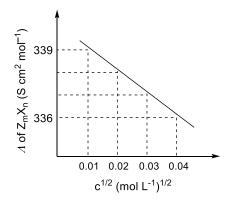
SECTION 1 (Maximum marks: 24)

- This section contains **EIGHT (08)** questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 TO 9, BOTH INCLUSIVE.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+3 If ONLY the correct integer is entered;
Zero Marks	:	0 If the question is unanswered;
Negative Marks	:	-1 In all other cases.

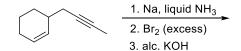
Q.1 Concentration of H₂SO₄ and Na₂SO₄ in a solution is 1 M and 1.8×10^{-2} M, respectively. Molar solubility of PbSO₄ in the same solution is X × 10^{-Y} M (expressed in scientific notation). The value of Y is <u>6</u>.

[Given: Solubility product of PbSO₄ (K_{sp}) = 1.6 × 10⁻⁸. For H₂SO₄, K_{a1} is very large and $K_{a2} = 1.2 \times 10^{-2}$]

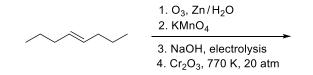

Q.2 An aqueous solution is prepared by dissolving 0.1 mol of an ionic salt in 1.8 kg of water at 35 °C. The salt remains 90% dissociated in the solution. The vapour pressure of the solution is 59.724 mm of Hg. Vapor pressure of water at 35 °C is 60.000 mm of Hg. The number of ions present per formula unit of the ionic salt is <u>5</u>.

Q.3 Consider the strong electrolytes $Z_m X_n$, $U_m Y_p$ and $V_m X_n$. Limiting molar conductivity (Λ^0) of $U_m Y_p$ and $V_m X_n$ are 250 and 440 S cm² mol⁻¹, respectively. The value of (m + n + p) is <u>7</u>.

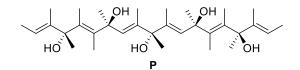
Given:


Ion	Z^{n+}	U^{p+}	V ⁿ⁺	X ^{m-}	Y ^{m-}
λ^0 (S cm ² mol ⁻¹)	50.0	25.0	100.0	80.0	100.0
λ^0 is the limiting molar conductivity of ions					

The plot of molar conductivity (A) of $Z_m X_n vs c^{1/2}$ is given below.



- Q.4 The reaction of Xe and O_2F_2 gives a Xe compound **P**. The number of moles of HF produced by the complete hydrolysis of 1 mol of **P** is 2 or 4 or 6
- Q.5 Thermal decomposition of $AgNO_3$ produces two paramagnetic gases. The total number of electrons present in the antibonding molecular orbitals of the gas that has the higher number of unpaired electrons is <u>6</u>.


Q.6 The number of isomeric tetraenes (**NOT** containing *sp*-hybridized carbon atoms) that can be formed from the following reaction sequence is 2.

Q.7 The number of $-CH_2$ - (methylene) groups in the product formed from the following reaction sequence is <u>0</u>.

Q.8 The total number of chiral molecules formed from one molecule of **P** on complete ozonolysis $(O_3, Zn/H_2O)$ is <u>2</u>.

SECTION 2	(Maximum	marks: 24)
-----------	----------	------------

- This section contains SIX (06) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).

Answer to each	question will be evaluated according to the following marking scheme:
Full Marks	: +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks	: +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks	: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks	: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks	: 0 If unanswered;
Negative Marks	s: -2 In all other cases.

Q.9 To check the principle of multiple proportions, a series of pure binary compounds (P_mQ_n) were analyzed and their composition is tabulated below. The correct option(s) is(are)

Compound	Weight % of P	Weight % of Q
1	50	50
2	44.4	55.6
3	40	60

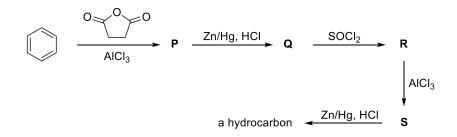
- (A) If empirical formula of compound **3** is P_3Q_4 , then the empirical formula of compound **2** is P_3Q_5 .
- (B) If empirical formula of compound **3** is P_3Q_2 and atomic weight of element P is 20, then the atomic weight of Q is 45.
- (C) If empirical formula of compound **2** is PQ, then the empirical formula of the compound **1** is P_5Q_4 .
- (D) If atomic weight of P and Q are 70 and 35, respectively, then the empirical formula of compound 1 is P_2Q .

Answer: B, C

- Q.10 The correct option(s) about entropy (S) is(are) [R = gas constant, F = Faraday constant, T = Temperature]
 - (A) For the reaction, $M(s) + 2H^+(aq) \rightarrow H_2(g) + M^{2+}(aq)$, if $\frac{dE_{cell}}{dT} = \frac{R}{F}$, then the entropy change of the reaction is R (assume that entropy and internal energy changes are temperature independent).
 - (B) The cell reaction, $Pt(s) | H_2(g, 1bar) | H^+(aq, 0.01M) || H^+(aq, 0.1M) | H_2(g, 1bar) | Pt(s)$, is an entropy driven process.
 - (C) For racemization of an optically active compound, $\Delta S > 0$.
 - (D) $\Delta S > 0$, for $[Ni(H_2O)_6]^{2+} + 3 \text{ en} \rightarrow [Ni(en)_3]^{2+} + 6H_2O$ (where en = ethylenediamine).

Answer: B, C, D

Q.11 The compound(s) which react(s) with NH₃ to give boron nitride (BN) is(are)


(A) B	$(B) B_2 H_6$	(C) B_2O_3	(D) HBF_4
	20	23	× / 4

Answer: [B, C] or [A, B, C]

- Q.12 The correct option(s) related to the extraction of iron from its ore in the blast furnace operating in the temperature range 900 1500 K is(are)
 - (A) Limestone is used to remove silicate impurity.
 - (B) Pig iron obtained from blast furnace contains about 4% carbon.
 - (C) Coke (C) converts CO_2 to CO.
 - (D) Exhaust gases consist of NO₂ and CO.

Answer: A, B, C

Q.13 Considering the following reaction sequence, the correct statement(s) is(are)

(A) Compounds **P** and **Q** are carboxylic acids.

- (B) Compound S decolorizes bromine water.
- (C) Compounds P and S react with hydroxylamine to give the corresponding oximes.
- (D) Compound **R** reacts with dialkylcadmium to give the corresponding tertiary alcohol.

Answer: [A, B, C] or [A, C]

- Q.14 Among the following, the correct statement(s) about polymers is(are)
 - (A) The polymerization of chloroprene gives natural rubber.
 - (B) Teflon is prepared from tetrafluoroethene by heating it with persulphate catalyst at high pressures.
 - (C) PVC are thermoplastic polymers.
 - (D) Ethene at 350-570 K temperature and 1000-2000 atm pressure in the presence of a peroxide initiator yields high density polythene.

Answer: B, C

SECTION 3 (Maximum marks: 12)				
•	This section contains FOUR (04) questions.			
٠	Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct			
	answer.			
٠	For each question, choose the option corresponding to the correct answer.			
٠	Answer to each question will be evaluated according to the following marking scheme:			
	<i>Full Marks</i> : +3 If ONLY the correct option is chosen;			
	Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);			
	Negative Marks : -1 In all other cases.			

Q.15 Atom X occupies the fcc lattice sites as well as alternate tetrahedral voids of the same lattice. The packing efficiency (in %) of the resultant solid is closest to

(A) 25	(B) 35	(C) 55	(D) 75
(11) 20	(B) 35	(0) 33	(D) / (D)

Answer: B

Q.16 The reaction of HClO₃ with HCl gives a paramagnetic gas, which upon reaction with O₃ produces

(A) Cl_2O (B) ClO_2 (C) Cl_2O_6 (D) Cl_2O_7

Answer: C

Q.17 The reaction of $Pb(NO_3)_2$ and NaCl in water produces a precipitate that dissolves upon the addition of HCl of appropriate concentration. The dissolution of the precipitate is due to the formation of

(A) $PbCl_{2}$ (B) $PbCl_{4}$ (C) $[PbCl_{4}]^{2-}$ (D) $[PbCl_{6}]^{2-}$

Answer: C

Q.18 Treatment of D-glucose with aqueous NaOH results in a mixture of monosaccharides, which are

Answer: C

END OF THE QUESTION PAPER