

Tetrahedral Molecular Geometry Chemistry Questions with Solutions

Q-1: Which of the following molecules has tetrahedral geometry?

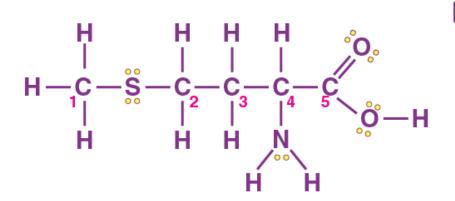
- a) SiH₂Br₂
- b) $KrCl_2F_2$
- c) PCI₅
- d) SF₄

Answer: a) SiH₂Br₂

Explanation: In order to determine the molecular geometry, first calculate the steric number of Si in SiH₂Br₂.

Steric Number = Number of lone pairs on Si + Number of sigma bond pairs

We know that silicon has 4 valence electrons, and it has made four covalent bonds.


Therefore, number of lone pairs = 0

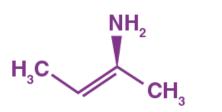
Number of sigma bond pairs = 4

Steric Number = 4

According to VSEPR theory, a steric number equal to 4 corresponds to tetrahedral molecular geometry.

Q-2: Which carbon in the molecule shown below will have a tetrahedral molecular geometry?

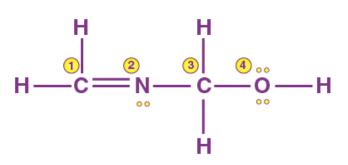
BYJU'S


a) 1, 2, 3 b) 3, 4, 5 c) 1, 2, 3, 4 d) All of them

Answer: c) 1, 2, 3, 4

Explanation: The carbons 1, 2, 3, and 4 form four sigma bonds and have zero lone pair, giving them a steric number of four. According to VSEPR theory, a steric number of 4 corresponds to tetrahedral molecular geometry.

Q-3: Determine the molecular geometry of the nitrogen atom in the molecule.


- a) Trigonal planar
- b) Tetrahedral
- c) Bent
- d) Trigonal pyramidal

Answer: b) Tetrahedral

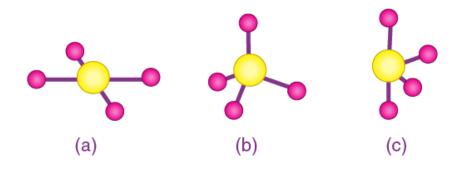
Explanation: The nitrogen atom in the molecule has three sigma bonds (two with H-atoms and one with C-atoms) and one lone pair. This gives it a steric number of four. According to VSEPR, it will have tetrahedral geometry.

Note: Lone pairs have no effect on the molecule's molecular geometry. They have an impact on the molecule's shape.

Q-4: Determine the molecular geometry around each atom in the molecule given below:

BYJU'S

Answer:


Atoms Number Pairs	r of Lone Number of Sigma Bond Pairs	Steric Number	Geometry
--------------------	--	---------------	----------

C-1	0	3	3	Trigonal Planar
Ν	1	2	3	Trigonal Planar
C-3	0	4	4	Tetrahedral
0	2	2	4	Tetrahedral

B BYJU'S

Image linked to answer questions 5-8.

Q-5: Identify the shape for each.

Answer:

- a) Square planar
- b) Tetrahedral
- c) Seesaw

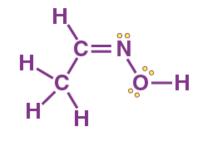
Q-6: Determine the electron domain geometry on which the molecular geometry is based. **Answer:**

- a) Octahedral
- b) Tetrahedral
- c) Trigonal bipyramidal

Q-7: How many lone pairs are on each central atom?

Answer:

- a) Two
- b) Zero
- c) One


Q-8: Which of the following elements has the potential to be the central atom in shape c)? Be, C, S, Si

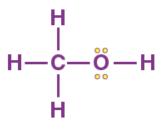
https://byjus.com

Answer: Because shape (c) has four bonds and only one lone pair, the central atom's valence shell must have six electrons, which is only possible in the case of S (sulphur).

Q-9: In the following compound, what is the geometry of the nitrogen atom?

Answer: Nitrogen forms two sigma bonds and has one lone pair in the given compound. As a result, it will show the hybridisation of sp2 corresponding to trigonal planar geometry.

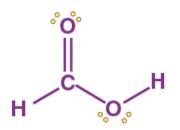
Q-10: Identify the molecular geometry around the atoms highlighted in red in the given organic molecule.


Answer:

Molecular geometry of Carbon: Trigonal Planar Molecular geometry of Nitrogen: Tetrahedral Molecular geometry of Oxygen: Tetrahedral

Q-11: What is the electron geometry of the electron groups on the oxygen atom shown below in methanol?

Answer: The oxygen atom in the methanol molecule shown has tetrahedral geometry because it has two lone pairs and two bond pairs, corresponding to a steric number of four.


Q-12: Why is it that a tetrahedral complex of the type [MA₂B₂] does not exhibit geometrical isomerism?

Answer: Because all positions of tetrahedral are the same in orientation, a tetrahedral complex of the type $[MA_2B_2]$ does not exhibit geometrical isomerism.

Q-13: $[NiCl_4]^{2-}$ is paramagnetic, whereas $[Ni(CO)_4]$ is diamagnetic, despite the fact that both are tetrahedral. Why?

Answer: In $[NiCl_4]^{2^-}$, Ni has a 3d⁸ configuration, and Cl⁻ is unable to pair up electrons, resulting in a paramagnetic complex. While Ni has a 3d⁸ 4s² configuration in $[Ni(CO)_4]$, CO pairs up electrons. Because all of the electrons in $[Ni(CO)_4]$ are paired up, it is diamagnetic.

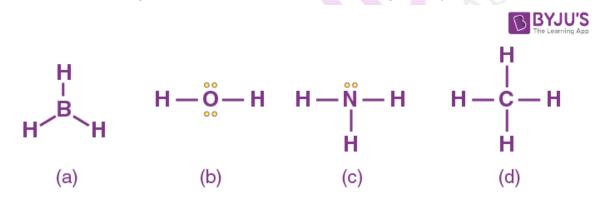
Q-14: What is the molecular geometry and hybridisation around the carbon atom based on the Lewis dot structure of formic acid shown below?

- a) Trigonal bipyramidal, sp3d
- b) Tetrahedral, sp³
- c) Octahedral, sp³d²
- d) Trigonal Planar, sp²

Answer: d) Trigonal Planar, sp²

Q-15: The shape of $[NiF_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ respectively are:

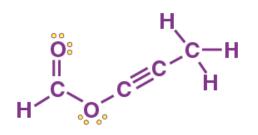
https://byjus.com

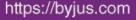

- a) Square Planar, Square Planar
- b) Tetrahedral, Square Planar
- c) Tetrahedral, Tetrahedral
- d) Square Planar, Tetrahedral

Answer: b) Tetrahedral, Square Planar

<u>Explanation</u>: Ni is in a +2 oxidation state with a d⁸ configuration in both coordination complexes. The only difference is that F⁻ is a weak field ligand, and CN⁻ is a strong field ligand. In the presence of weak field ligands, no pairing occurs, resulting in sp³ hybridisation of Ni in $[NiF_4]^{2-}$, which corresponds to tetrahedral geometry. In the presence of strong field ligands, however, pairing occurs, resulting in dsp² hybridisation and square planar geometry.

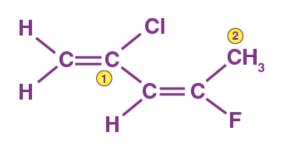
Practice Questions on Tetrahedral Molecular Geometry


Q-1: Which of the following structures has tetrahedral molecular geometry?


Answer: d) CH₄

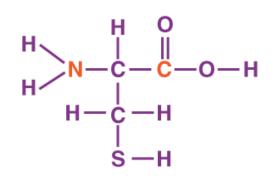
Explanation: According to VSEPR theory, CH₄ will have a steric number equal to 4, which corresponds to tetrahedral geometry.

Q-2: How many of the atoms in this molecule are tetrahedral?



- a) 1
- b) 2
- c) 3
- d) 4

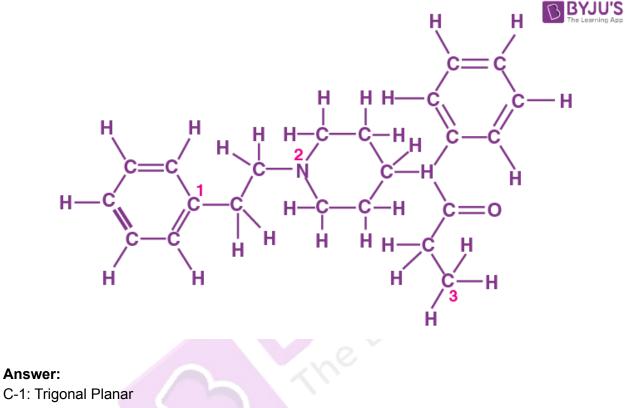
Answer: b) 2


Q-3: Consider the following molecule. Determine the molecular geometry and hybridisation of each labelled C-atom.

BYJU'S

Answer: C-1 has 3 sigma bond pairs and 0 lone pairs. This corresponds to steric number 3 and trigonal planar geometry with sp² hybridisation. C-2, on the other hand, has formed 4 sigma bonds (3 with H-atoms and 1 with C-atom), giving it a steric number of 4 and a tetrahedral geometry with sp³ hybridisation.

Q-4: An amino acid's structural formula is shown below. Determine the electron group geometry (EG) and molecular geometry (MG) of the atoms in red.



- a) C: EG- trigonal planar, MG: trigonal planar; N: Tetrahedral, MG- trigonal pyramidal
- b) C: EG- trigonal planar, MG: trigonal pyramidal; N: Tetrahedral, MG- trigonal pyramidal
- c) C: EG- trigonal pyramidal, MG: trigonal pyramidal; N: trigonal pyramidal, MG- Tetrahedral
- d) C: EG- trigonal pyramidal, MG: trigonal planar; N: Tetrahedral, MG- trigonal pyramidal

Answer: a) C: EG- trigonal planar, MG: trigonal planar; N: Tetrahedral, MG- trigonal pyramidal.

Q-5: The chemical structure of fentanyl is shown below. The IUPAC name is N-(1-phenethylpiperidin-4-yl)-N-phenylpropionamide. Give the molecular shape of the numbered atoms.

N-2: Trigonal pyramidal C-3: Tetrahedral