \approx X_s$
 $\therefore rate = \frac{k[X]}{X_s} = k'[X]$ (1st order w.r.t. X)
 $\therefore II \rightarrow Q, T$
(III) rate = $\frac{k[X]}{X_s + [X]}$
 $\therefore [X] >> X_s$
 $\therefore X_s + [X] \approx [X]$
 $\therefore rate = \frac{k[X]}{[X]} = k$ (Zero order w.r.t. X)
 $\therefore III \rightarrow P, S$
(IV) rate = $\frac{k[X]^2}{X_s + [X]}$
 $\therefore [X] >> X_s$
 $\therefore X_s + [X] \approx [X]$
 $\therefore rate = \frac{k[X]^2}{[X]} = k[X]$ (1st order w.r.t. X)
 $\therefore IV \rightarrow Q, T$

16. LIST-I contains compounds and LIST-II contains reactions

LIST-I	LIST-II
(I) H ₂ O ₂	(P) Mg(HCO ₃) ₂ + Ca(OH) ₂ \rightarrow
(II) Mg(OH) ₂	(Q) BaO ₂ + H ₂ SO ₄ \rightarrow
(III) BaCl ₂	(R) Ca(OH) ₂ + MgCl ₂ \rightarrow
(IV) CaCO ₃	(S) $BaO_2 + HCI \rightarrow$
	(T) Ca(HCO ₃) ₂ + Ca(OH) ₂ \rightarrow

Match each compound in LIST-I with its formation reaction(s) in LIST-II, and choose the correct option

(A) $I \rightarrow Q$; $II \rightarrow P$; $III \rightarrow S$; $IV \rightarrow R$	(B) $I \rightarrow T$; $II \rightarrow P$; $III \rightarrow Q$; $IV \rightarrow R$
(C) $I \rightarrow T$; $II \rightarrow R$; $III \rightarrow Q$; $IV \rightarrow P$	(D) $I \rightarrow Q$; $II \rightarrow R$; $III \rightarrow S$; $IV \rightarrow P$

Answer (D)

Sol. (P) Mg(HCO₃)₂ + 2Ca(OH)₂ \longrightarrow 2CaCO₃ \downarrow + Mg(OH)₂ \downarrow + 2H₂O

- (Q) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$
- (R) $Ca(OH)_2 + MgCI_2 \longrightarrow Mg(OH)_2 + CaCI_2$
- (S) $BaO_2 + 2HCI \longrightarrow BaCl_2 + H_2O_2$
- (T) Ca(HCO₃)₂ + Ca(OH)₂ \longrightarrow 2CaCO₃ \downarrow + 2H₂O
- $I \rightarrow Q$
- $II \rightarrow R$
- $III \rightarrow S$

$$\mathsf{IV} \to \mathsf{P}$$

Option (D) is correct.

17. LIST-I contains metal species and LIST-II contains their properties.

LIST-I

- LIST-II
- (I) [Cr(CN)₆]⁴⁻ (P) t_{2g} orbitals contain 4 electrons (II) [RuCl₆]²⁻ (Q) μ (spin-only) = 4.9 BM (III) [Cr(H₂O)₆]²⁺ (R) low spin complex ion (IV) [Fe(H₂O)₆]²⁺ (S) metal ion in 4+ oxidation state (T) d^4 species

[Given: Atomic number of Cr = 24, Ru = 44, Fe = 26]

Match each metal species in LIST-I with their properties in LIST-II, and choose the correct option

- (A) $I \rightarrow R, T; II \rightarrow P, S; III \rightarrow Q, T; IV \rightarrow P, Q$ (B) $I \rightarrow R, S; II \rightarrow P, T; III \rightarrow P, Q; IV \rightarrow Q, T$
- (C) $I \rightarrow P, R; II \rightarrow R, S; III \rightarrow R, T; IV \rightarrow P, T$
- (D) $I \rightarrow Q, T; II \rightarrow S, T; III \rightarrow P, T; IV \rightarrow Q, R$

Answer (A)

Sol. (I) [Cr(CN)₆]^{4–}

 $Cr^{+2} = [Ar] 3d^4 4s^0$

It is d^2sp^3 hybridised as CN⁻ is a strong field ligand.

(II) [RuCl₆]²⁻

 $Ru^{+4} = [Kr] 4d^4 5s^0$

 t_{2g} set contains 4 electron.

(III) [Cr(H₂O)₆]²⁺

 $Cr^{+2} = [Ar] 3d^4 4s^0$

It has 4 unpaired $e^{\scriptscriptstyle -}$ as H_2O is weak field ligand.

So, its μ = 4.9 B.M.

 $(IV) [Fe(H_2O)_6]^{2+}$

Fe²⁺ = [Ar]3d⁶ 4s⁰

$$= t_{2g^4} e_{c_1}^2$$

It has 4 unpaired e^- , its μ = 4.9 B.M.

18. Match the compounds in LIST-I with the observations in LIST-II, and choose the correct option.

LIST-I	LIST-II		
(I) Aniline	 (P) Sodium fusion extract of the compound on boiling with FeSO₄, followed by acidification with conc. H₂SO₄, gives Prussian blue color. 		
(II) o-Cresol	(Q) Sodium fusion extract of the compound on treatment with sodium nitroprusside gives blood red color.		
(III) Cysteine	(R) Addition of the compound to a saturated solution of NaHCO ₃ results in effervescence.		
(IV) Caprolactam	(S) The compound reacts with bromine water to give a white precipitate.		
	(T) Treating the compound with neutral FeCl ₃ solution produces violet color.		
(A) $I \rightarrow P$, Q; $II \rightarrow S$; $III \rightarrow Q$, R; $IV \rightarrow P$	(A) $I \rightarrow P$, Q; $II \rightarrow S$; $III \rightarrow Q$, R; $IV \rightarrow P$		
(B) $I \rightarrow P$; $II \rightarrow R$, S; $III \rightarrow R$; $IV \rightarrow Q$, S			
(C) $I \rightarrow Q, S; II \rightarrow P, T; III \rightarrow P; IV \rightarrow S$			
(D) $I \rightarrow P$, S; $II \rightarrow T$; $III \rightarrow Q$, R; $IV \rightarrow P$			
Answer (D)			

Since it contains both carbon and nitrogen so its sodium fusion extract with boiling FeSO₄, followed by acidification with conc. H_2SO_4 gives Prussian blue colour.

Since it has both, sulphur and nitrogen, so its sodium fusion extract will give blood red colour with Fe³⁺ and it has carboxylic group so it will give effervescence with NaHCO₃.

(IV) Caprolactam

Its sodium fusion extract will give Prussian blue colour on boiling with $FeSO_4$ followed by acidification with conc. H_2SO_4 .