JEE Main Maths Limits, Continuity and Differentiability Previous Year Questions With Solutions

Question 1: Solve

$$
\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1) \times(\sqrt{x}+1)}{(x-1)(2 x+3) \times(\sqrt{x}+1)} \\
& =\frac{-1}{5.2} \\
& =\frac{-1}{10}
\end{aligned}
$$

Question 2: If $f(9)=9, f^{\prime}(9)=4$, then

$$
\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}=
$$

Solution:

Applying L - Hospitals rule,
$\lim _{x \rightarrow 9} \frac{\frac{1}{2 \sqrt{f(x)}} \cdot f^{\prime}(x)}{\frac{1}{2 \sqrt{x}}}$
$=\frac{\frac{f^{\prime}(9)}{\sqrt{f(9)}}}{\frac{1}{\sqrt{9}}}$
$=\frac{\frac{4}{3}}{\frac{1}{3}}$
$=4$

Question 3: Solve

$$
\lim _{h \rightarrow 0} \frac{(a+h)^{2} \sin (a+h)-a^{2} \sin a}{h}
$$

Solution:

Apply the L-Hospitals rule,
$\lim _{h \rightarrow 0} \frac{(a+h)^{2} \sin (a+h)-a^{2} \sin a}{h}$
$\lim _{h \rightarrow 0} \frac{2(a+h) \sin (a+h)+(a+h)^{2} \cos (a+h)}{1}$
$=2 a \sin a+a^{2} \cos a$

Question 4: Solve

$$
\lim _{x \rightarrow \pi / 4} \frac{\sqrt{2} \cos x-1}{\cot x-1}
$$

Solution:

$$
\lim _{x \rightarrow \pi / 4} \frac{\sqrt{2} \cos x-1}{\cot x-1}
$$

Apply the L-Hospitals rule,
$=\lim _{x \rightarrow \pi / 4} \frac{-\sqrt{2} \sin x}{-\operatorname{cosec}^{x}}$
$\frac{-\sqrt{2} \times \frac{1}{\sqrt{2}}}{-(\sqrt{2})^{2}}$
$=\frac{1}{2}$

Question 5: Solve

$$
\lim _{x \rightarrow 0}\left[\frac{x}{\tan ^{-1} 2 x}\right]
$$

Solution:

Let

$$
\begin{aligned}
& \tan ^{-1} 2 x=\theta \\
& \Rightarrow x=\frac{1}{2} \tan \theta \text { and as } x \rightarrow 0, \theta \rightarrow 0 \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{x}{\tan ^{-1} 2 x} \\
& =\lim _{\theta \rightarrow 0} \frac{\frac{1}{2} \tan \theta}{\theta} \\
& =\frac{1}{2} \cdot(1) \\
& =\frac{1}{2}
\end{aligned}
$$

Question 6: Solve

$\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}$

Solution:

$\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}=\lim _{x \rightarrow 0} \frac{|\sin x|}{x}$
So,
$\lim _{x \rightarrow 0+} \frac{|\sin x|}{x}=1$
and
$\lim _{x \rightarrow 0-} \frac{|\sin x|}{x}=-1$

Hence, the limit doesn't exist.

Question 7: Solve

$$
\lim _{x \rightarrow 0}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}^{1 / x}
$$

Solution:

Given,

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}^{1 / x} \\
& =\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1-\tan x}\right)^{1 / x} \\
& =\lim _{x \rightarrow 0}\left(1+\left(\frac{1+\tan x}{1-\tan x}-1\right)\right)^{\frac{1}{x}} \\
& =\lim _{x \rightarrow 0}\left(1+\left(\frac{2 \tan x}{1-\tan x}\right)\right)^{\frac{1}{x}} \\
& =e^{x \rightarrow 0}\left(\frac{2 \tan x}{x(1-\tan x)}\right) \\
& =\mathrm{e}^{2}
\end{aligned}
$$

Question 8: Solve

$$
\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{1 / x^{2}}
$$

Solution:

$\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{1 / x^{2}}$
$=\frac{\lim _{x \rightarrow 0}\left[\left(1+5 x^{2}\right)^{1 / 5 x^{2}}\right]^{5}}{\lim _{x \rightarrow 0}\left[\left(1+3 x^{2}\right)^{1 / 3 x^{2}}\right]^{3}}$
$=\frac{e^{5}}{e^{3}}$
$=e^{2}$
$\left[\because \lim _{x \rightarrow 0}(1+x)^{1 / x}=e\right]$

Question 9: Solve

$$
\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{x(\tan 2 x-2 \tan x)}{\left(2 \sin ^{2} x\right)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1}{4} \frac{x(\tan 2 x-2 \tan x)}{\sin ^{4} x} \\
& =\lim _{x \rightarrow 0} \frac{x}{4 \sin ^{4} x}\left(\frac{2 \tan x}{1-\tan ^{2} x}-2 \tan x\right) \\
& =\lim _{x \rightarrow 0} \frac{x}{4 \sin ^{4} x}\left(\frac{2 \tan x-2 \tan x+2 \tan ^{3} x}{1-\tan ^{2} x}\right) \\
& =\lim _{x \rightarrow 0} \frac{x}{4 \sin ^{4} x}\left(\frac{2 \tan ^{3} x}{1-\tan ^{2} x}\right) \\
& =\frac{1}{2} \lim _{x \rightarrow 0} \frac{x}{\sin ^{3} x} \cdot \frac{\tan ^{3} x}{\sin ^{3} x} \cdot \frac{1}{1-\tan ^{2} x} \\
& =\frac{1}{2} \lim _{x \rightarrow 0} \\
& =\frac{1}{2} \times 1 \times \frac{1}{1} \times \frac{1}{x} \times \frac{1}{\operatorname{sos}^{3} x} \cdot \frac{1}{1-\tan ^{2} x} \\
& =\frac{1}{2}
\end{aligned}
$$

Question 10: The function

$f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$
is not defined at $x=0$. The value which should be assigned to f at $x=0$ so that it is continuous at x $=0$, is

Solution:

Since the limit of a function is $\mathrm{a}+\mathrm{b}$ as $\mathrm{x} \rightarrow 0$, therefore to be continuous at a function, its value must be $\mathrm{a}+\mathrm{b}$ at $\mathrm{x}=0$
$\Rightarrow \mathrm{f}(0)=\mathrm{a}+\mathrm{b}$

Question 11: Evaluate

$$
f(x)= \begin{cases}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}} & \text { if } x \neq 2 \\ k & \text { if } x=2\end{cases}
$$

Solution:

For continuous

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=f(2)=k \\
& \Rightarrow k=\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}-4 x+4\right)(x+5)}{(x-2)^{2}} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)^{2}(x+5)}{(x-2)^{2}} \\
& =7
\end{aligned}
$$

Question 12: If

$$
f(x)= \begin{cases}\frac{x^{2}-4 x+3}{x^{2}-1} & \text { if } x \neq 1 \\ 2 & \text { if } x=1\end{cases}
$$

, then find the condition for the function to be continuous or discontinuous.

Solution:

$$
f(x)=\left\{\frac{x^{2}-4 x+3}{x^{2}-1}\right\}
$$

for $\mathrm{x}=1$
$\mathrm{f}(1)=2$,
$f(1+)=\lim _{x \rightarrow 1+} \frac{x^{2}-4 x+3}{x^{2}-1}$
$=\lim _{x \rightarrow 1+} \frac{(x-3)}{(x+1)}$
$=-1$
$f(1-)=\lim _{x \rightarrow 1-} \frac{x^{2}-4 x+3}{x^{2}-1}$
$=-1$
$\Rightarrow f(1) \neq f(1-)$

Hence, the function is discontinuous at $\mathrm{x}=1$.

Question 13: Which of the following functions have a finite number of points of discontinuity in R

([.] represents the greatest integer function)?

(A) $\tan x$
(B) $x[x]$
(C) $|x| / x$
(D) $\sin [\pi x]$

Solution:
$\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$ is discontinuous when $\mathrm{x}=(2 \mathrm{n}+1) \pi / 2, \mathrm{n} \in \mathrm{Z}$
$\mathrm{f}(\mathrm{x})=\mathrm{x}[\mathrm{x}]$ is discontinuous when $\mathrm{x}=\mathrm{k}, \mathrm{k} \in \mathrm{Z}$
$f(x)=\sin [n \pi x]$ is discontinuous when $n \pi x=k, k \in Z$
Thus, all the above functions have an infinite number of points of discontinuity. But, if $(x)=|x| / x$ is discontinuous when $\mathrm{x}=0$ only.

Question 14: The number of values of $x \in[0,2]$ at which $f(x)=|x-(1 / 2)|+|x-1|+\tan x$ is not differentiable is
(A) 0
(B) 1
(C) 3
(D) None of these

Solution:
$|\mathrm{x}-(1 / 2)|$ is continuous everywhere but not differentiable at $\mathrm{x}=1 / 2,|\mathrm{x}-1|$ is continuous everywhere, but not differentiable at $\mathrm{x}=1$ and $\tan \mathrm{x}$ is continuous in [0,2] except at $\mathrm{x}=\pi / 2$.

Hence, $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=1 / 2,1, \pi / 2$.
Answer: (C) 3

Question 15:

$$
\lim _{x \rightarrow \pi / 2}(\sec \theta-\tan \theta)=
$$

Solution:

$$
\lim _{\theta \rightarrow \pi / 2} \frac{1-\sin \theta}{\cos \theta}=\lim _{\theta \rightarrow \pi / 2} \frac{\left(\cos \frac{\theta}{2}-\sin \frac{\theta}{2}\right)^{2}}{\left(\cos \frac{\theta}{2}-\sin \frac{\theta}{2}\right)\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)}=0
$$

