PART-III : MATHPMATICS

SECTION - 1 (Maximum marks : 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the correct numerical value is entered;
Zero Marks : $0 \quad$ In all other cases.

1. Considering only the principal values of the inverse trigonometric functions, the value of
$\frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi}$
is \qquad .

Answer ($\simeq 2.36$)
Sol. $\frac{3}{2} \tan ^{-1} \frac{\pi}{\sqrt{2}}+\frac{1}{4} \tan ^{-1}\left(\frac{2 \sqrt{2} \pi}{\pi^{2}-2}\right)+\tan ^{-1} \frac{\sqrt{2}}{\pi}$

$$
\begin{aligned}
& =\frac{\pi}{2}+\frac{1}{2} \tan ^{-1} \frac{\pi}{\sqrt{2}}-\frac{1}{4} \tan ^{-1}\left(\frac{2 \sqrt{2} \pi}{2-\pi^{2}}\right) \\
& =\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{\pi}{\sqrt{2}}\right)-\frac{1}{4} \tan ^{-1}\left(\frac{2 \cdot\left(\frac{\pi}{\sqrt{2}}\right)}{1-\left(\frac{\pi}{\sqrt{2}}\right)^{2}}\right)
\end{aligned}
$$

$$
=\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{\pi}{\sqrt{2}}\right)-\frac{1}{4}\left(-\pi+2 \tan ^{-1}\left(\frac{\pi}{\sqrt{2}}\right)\right)
$$

$$
=\frac{\pi}{2}+\frac{\pi}{4}=\frac{3 \pi}{4}
$$

2. Let α be a positive real number. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g:(\alpha, \infty) \rightarrow \mathbb{R}$ be the functions defined by
$f(x)=\sin \left(\frac{\pi x}{12}\right)$ and $g(x)=\frac{2 \log _{e}(\sqrt{x}-\sqrt{\alpha})}{\log _{e}\left(e^{\sqrt{x}}-e^{\sqrt{\alpha}}\right)}$.
Then the value of $\lim _{x \rightarrow \alpha^{+}} f(g(x))$ is \qquad .

Answer (00.50)
Sol. $\lim _{x \rightarrow \alpha^{+}} g(x)=\lim _{x \rightarrow \alpha^{+}} \frac{\frac{2}{\sqrt{x}-\sqrt{\alpha}}\left(\frac{1}{2 \sqrt{x}}\right)}{\frac{1}{e^{\sqrt{x}}-e^{\sqrt{\alpha}}}\left(\frac{1}{2 \sqrt{x}} \cdot e^{\sqrt{x}}\right)}$
$=\lim _{x \rightarrow \alpha^{+}} \frac{e^{\sqrt{x}}-e^{\sqrt{\alpha}}}{\sqrt{x}-\sqrt{\alpha}} \cdot \frac{1}{e^{\sqrt{x}}} \cdot 2$
$=\lim _{x \rightarrow \alpha^{+}} \frac{e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}}{\frac{1}{2 \sqrt{x}}} \cdot \frac{2}{e^{\sqrt{x}}}=2$
$\lim _{x \rightarrow \alpha^{+}} f(g(x))=f\left(\lim _{x \rightarrow \alpha^{+}} g(x)\right)=\sin \frac{\pi}{6}=\frac{1}{2}=00.50$
3. In a study about a pandemic, data of 900 persons was collected. It was found that 190 persons had symptom of fever,

220 persons had symptom of cough,
220 persons had symptom of breathing problem,
330 persons had symptom of fever or cough or both,
350 persons had symptom of cough or breathing problem or both,
340 persons had symptom of fever or breathing problem or both,
30 persons had all three symptoms (fever, cough and breathing problem).
If a person is chosen randomly from these 900 persons, then the probability that the person has at most one symptom is \qquad .

Answer (0.8)
Sol. We denote the set of people having symptoms of fever, cough and breathing problem by F, C and B respectively.
Given that $n(F)=190, n(B)=220$ and $n(C)=220$
Also, $n(F \cup C)=330, n(C \cup B)=350, n(F \cup B)=340$ and $n(F \cap C \cap B)=30$
So $n(F \cap C)=n(F)+n(C)-n(F \cup C)$

$$
=80
$$

Similarly, $n(F \cap B)=70$ and $n(C \cap B)=90$

So refer to Venn diagram

Number of people having at most one symptom
$=70+80+90+480=720$
Required probability $=\frac{720}{900}=0.8$.
4. Let z be a complex number with non-zero imaginary part. If
$\frac{2+3 z+4 z^{2}}{2-3 z+4 z^{2}}$
is a real number, then the value of $|z|^{2}$ is \qquad .
Answer (0.50)
Sol. Let $w=\frac{4 z^{2}+3 z+2}{4 z^{2}-3 z+2}=1+\frac{6 z}{4 z^{2}-3 z+2}$
$\Rightarrow w=1+\frac{6}{2\left(2 z+\frac{1}{z}\right)-3}$
$\because \quad w \in R$ then $2 z+\frac{1}{z} \in R$
$\Rightarrow 2 z+\frac{1}{z}=2 \bar{z}+\frac{1}{\bar{z}}$
$\Rightarrow 2(z-\bar{z})-\frac{z-\bar{z}}{|z|^{2}}=0$
$\Rightarrow \quad(z-\bar{z})\left(2-\frac{1}{|z|^{2}}\right)=0$
$\because \quad z \neq \bar{z}$ (given)
So $|z|^{2}=\frac{1}{2}$
5. Let \bar{z} denote the complex conjugate of a complex number z and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation
$\bar{z}-z^{2}=i\left(\bar{z}+z^{2}\right)$
is \qquad .
Answer (4)

Sol. Given $\bar{z}(1-i)=z^{2}(1+i)$
So $|\bar{z}||1-i|=|z|^{2}|1+i|$
$\Rightarrow|z|=|z|^{2} \Rightarrow|z|=0$ or $|z|=1$
Let $\arg (z)=\theta$
So from (i) we get
$2 n \pi-\theta-\frac{\pi}{4}=2 \theta+\frac{\pi}{4}$
$\Rightarrow \quad \theta=\frac{1}{3}\left(\frac{4 n-1}{2}\right) \pi=\frac{(4 n-1) \pi}{6}$
So we will get 3 distinct values of θ. Hence there will be total 4 possible values of complex number z.
6. Let $l_{1}, l_{2}, \ldots, l_{100}$ be consecutive terms of an arithmetic progression with common difference d_{1}, and let w_{1}, w_{2}, \ldots, w_{100} be consecutive terms of another arithmetic progression with common difference d_{2}, where $d_{1} d_{2}=10$. For each $i=1,2, \ldots, 100$, let R_{i} be a rectangle with length I_{i}, width w_{i} and area A_{i}. If $A_{51}-A_{50}=1000$, then the value of $A_{100}-A_{90}$ is \qquad _.
Answer (18900)
Sol. For A.P. $I_{1}, l_{2}, \ldots l_{100}$
Let $T_{1}=a$ and common difference $=d_{1}$ and similarly for A.P. $w_{1}, w_{2}, \ldots w_{100}$
$T_{1}=b$ and common difference $=d_{2}$
$A_{51}-A_{50}=I_{51} W_{51}-I_{50} W_{50}$
$=\left(a+50 d_{1}\right)\left(b+50 d_{2}\right)-\left(a+49 d_{1}\right)\left(b+49 d_{2}\right)$
$=50 b d_{1}+50 a d_{2}+2500 d_{1} d_{2}-49 a d_{2}-49 b d_{1}-2401 d_{1} d_{2}$
$=b d_{1}+a d_{2}+99 d_{1} d_{2}=1000$
$\therefore \quad b d_{1}+a d_{2}=10$
\ldots..(i) $\left(\right.$ As $\left.d_{1} d_{2}=10\right)$
$\therefore \quad A_{100}-A_{90}=l_{100} W_{100}-l_{90} W_{90}$

$$
\begin{aligned}
& =\left(a+99 d_{1}\right)\left(b+99 d_{2}\right)-\left(a+89 d_{1}\right)\left(b+89 d_{2}\right) \\
& =99 b d_{1}+99 a d_{2}+99^{2} d_{1} d_{2}-89 b d_{1}-89 a d_{2}-89^{2} d_{1} d_{2} \\
& =10\left(b d_{1}+a d_{2}\right)+1880 d_{1} d_{2} \\
& =10(10)+18800 \\
& =18900
\end{aligned}
$$

7. The number of 4 -digit integers in the closed interval [2022, 4482] formed by using the digits $0,2,3,4,6,7$ is
\qquad _.

Answer (569)
Sol. Counting integers starting from 2
Case-l: if zero on $2^{\text {nd }}$ place
i.e., $20 \underset{5}{\hat{f}} \rightarrow 5$ cases
or $20 \begin{aligned} & \hat{f} \\ & 4 \hat{6}\end{aligned} \rightarrow 24$ cases
(Numbers except 0 or 2 in $3^{\text {rd }}$ place)
Case-II: If non-zero number on $2^{\text {nd }}$ place
i.e., $\begin{array}{rl}2 & \text { f } \hat{f} \text { f } \\ 5 & 6\end{array}=180$ cases

Counting integers starting from 3
$\underline{3} \boldsymbol{f} \hat{\text { f }} \hat{\boldsymbol{f}}=216$ cases
666
Counting integers starting from 4
Case-I: If 0,2 or 3 on $2^{\text {nd }}$ place
i.e., 4 个 $\begin{aligned} & \text { f } \\ & 3 \text { f } \\ & 6\end{aligned}=108$ cases

Case II: If 4 on $2^{\text {nd }}$ place
i.e., $44 \hat{f} \hat{f}=36$ cases

66
\therefore Total $5+24+180+216+108+36=569$ numbers
8. Let $A B C$ be the triangle with $A B=1, A C=3$ and $\angle B A C=\frac{\pi}{2}$. If a circle of radius $r>0$ touches the sides $A B, A C$ and also touches internally the circumcircle of the triangle $A B C$, then the value of r is \qquad _.
Answer (0.84)
Sol. Let A be the origin B on x-axis, C on y-axis as shown below

\therefore Equation of circumcircle is

$$
\begin{equation*}
\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}=\frac{5}{2} \tag{1}
\end{equation*}
$$

Required circle touches $A B$ and $A C$, have radius r
$\therefore \quad$ Equation be $(x-r)^{2}+(y-r)^{2}=r^{2}$
If circle in equation (2) touches circumcircle internally, we have

$$
\begin{aligned}
& d_{c_{1} c_{2}}=\left|r_{1}-r_{2}\right| \\
& \Rightarrow\left(\frac{1}{2}-r\right)^{2}+\left(\frac{3}{2}-r\right)^{2}=\left(\left|\sqrt{\frac{5}{2}}-r\right|\right)^{2} \\
& \Rightarrow \frac{1}{4}+r^{2}-r+\frac{9}{4}+r^{2}-3 r=\left(\sqrt{\frac{5}{2}}-r\right)^{2} \text { or }\left(r-\sqrt{\frac{5}{2}}\right)^{2} \\
& \Rightarrow 2 r^{2}-4 r+\frac{5}{2}=\frac{5}{2}+r^{2}-\sqrt{10} r \\
& \Rightarrow r=0 \text { or } 4-\sqrt{10} \\
& \Rightarrow r=0.837 \\
& =0.84 \text { (on rounding off) }
\end{aligned}
$$

SECTION - 2 (Maximum marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : + 2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -2 In all other cases.
9. Consider the equation
$\int_{1}^{e} \frac{\left(\log _{e} x\right)^{1 / 2}}{x\left(a-\left(\log _{e} x\right)^{3 / 2}\right)^{2}} d x=1, a \in(-\infty, 0) \cup(1, \infty)$.
Which of the following statements is/are TRUE?
(A) No a satisfies the above equation
(B) An integer a satisfies the above equation
(C) An irrational number a satisfies the above equation
(D) More than one a satisfy the above equation

Answer (C, D)
Sol. Let $I=\int_{1}^{e} \frac{(\ln x)^{1 / 2} d x}{x\left(a-(\ln x)^{3 / 2}\right)^{2}}$
Put $a-(\ln x)^{3 / 2}=t$
$\Rightarrow \quad-\frac{3}{2}(\ln x)^{1 / 2} \cdot \frac{1}{x} d x=d t$
$\therefore \quad I=\int_{a}^{a-1} \frac{\left(-\frac{2}{3}\right) d t}{t^{2}}$
$=\left.\left(-\frac{2}{3}\right) \frac{t^{-2+1}}{-2+1}\right|_{a} ^{a-1}$
$=\left.\frac{2}{3 t}\right|_{a} ^{a-1}=\frac{2}{3}\left(\frac{1}{a-1}-\frac{1}{a}\right)$
$\therefore \quad I=\left(\frac{2}{3}\right) \frac{1}{a(a-1)}=1$
$\Rightarrow 2=3 a^{2}-3 a$
$\Rightarrow 3 a^{2}-3 a-2=0$
$\Rightarrow a=\frac{3 \pm \sqrt{9-4(3)(-2)}}{6}$
$a=\frac{3+\sqrt{33}}{6}, \frac{3-\sqrt{33}}{6}$
10. Let $a_{1}, a_{2}, a_{3}, \ldots$ be an arithmetic progression with $a_{1}=7$ and common difference 8 . Let $T_{1}, T_{2}, T_{3}, \ldots$ be such that $T_{1}=3$ and $T_{n+1}-T_{n}=a_{n}$ fo $n \geq 1$. Then, which of the following is/are TRUE ?
(A) $T_{20}=1604$
(B) $\sum_{k=1}^{20} T_{k}=10510$
(C) $T_{30}=3454$
(D) $\sum_{k=1}^{30} T_{k}=35610$

Answer (B, C)
Sol. Here $a_{n}=7+(n-1) 8$ and $T_{1}=3$
Also $T_{n+1}=T_{n}+a_{n}$ $T_{n}=T_{n-1}+a_{n-1}$
\vdots
$T_{2}=T_{1}+a_{1}$
$\therefore \quad T_{n+1}=\left(T_{n-1}+a_{n-1}\right)+a_{n}$
$=T_{n-2}+a_{n-2}+a_{n-1}+a_{n}$
\vdots
$\Rightarrow \quad T_{n+1}=T_{1}+a_{1}+a_{2}+\ldots .+a_{n}$
$\Rightarrow \quad T_{n+1}=T_{1}+\frac{n}{2}[2(7)+(n-1) 8]$
$\Rightarrow \quad T_{n+1}=T_{1}+n(4 n+3)$
$\therefore \quad$ For $n=19 \quad T_{20}=3+(19)(79)=1504$
For $n=29 \quad T_{30}=3+(29)(119)=3454 \rightarrow(C)$

$$
\sum_{k=1}^{20} T_{k}=3+\sum_{k=2}^{20} T_{k}=3+\sum_{k=1}^{19}\left(3+4 n^{2}+3 n\right)
$$

$$
=3+3(19)+\frac{3(19)(20)}{2}+\frac{4(19)(20)(39)}{6}
$$

$$
=3+10507=10510 \rightarrow(B)
$$

$$
\text { And Similarly } \sum_{k=1}^{30} T_{k}=3+\sum_{k=1}^{29}\left(4 n^{2}+3 n+3\right)=35615
$$

11. Let P_{1} and P_{2} be two planes given by
$P_{1}: 10 x+15 y+12 z-60=0$,
$P_{2}:-2 x+5 y+4 z-20=0$.
Which of the following straight lines can be an edge of some tetrahedron whose two faces lie on P_{1} and P_{2} ?
(A) $\frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{5}$
(B) $\frac{x-6}{-5}=\frac{y}{2}=\frac{z}{3}$
(C) $\frac{x}{-2}=\frac{y-4}{5}=\frac{z}{4}$
(D) $\frac{x}{1}=\frac{y-4}{-2}=\frac{z}{3}$

Answer (A, B)
Sol. Equation of pair of planes is

$$
S:(10 x+15 y+12 z-60)(-2 x+5 y+4 z-20)=0
$$

We will find a general point of each line and we will solve it with S. If we get more than one value of variable λ, then the line can be the edge of given tetrahedron.
(A) Point is $(1,1,5 \lambda+1)$

So, $(60 \lambda-23)(20 \lambda-17)=0$
$\lambda=\frac{23}{60}$ and $\frac{17}{20}$
So, it can be the edge of tetrahedron.
(B) Point is $(-5 \lambda+6,2 \lambda, 3 \lambda)$

So, $(16 \lambda)(32 \lambda-32)=0$
$\Rightarrow \lambda=0$ and 1
So, it can be the edge of tetrahedron.
(C) Point is $(-2 \lambda, 5 \lambda+4,4 \lambda)$

So, (103 $)(45 \lambda)=0$
$\lambda=0$ only
So, it cannot be the edge of tetrahedron.
(D) Point is $(\lambda,-2 \lambda+4,3 \lambda)$
$\Rightarrow(16 \lambda)(-2 \lambda)=0$
$\Rightarrow \lambda=0$ only
Hence, it cannot be the edge of tetrahedron.
12. Let S be the reflection of a point Q with respect to the plane given by
$\vec{r}=-(t+p) \hat{i}+t \hat{j}+(1+p) \hat{k}$
where t, p are real parameters and $\hat{i}, \hat{j}, \hat{k}$ are the unit vectors along the three positive coordinate axes. If the position vectors of Q and S are $10 \hat{i}+15 \hat{j}+20 \hat{k}$ and $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$ respectively, then which of the following is/are TRUE ?
(A) $3(\alpha+\beta)=-101$
(B) $3(\beta+\gamma)=-71$
(C) $3(\gamma+\alpha)=-86$
(D) $3(\alpha+\beta+\gamma)=-121$

Answer (A, B, C)
Sol. Equation of plane is
$\vec{r}=-(t+p) \hat{i}+t \hat{j}+(1+p) \hat{k}$
$\vec{r}=\hat{k}+t(-\hat{i}+\hat{j})+p(-\hat{i}+\hat{k})$
Equation of plane in standard form is
$\left[\begin{array}{lll}\vec{r}-\hat{k} & -\hat{i}+\hat{j} & -\hat{i}+\hat{k}\end{array}\right]=0$
$\therefore x+y+z=1$
Coordinate of $Q=(10,15,20)$
Coordinate of $S=(\alpha, \beta, \gamma)$
$\therefore \quad \frac{\alpha-10}{1}=\frac{\beta-15}{1}=\frac{\gamma-20}{1}=\frac{-2(10+15+20-1)}{3}$
$\therefore \quad \alpha-10=\beta-15=\gamma-20=-\frac{88}{3}$
$\therefore \quad \alpha=-\frac{58}{3}, \beta=-\frac{43}{3}, \gamma=-\frac{28}{3}$
$\therefore 3(\alpha+\beta)=-101,3(\beta+\gamma)=-71$
$3(\gamma+\alpha)=-86$ and $3(\alpha+\beta+\gamma)=-129$
\therefore Ans. A, B, C
13. Consider the parabola $y^{2}=4 x$. Let S be the focus of the parabola. A pair of tangents drawn to the parabola from the point $P=(-2,1)$ meet the parabola at P_{1} and P_{2}. Let Q_{1} and Q_{2} be points on the lines $S P_{1}$ and $S P_{2}$ respectively such that $P Q_{1}$ is perpendicular to $S P_{1}$ and $P Q_{2}$ is perpendicular to $S P_{2}$. Then, which of the following is/are TRUE?
(A) $S Q_{1}=2$
(B) $Q_{1} Q_{2}=\frac{3 \sqrt{10}}{5}$
(C) $P Q_{1}=3$
(D) $S Q_{2}=1$

Answer (A, B, C, D)
Sol.

Let $P_{1}\left(t^{2}, 2 t\right)$ then tangent at P_{1}

$$
t y=x+t^{2}
$$

Since it passes through $(-2,1)$
$\therefore t^{2}-t-2=0$

$$
\therefore \quad t=2,-1
$$

$\therefore \quad P_{1}(4,4)$ and $P_{2}(1,-2)$
$\therefore S P_{1}: 4 x-3 y-4=0$
and $S P_{2}: x-1=0$
and for $Q_{1}: \frac{x_{1}+2}{4}=\frac{y_{1}-1}{-3}=\frac{-(-8-3-4)}{25}=\frac{3}{5}$
$\therefore \quad x_{1}=\frac{2}{5}, y_{1}=\frac{-4}{5}$
and $Q_{2}=(1,1)$
So, $S Q_{1}=\sqrt{\left(1-\frac{2}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}}=1$
$Q_{1} Q_{2}=\sqrt{\frac{9}{25}+\frac{81}{25}}=\sqrt{\frac{90}{25}}=\frac{3 \sqrt{10}}{5}$
$P Q_{1}=\sqrt{\frac{144}{25}+\frac{81}{25}}=3$
$S Q_{2}=1$
14. Let $|M|$ denote the determinant of a square matrix M. Let $g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ be the function defined by $g(\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1}$ where
$f(\theta)=\frac{1}{2}\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|+\left|\begin{array}{ccc}\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{e}\left(\frac{4}{\pi}\right) \\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{e}\left(\frac{\pi}{4}\right) & \tan \pi\end{array}\right|$.
Let $p(x)$ be a quadratic polynomial whose roots are the maximum and minimum values of the function $g(\theta)$, and $p(2)=2-\sqrt{2}$. Then, which of the following is/are TRUE ?
(A) $p\left(\frac{3+\sqrt{2}}{4}\right)<0$
(B) $p\left(\frac{1+3 \sqrt{2}}{4}\right)>0$
(C) $p\left(\frac{5 \sqrt{2}-1}{4}\right)>0$
(D) $p\left(\frac{5-\sqrt{2}}{4}\right)<0$

Answer (A and C)
Sol. $\because \quad f(\theta)=\frac{1}{2}\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|+\left|\begin{array}{ccc}\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{e}\left(\frac{4}{\pi}\right) \\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{e}\left(\frac{\pi}{4}\right) & \tan \pi\end{array}\right|$.
Here $\cos \left(\theta+\frac{\pi}{4}\right)=-\sin \left(\theta-\frac{\pi}{4}\right)$
and $\tan \left(\theta-\frac{\pi}{4}\right)=-\cot \left(\theta+\frac{\pi}{4}\right)$
and $\log _{e}\left(\frac{4}{\pi}\right)=-\log _{e}\left(\frac{\pi}{4}\right)$

$$
\text { Also } \sin \pi=-\cos \frac{\pi}{2}=\tan \pi=0
$$

$\therefore f(\theta)=1+\sin ^{2} \theta$
$\therefore g(\theta)=|\sin \theta|+|\cos \theta|$
\therefore maximum and minimum values are $\sqrt{2}$ and 1 respectively.
$\therefore \quad P(x)=a(x-\sqrt{2})(x-1)$, where $a \in R-\{0\}$,
But $P(2)=2-\sqrt{2}$ then $a=1$.
$\therefore \quad P(x)=(x-\sqrt{2})(x-1)$
$\therefore \quad P\left(\frac{3+\sqrt{2}}{4}\right)=\left(\frac{3-3 \sqrt{2}}{4}\right) \cdot\left(\frac{\sqrt{2}-1}{4}\right)<0$
$P\left(\frac{1+3 \sqrt{2}}{4}\right)=\left(\frac{1-\sqrt{2}}{4}\right) \cdot\left(\frac{3 \sqrt{2}-3}{4}\right)<0$

$$
\begin{aligned}
& P\left(\frac{5 \sqrt{2}-1}{4}\right)=\left(\frac{\sqrt{2}-1}{4}\right) \cdot\left(\frac{5 \sqrt{2}-5}{4}\right)>0 \\
& P\left(\frac{5-\sqrt{2}}{4}\right)=\left(\frac{5-5 \sqrt{2}}{4}\right)\left(\frac{1-\sqrt{2}}{4}\right)>0
\end{aligned}
$$

$\therefore \quad(A)$ and (C) are correct.

SECTION - 3 (Maximum marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
15. Consider the following lists:

List-I

(I) $\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$
(II) $\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$
(III) $\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$
(IV) $\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$

List-II

(P) has two elements
(Q) has three elements
(R) has four elements
(S) has five elements
(T) has six elements

The correct option is:
(A) (I) \rightarrow (P); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (S)
(B) (I) \rightarrow (P); (II) \rightarrow (P); (III) \rightarrow (T); (IV) $\rightarrow(\mathrm{R})$
(C) (I) \rightarrow (Q); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (S)
(D) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (P); (IV) $\rightarrow(\mathrm{R})$

Answer (B)
Sol. (i) $\left\{x \in\left[\frac{-2 \pi}{3}, \frac{2 \pi}{3}\right], \cos x+\sin x=1\right\}$
$\cos x+\sin x=1$
$\sin \left(\frac{\pi}{4}+x\right)=\frac{1}{\sqrt{2}}$
$\frac{\pi}{4}+x=n \pi+(-1)^{n} \frac{\pi}{4}$
$x=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}$
$\therefore x$ has 2 elements. $\rightarrow P$
(ii) $\left\{x \in\left[\frac{-5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$
$\sqrt{3} \tan 3 x=1$
$\tan 3 x=\frac{1}{\sqrt{3}}$
$3 x=n \pi+\frac{\pi}{6}$
$x=\frac{n \pi}{3}+\frac{\pi}{18}$
$\therefore x$ has 2 elements. $\rightarrow P$
(iii) $\left\{x \in\left[\frac{-6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos 2 x=\sqrt{3}\right\}$
$2 \cos 2 x=\sqrt{3}$
$\cos 2 x=\frac{\sqrt{3}}{2}$
$2 x=2 n \pi \pm \frac{\pi}{6}$
$x=n \pi \pm \frac{\pi}{12}$
$\therefore x$ has 6 elements. $\rightarrow T$
(iv) $\left\{x \in\left[\frac{-7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$
$\sin x-\cos x=1$
$\sin \left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$x-\frac{\pi}{4}=n \pi+(-1)^{n} \frac{\pi}{4}$
$x=n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{4}$
$\therefore x$ has 4 elements. $\quad \rightarrow R$
$\therefore \quad$ option B is correct.
16. Two players, P_{1} and P_{2}, play a game against each other. In every round of the game, each player rolls a fair die once, where the six faces of the die have six distinct numbers. Let x and y denote the readings on the die rolled by P_{1} and P_{2}, respectively. If $x>y$, then P_{1} scores 5 points and P_{2} scores 0 point. If $x=y$, then each player scores 2 points. If $x<y$, then P_{1} scores 0 point and P_{2} scores 5 points. Let X_{i} and Y_{i} be the total scores of P_{1} and P_{2}, respectively, after playing the $i^{\text {ih }}$ round.

List-I

(I) Probability of $\left(X_{2} \geq Y_{2}\right)$ is
(II) Probability of $\left(X_{2}>Y_{2}\right)$ is
(III) Probability of $\left(X_{3}=Y_{3}\right)$ is
(IV) Probability of $\left(X_{3}>Y_{3}\right)$ is

List-II

(P) $\frac{3}{8}$
(Q) $\frac{11}{16}$
(R) $\frac{5}{16}$
(S) $\frac{355}{864}$
(T) $\frac{77}{432}$

The correct option is:
(A) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (T); (IV) \rightarrow (S)
(B) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (T); (IV) \rightarrow (T)
(C) (I) \rightarrow (P); (II) \rightarrow (R); (III) \rightarrow (Q); (IV) \rightarrow (S)
(D) (I) \rightarrow (P); (II) \rightarrow (R); (III) \rightarrow (Q); (IV) \rightarrow (T)

Answer (A)
Sol. $P\left(X_{i}>Y_{i}\right)+P\left(X_{i}<Y_{i}\right)+P\left(X_{i}=Y_{i}\right)=1$
and $P\left(X_{i}>Y_{i}\right)=P\left(X_{i}<Y_{i}\right)=p$
for $i=2$
$P\left(X_{2}=Y_{2}\right)=2 p(x>y) \cdot p(x<y)+(p(x=y))^{2}$
$=2 \cdot \frac{{ }^{6} C_{2}}{36} \cdot \frac{{ }^{6} C_{2}}{36}+\left(\frac{{ }^{6} C_{1}}{36}\right)^{2}$
$=\frac{25}{72}+\frac{1}{36}=\frac{27}{72}=\frac{3}{8}$
$P\left(X_{2}>Y_{2}\right)=\frac{1}{2}\left(1-\frac{3}{8}\right)=\frac{5}{16}$
$P\left(X_{2} \geq Y_{2}\right)=\frac{5}{16}+\frac{3}{8}=\frac{11}{16}$
$\mathrm{I} \rightarrow \mathrm{Q}, \mathrm{II} \rightarrow \mathrm{R}$
for $i=3$
$P\left(X_{3}=Y_{3}\right)=6 . p(x>y) \cdot p(x<y) p(x=y)+(p(x=y))^{3}$
$=6 \cdot \frac{{ }^{6} C_{2}}{36} \cdot \frac{{ }^{6} C_{2}}{36} \cdot \frac{{ }^{6} C_{1}}{36}+\left(\frac{{ }^{6} C_{1}}{36}\right)^{3}$
$=\frac{77}{432}$
$P\left(X_{3}>Y_{3}\right)=\frac{1}{2}\left(1-\frac{77}{432}\right)$
$=\frac{355}{864}$
III \rightarrow T, IV \rightarrow S
17. Let p, q, r be non-zero real numbers that are, respectively, the $10^{\text {th }}, 100^{\text {th }}$ and $1000^{\text {th }}$ terms of a harmonic progression. Consider the system of linear equations
$x+y+z=1$
$10 x+100 y+1000 z=0$
$q r x+p r y+p q z=0$

	List-I		List-II
(I)	If $\frac{q}{r}=10$, then the system of linear equations has	(P)	$x=0, y=\frac{10}{9}, z=-\frac{1}{9}$ as a solution
(II)	If $\frac{p}{r} \neq 100$, then the system of linear equations has	(Q)	$x=\frac{10}{9}, y=-\frac{1}{9}, z=0$ as a solution
(III)	If $\frac{p}{q} \neq 10$, then the system of linear equations has	(R)	infinitely many solutions
(IV)	If $\frac{p}{q}=10$, then the system of linear equations has	(S)	no solution
		(T)	at least one solution

The correct option is:
(A) (I) \rightarrow (T); (II) \rightarrow (R); (III) $\rightarrow(\mathrm{S}) ;$ (IV) $\rightarrow(\mathrm{T})$
(B) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (S); (IV) $\rightarrow(\mathrm{R})$
(C) $(\mathrm{I}) \rightarrow(\mathrm{Q}) ;$ (II) $\rightarrow(\mathrm{R}) ;$ (III) $\rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{R})$
(D) $(\mathrm{I}) \rightarrow(\mathrm{T}) ;(\mathrm{II}) \rightarrow(\mathrm{S}) ;(\mathrm{III}) \rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{T})$

Answer (B)
Sol. $x+y+z=1$
$10 x+100 y+1000 z=0$
$q r x+p r y+p q z=0$
Equation (3) can be re-written as
$\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=0 \quad(\because p, q, r \neq 0)$
Let $p=\frac{1}{a+9 d}, q=\frac{1}{a+99 d}, r=\frac{1}{a+999 d}$
Now, equation (3) is
$(a+9 d) x+(a+99 d) y+(a+999 d) z=0$
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 10 & 100 & 1000 \\ a+9 d & a+99 d & a+999 d\end{array}\right|=0$
$\Delta_{x}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & 100 & 1000 \\ 0 & a+99 d & a+999 d\end{array}\right|=900(d-a)$
$\Delta_{y}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 10 & 0 & 1000 \\ a+9 d & 0 & a+999 d\end{array}\right|=990(a-d)$
$\Delta_{z}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 10 & 100 & 0 \\ a+9 d & a+99 d & 0\end{array}\right|=90(d-a)$
Option I: If $\frac{q}{r}=10 \Rightarrow a=d$
$\Delta=\Delta_{x}=\Delta_{y}=\Delta_{z}=0$
And eq. (1) and eq. (2) represents non-parallel planes and eq. (2) and eq. (3) represents same plane \Rightarrow Infinitely many solutions
$\mathrm{I} \rightarrow \mathrm{P}, \mathrm{Q}, R, T$
Option II : $\frac{p}{r} \neq 100 \Rightarrow a \neq d$
$\Delta=0, \Delta_{x}, \Delta_{y}, \Delta_{z} \neq 0$
No solution
II \rightarrow S
Option III: $\frac{p}{q} \neq 10 \Rightarrow a \neq d$
No solution
III \rightarrow S
Option IV: If $\frac{p}{q}=10 \Rightarrow a=d$
Infinitely many solution
$\mathrm{IV} \rightarrow P, Q, R, T$
18. Consider the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1
$$

Let $\mathrm{H}(\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through H parallel to the y-axis crosses the ellipse and its auxiliary circle at points E and F respectively, in the first quadrant. The tangent to the ellipse at the point E intersects the positive x-axis at a point G. Suppose the straight line joining F and the origin makes an angle ϕ with the positive x-axis.

List-I

(I) If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is
(II) If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is
(III) If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is
(IV) If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is

List-II

(P) $\frac{(\sqrt{3}-1)^{4}}{8}$
(Q) 1
(R) $\frac{3}{4}$
(S) $\frac{1}{2 \sqrt{3}}$
(T) $\frac{3 \sqrt{3}}{2}$

The correct option is:
(A) (I) \rightarrow (R); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)
(B) (I) \rightarrow (R); (II) \rightarrow (T); (III) \rightarrow (S); (IV) $\rightarrow(\mathrm{P})$
(C) (I) \rightarrow (Q); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)
(D) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)

Answer (C)

Sol.

$\alpha \equiv 2 \cos \phi$
Tangent at $E(2 \cos \phi, \sqrt{3} \sin \phi)$ to ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
i.e. $\frac{x \cos \phi}{2}+\frac{y \sin \phi}{\sqrt{3}}=1$ intersect x-axis at $G(2 \sec \phi, 0)$

Area of triangle $F G H=\frac{1}{2}(2 \sec \phi-2 \cos \phi) 2 \sin \phi$
$\Delta=2 \sin ^{2} \phi \cdot \tan \phi$
$\Delta=(1-\cos 2 \phi) \cdot \tan \phi$
I. If $\phi=\frac{\pi}{4}, \Delta=1 \rightarrow(Q)$
II. If $\phi=\frac{\pi}{3}, \Delta=2 \cdot\left(\frac{\sqrt{3}}{2}\right)^{2} \cdot \sqrt{3}=\frac{3 \sqrt{3}}{2} \rightarrow(T)$
III. If $\phi=\frac{\pi}{6}, \Delta=2 .\left(\frac{1}{2}\right)^{2} \cdot \frac{1}{\sqrt{3}}=\frac{1}{2 \sqrt{3}} \rightarrow(S)$
IV. If $\phi=\frac{\pi}{12}, \Delta=\left(1-\frac{\sqrt{3}}{2}\right) \cdot(2-\sqrt{3})=\frac{(2-\sqrt{3})^{2}}{2} \rightarrow(P)$

