

SAMPLE QUESTION PAPER MARKING SCHEME SUBJECT: MATHEMATICS- STANDARD CLASS X

SECTION - A

1	(c) 35	1
2	(b) $x^2-(p+1)x + p=0$	1
3	(b) 2/3	1
4	(d) 2	1
5	(c) (2,-1)	1
6	(d) 2:3	1
7	(b) tan 30°	1
8	(b) 2	1
9	(c) $X = \frac{ay}{a+b}$	1
10	(c) 8cm	1
11	(d) $3\sqrt{3}$ cm	1
12	(d) 9π cm ²	1
13	(c) 96 cm ²	1
14	(b) 12	1
15	(d) 7000	1
16	(b) 25	1
17	(c) 11/36	1
18	(a) 1/3	1
19	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1
20.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1

SECTION - B

21	Adding the two equations and dividing by 10, we get : $x+y = 10$	1/2
	Subtracting the two equations and dividing by -2 , we get: $x-y=1$	1/2
	Solving these two new equations, we get, $x = 11/2$	1/2
	y = 9/2	1/2
22	In $\triangle ABC$, $\angle 1 = \angle 2$	
	$\therefore AB = BD \dots (i)$	1/2
	Given, AD/AE = AC/BD	
	Using equation (i), we get	1/2
	AD/AE = AC/AB(ii) In \triangle BAE and \triangle CAD, by equation (ii),	
	AC/AB = AD/AE	1/2
	$\angle A = \angle A$ (common) $\therefore \Delta BAE \sim \Delta CAD$ [By SAS similarity criterion]	1/2
	ABAE ~ ACAD [by SAS similarity criterion]	/2
23	$\angle PAO = \angle PBO = 90^{\circ}$ (angle b/w radius and tangent)	1/2
20	$\angle AOB = 105^{\circ}$ (By angle sum property of a triangle)	1/2
	$\angle AQB = \frac{1}{2} \times 105^{\circ} = 52.5^{\circ}$ (Angle at the remaining part of the circle is half the	1
	angle subtended by the arc at the centre)	1
	angle subtended by the arc at the centre)	
24	We know that, in 60 minutes, the tip of minute hand moves 360°	
	In 1 minute, it will move $=360^{\circ}/60 = 6^{\circ}$	1/2
	∴ From 7:05 pm to 7:40 pm i.e. 35 min, it will move through = $35 \times 6^{\circ} = 210^{\circ}$	1/2
	\therefore Area of swept by the minute hand in 35 min = Area of sector with sectorial angle θ	
	of 210° and radius of 6 cm	
	$=\frac{210}{360} \times \pi \times 6^2$	1/2
	$=\frac{7}{12} \times \frac{22}{7} \times 6 \times 6$	
	$=66cm^2$	1/2

OR

Let the measure of $\angle A$, $\angle B$, $\angle C$ and $\angle D$ be θ_1 , θ_2 , θ_3 and θ_4 respectively Required area = Area of sector with centre A + Area of sector with centre B + Area of sector with centre D

	$= \frac{\theta_1}{360} \times \pi \times 7^2 + \frac{\theta_2}{360} \times \pi \times 7^2 + \frac{\theta_3}{360} \times \pi \times 7^2 + \frac{\theta_4}{360} \times \pi \times 7^2$	1/2
	$=\frac{(\theta_1 + \theta_2 + \theta_3 + \theta_4)}{360} \times \pi \times 7^2$	
	$= \frac{(360)}{360} \times \frac{22}{7} \times 7 \times 7$ (By angle sum property of a triangle) = 154 cm ²	1/2 1/2
25	$\sin(A+B) = 1 = \sin 90$, so $A+B = 90$ (i) $\cos(A-B) = \sqrt{3}/2 = \cos 30$, so $A-B=30$ (ii) From (i) & (ii) $\angle A = 60^{\circ}$ And $\angle B = 30^{\circ}$	1/2 1/2 1/2 1/2
	OR	
	$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$ Dividing the numerator and denominator of LHS by $\cos\theta$, we get $\frac{1 - \tan\theta}{1 + \tan\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$ Which on simplification (or comparison) gives $\tan\theta = \sqrt{3}$	1/2 1/2
	Or $\theta = 60^{\circ}$	$\frac{1}{2}$ $\frac{1}{2}$
	SECTION - C	
26	Let us assume $5 + 2\sqrt{3}$ is rational, then it must be in the form of p/q where p and	1
	q are co-prime integers and $q \neq 0$	1
	i.e $5 + 2\sqrt{3} = p/q$	1/
	So $\sqrt{3} = \frac{p-5q}{2q}$ (i)	1/2
	Since p, q, 5 and 2 are integers and $q \neq 0$, HS of equation (i) is rational. But	72
	LHS of (i) is $\sqrt{3}$ which is irrational. This is not possible.	1/2
	This contradiction has arisen due to our wrong assumption that $5 + 2\sqrt{3}$ is	
	rational. So, $5 + 2\sqrt{3}$ is irrational.	1/2
		72
27	Later and 0 had be a series of the malana miles 2 m ² 5 m ²	
27	Let α and β be the zeros of the polynomial $2x^2$ -5x-3 Then $\alpha + \beta = 5/2$	1/2
	And $\alpha\beta = -3/2$.	1/2
	Let 2α and 2β be the zeros $x^2 + px + q$ Then $2\alpha + 2\beta = -p$	1/2
	$2(\alpha + \beta) = -p$	/ 2
	$2 \times 5/2 = -p$	1/-
	So $\mathbf{p} = -5$ And $2\alpha \times 2\beta = q$	$\frac{1/2}{1/2}$
	$4 \alpha \beta = q$	
	So $q = 4 x-3/2$ = -6	1/2
	- 0	/ 2

Let the actual speed of the train be x km/hr and let the actual time taken be y hours.	1/2
Distance covered is xy km	72
If the speed is increased by 6 km/hr, then time of journey is reduced by 4 hours i.e.,	
when speed is (x+6)km/hr, time of journey is (y-4) hours.	
\therefore Distance covered =(x+6)(y-4)	
\Rightarrow xy=(x+6)(y-4)	
\Rightarrow $-4x+6y-24=0$	1/2
$\Rightarrow -2x+3y-12=0 \dots (i)$	/ 2
Similarly $xy=(x-6)(y+6)$	
\Rightarrow 6x-6y-36=0	
⇒x-y-6=0(ii)	1/2
Solving (i) and (ii) we get x=30 and y=24	1
Putting the values of x and y in equation (i), we obtain	
Distance = (30×24) km = 720 km.	1/
Hence, the length of the journey is 720km.	1/2
OR	
Let the number of chocolates in lot A be x	1/2
And let the number of chocolates in lot B be y	7/2
∴ total number of chocolates =x+y	
Price of 1 chocolate = $\frac{2}{3}$ x so for x chocolates = $\frac{2}{3}$ x	
and price of y chocolates at the rate of ₹ 1 per chocolate =y.	
∴ by the given condition $\frac{2}{3}x + y = 400$	
\Rightarrow 2x+3y=1200(i)	1/2
Similarly $x + \frac{4}{5}y = 460$	
⇒5x+4y=2300 (ii)	1/2
Solving (i) and (ii) we get	
x=300 and y=200	
$\therefore x+y=300+200=500$	1
So, Anuj had 500 chocolates.	1/2
LHS: $\frac{\sin^3\theta/\cos^3\theta}{1+\sin^2\theta/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{1+\cos^2\theta/\sin^2\theta}$	1/2
	Distance covered is xy km If the speed is increased by 6 km/hr, then time of journey is reduced by 4 hours i.e., when speed is $(x+6)$ km/hr, time of journey is $(y-4)$ hours. \therefore Distance covered = $(x+6)(y-4)$ $\Rightarrow xy=(x+6)(y-4)$ $\Rightarrow xy=(x+6)(y-4)$ $\Rightarrow -4x+6y-24=0$ $\Rightarrow -2x+3y-12=0$

$$= \frac{\sin^3\theta/\cos^3\theta}{(\cos^2\theta + \sin^2\theta)/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{(\sin^2\theta + \cos^2\theta)/\sin^2\theta}$$

$$= \frac{\sin^3 \theta}{\cos \theta} + \frac{\cos^3 \theta}{\sin \theta}$$

$$= \frac{\sin^4 \theta + \cos^4 \theta}{\cos \theta \sin \theta}$$
¹/₂

$$= \frac{(\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta}{\cos\theta\sin\theta}$$
¹/₂

$$= \frac{1 - 2\sin^2\theta\cos^2\theta}{\cos\theta\sin\theta}$$

$$= \frac{1}{\cos\theta\sin\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos\theta\sin\theta}$$

$$= \sec\theta \csc\theta - 2\sin\theta \cos\theta$$

$$= RHS$$
¹/₂

30

Let ABCD be the rhombus circumscribing the circle with centre O, such that AB, BC, CD and DA touch the circle at points P, Q, R and S respectively.

We know that the tangents drawn to a circle from an exterior point are equal in length.

$$\therefore AP = AS....(1)$$

$$BP = BQ....(2)$$

$$CR = CQ \dots (3)$$

$$DR = DS....(4).$$

Adding (1), (2), (3) and (4) we get

AP+BP+CR+DR = AS+BQ+CQ+DS

$$(AP+BP) + (CR+DR) = (AS+DS) + (BQ+CQ)$$

$$\therefore AB+CD=AD+BC----(5)$$

putting in (5) we get, 2AB=2AD

or
$$AB = AD$$
.

Since a parallelogram with equal adjacent sides is a rhombus, so ABCD is a rhombus

1/2

1

1

1/2

OR

Join OC

In \triangle OPA and \triangle OCA

OP = OC (radii of same circle)

PA = CA (length of two tangents from an external point)

AO = AO (Common)

Therefore, \triangle OPA \cong \triangle OCA (By SSS congruency criterion)

1

1/2

Hence, $\angle 1 = \angle 2$ (CPCT)

Similarly $\angle 3 = \angle 4$

 $\angle PAB + \angle QBA = 180^{\circ}$ (co interior angles are supplementary as $XY \parallel X'Y'$)

 $2\angle 2 + 2\angle 4 = 180^{\circ}$

 $\angle 2 + \angle 4 = 90^{\circ}$ (1)

 $\angle 2 + \angle 4 + \angle AOB = 180^{\circ}$ (Angle sum property)

Using (1), we get, $\angle AOB = 90^{\circ}$

31 (i) P (At least one head) = $\frac{3}{4}$

(ii) P(At most one tail) = $\frac{3}{4}$

(iii) P(A head and a tail) = $\frac{2}{4} = \frac{1}{2}$

SECTION D

32 Let the time taken by larger pipe alone to fill the tank= x hours Therefore, the time taken by the smaller pipe = x+10 hours

Water filled by larger pipe running for 4 hours = $\frac{4}{x}$ litres

Water filled by smaller pipe running for 9 hours = $\frac{9}{x+10}$ litres

We know that 1 Which on simplification gives: 1 $x^2-16x-80=0$ $x^2-20x+4x-80=0$ x(x-20) + 4(x-20) = 0(x +4)(x-20)=01 x=-4,20x cannot be negative. 1/2 Thus, x=201/2 x+10=30Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the 1/2 tank alone in 30 hours. OR Let the usual speed of plane be x km/hr 1/2 and the reduced speed of the plane be (x-200) km/hr Distance = 600 km [Given] According to the question, (time taken at reduced speed) - (Schedule time) = 30 minutes = 0.5 hours. 1 $\frac{600}{x-200} - \frac{600}{x} = \frac{1}{2}$ Which on simplification gives: 1 $x^2 - 200x - 240000 = 0$ $x^2 - 600x + 400x - 240000 = 0$ x(x-600) + 400(x-600) = 0(x-600)(x+400) = 01 x=600 or x=-4001/2 But speed cannot be negative. 1/2 ∴ The usual speed is 600 km/hr and $\frac{1}{2}$ the scheduled duration of the flight is $\frac{600}{600}$ =1hour

33 For the Theorem :

Given, To prove, Construction and figure

11/2

Proof

11/2

1/2

Let ABCD be a trapezium DC||AB and EF is a line parallel to AB and hence to DC.

To prove : $\frac{DE}{EA} = \frac{CF}{FB}$

Construction: Join AC, meeting EF in G.

Proof:

In \triangle ABC, we have

GF||AB

$$CG/GA=CF/FB$$
 [By BPT](1)

 $\frac{1}{2}$

1/2

1

1

1

In \triangle ADC, we have

$$\frac{DE}{EA} = \frac{CF}{FB}$$

34. Radius of the base of cylinder (r) = 2.8 m = Radius of the base of the cone (r)

Height of the cylinder (h)=3.5 m

Height of the cone (H)=2.1 m.

Slant height of conical part (1)= $\sqrt{r^2+H^2}$

$$=\sqrt{(2.8)^2+(2.1)^2}$$

$$=\sqrt{7.84+4.41}$$

$$=\sqrt{12.25}=3.5 \text{ m}$$

Area of canvas used to make tent = CSA of cylinder + CSA of cone

$$= 2 \times \pi \times 2.8 \times 3.5 + \pi \times 2.8 \times 3.5$$

$$=61.6+30.8$$

$$=92.4m^2$$

Cost of 1500 tents at ₹120 per sq.m

$$= 1500 \times 120 \times 92.4$$

$$= 16,632,000$$

Share of each school to set up the tents = 16632000/50 = ₹332,640

OR

First Solid

Second Solid

SA for first new solid (S_1) :

$$6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$$

$$= 294 + 77 - 38.5$$

 $= 332.5 \text{cm}^2$

SA for second new solid (S₂):

$$6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$$

$$=294+77-38.5$$

 $= 332.5 \text{ cm}^2$

So S_1 : $S_2 = 1:1$

Volume for first new solid (V₁)= $7 \times 7 \times 7 - \frac{2}{3}\pi \times 3.5^3$ = $343 - \frac{539}{6} = \frac{1519}{6}$ cm³ Volume for second new solid (V₂)= $7 \times 7 \times 7 + \frac{2}{3}\pi \times 3.5^3$ = $343 + \frac{539}{6} = \frac{2597}{6}$ cm³ (ii)

$$= 343 - \frac{539}{6} = \frac{1519}{6} \text{ cm}^3$$

$$=343 + \frac{539}{6} = \frac{2597}{6} \text{ cm}^3$$

1/2

1

1

1

1

1

Median = 525, so Median Class = 500 - 60035

Class interval	Frequency	Cumulative Frequency
0-100	2	2
100-200	5	7
200-300	X	7+x
300-400	12	19+x
400-500	17	36+x
500-600	20	56+x
600-700	у	56+x+y
700-800	9	65+x +y
800-900	7	72+x+y
900-1000	4	76+x+y

11/2

$$76+x+y=100 \Rightarrow x+y=24 \dots (i)$$

$$Median = 1 + \frac{\frac{n}{2} - cf}{f} \times h$$

1

1

Since, l=500, h=100, f=20, cf=36+x and n=100

Therefore, putting the value in the Median formula, we get;

$$525 = 500 + \frac{50 - (36 + x)}{20} \times 100$$

so x = 9

y = 24 - x (from eq.i)

$$y = 24 - 9 = 15$$

Therefore, the value of x = 9

1/2 1/2 and y = 15.

36 (i) B(1,2), F(-2,9) $BF^2 = (-2-1)^2 + (9-2)^2$ $= (-3)^2 + (7)^2$ =9+49= 58So, BF = $\sqrt{58}$ units

Point of intersection of diagonals of a rectangle is the mid point of the diagonals. So the required point is mid point of WO or XP

$$=\left(\frac{-6+5}{2}, \frac{2+9}{2}\right)$$

$$=\left(\frac{-1}{2}, \frac{11}{2}\right)$$

(iii) A(-2,2), G(-4,7)
Let the point on y-axis be
$$Z(0,y)$$
 $\frac{1}{2}$
 $AZ^2 = GZ^2$ $\frac{1}{2}$

$$(0+2)^{2} + (y-2)^{2} = (0+4)^{2} + (y-7)^{2}$$

$$(2)^{2} + y^{2} + 4 - 4y = (4)^{2} + y^{2} + 49 - 14y$$

$$8-4y = 65-14y$$

$$10y = 57$$
So, $y = 5.7$
i.e. the required point is $(0, 5.7)$

OR

A(-2,2), F(-2,9), G(-4,7), H(-4,4)
Clearly GH = 7-4=3units
AF = 9-2=7 units
So, height of the trapezium AFGH = 2 units
So, area of AFGH =
$$\frac{1}{2}$$
(AF + GH) x height
= $\frac{1}{2}$ (7+3) x 2
= 10 sq. units

37. (i) Since each row is increasing by 10 seats, so it is an AP with first term a= 30, and common difference d=10.

So number of seats in 10^{th} row = a_{10} = a+9d

$$= 30 + 9 \times 10 = 120$$
¹/₂

(ii)
$$S_n = \frac{n}{2}(2a + (n-1)d)$$

 $1500 = \frac{n}{2}(2 \times 30 + (n-1)10)$
 $3000 = 50n + 10n^2$
 $n^2 + 5n - 300 = 0$

$$n^2 + 5n - 300 = 0$$

 $n^2 + 20n - 15n - 300 = 0$

$$(n+20) (n-15) = 0$$

Rejecting the negative value, n=15OR

No. of seats already put up to the 10^{th} row = S_{10} $S_{10} = \frac{10}{2} \{2 \times 30 + (10-1)10\}$ $\frac{1}{2}$

= 5(60 + 90) = 7501/2 1/2

So, the number of seats still required to be put are 1500 - 750 = 750

(iii) If no. of rows =17

then the middle row is the 9th row 1/2

 $a_8 = a + 8d$ = 30 + 80

1/2 = 110 seats

1

1/2

1/2

38 (i)

P and Q are the two positions of the plane flying at a height of $3000\sqrt{3}$ m. A is the point of observation.

(ii) In \triangle PAB, $tan60^{\circ} = PB/AB$

Or $\sqrt{3} = 3000\sqrt{3} / AB$

So AB=3000m 1

 $\tan 30^{\circ} = QC/AC$ $1/\sqrt{3} = 3000\sqrt{3} / AC$

AC = 9000m1/2

distance covered = 9000-3000

= 6000 m.1/2

OR

In \triangle PAB, $tan60^{\circ} = PB/AB$

Or $\sqrt{3} = 3000\sqrt{3} / AB$

So AB=3000m $tan45^{\circ} = RD/AD$

 $1 = 3000\sqrt{3} / AD$

1/2

$AD = 3000\sqrt{3} \text{ m}$ $distance covered = 3000\sqrt{3} - 3000$	1,	/2
$= 3000(\sqrt{3} - 1)$ m.	,	-
(iii) speed = 6000/30	1,	/2
= 200 m/s		
$= 200 \times 3600/1000$	1,	/2
= 720km/hr		
Alternatively: speed = $\frac{3000(\sqrt{3}-1)}{15(\sqrt{3}-1)}$,
	1/	/2
= 200 m/s		
$= 200 \times 3600/1000$	1,	/2
=720km/hr		