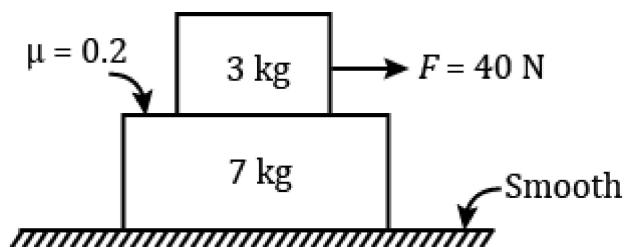


Friction

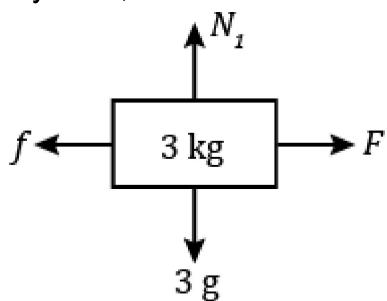
Date: 22/06/2023

Subject: Other


Class: Standard XII

Topic : Friction

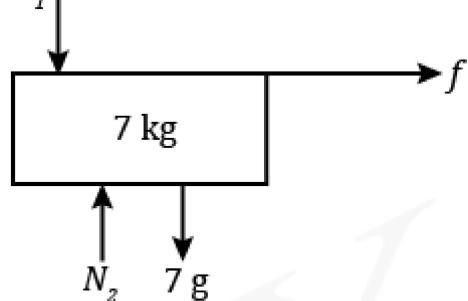
Time: 00:20 hrs


1. Find the frictional force between the two blocks. Take $g = 10 \text{ m/s}^2$.

- A. 6 N
- B. 28 N
- C. 30 N
- D. 70 N

Friction

By FBD,

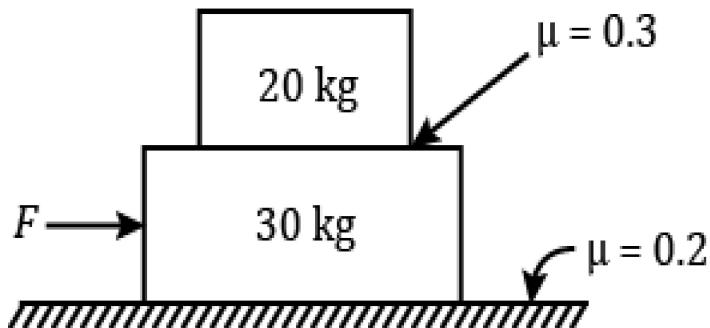

In y - direction,

$$N_1 = 3g$$

$$f_{\max} = \mu N_1 = (0.2)(3g)$$

$$= 6 \text{ N}$$

$$N_1$$


Assume them to move together with common acceleration,

$$a_c = \frac{F}{m_1 + m_2} = \frac{40}{10} = 4 \text{ m/s}^2$$

For 7 kg body: $f = 7a_c = 28 \text{ N}$ is required to make them move together, which is not possible because maximum force supplied by friction is f_{\max} which is equal to 6 N. Hence the blocks moves separately and the friction is kinetic in nature and equals to limiting friction in this case.

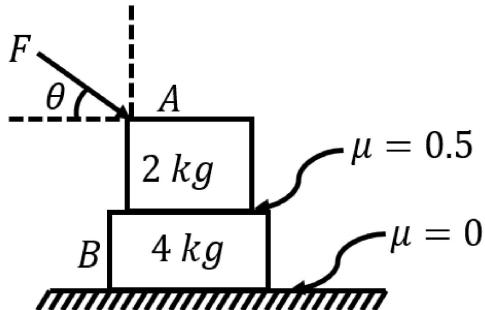
Friction

2. Find the maximum force F to be applied for the system shown, so that the two blocks move together. Take $g = 10 \text{ m/s}^2$.

- A. 500 N
- B. 250 N
- C. 150 N
- D. 300 N

We know that by formula,

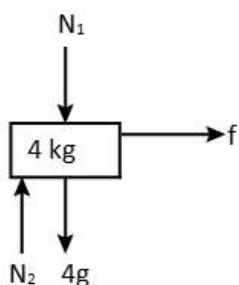
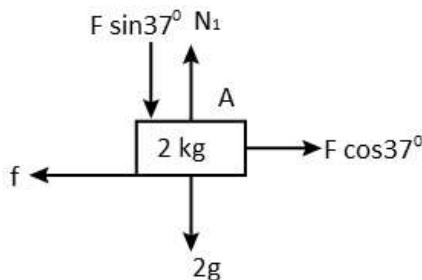
$$F = (m_1 + m_2)(\mu_1 g + a_s) \quad \text{Where } a_s = \mu_2 g$$


$$(m_1 = 30 \text{ kg}; m_2 = 20 \text{ kg}; \mu_1 = 0.2; \mu_2 = 0.3)$$

$$= (50)(0.5)10 = 250 \text{ N}$$

Hence the maximum force is for the system (Both blocks) to move together is 250 N

Friction



3. If the system is initially at rest. Find the acceleration of 2 kg and 4 kg masses, where it is given that 2 kg mass does not slide on 4 kg mass for the figure shown. The external force F acting on the mass 2 kg at an angle $\theta = 37^\circ$. (Take $g = 10\text{ m/s}^2$)

- A. $a_A = a_B = \frac{4}{3}\text{ m/s}^2$
- B. $a_A = a_B = \frac{8}{3}\text{ m/s}^2$
- C. $a_A = a_B = \frac{3}{4}\text{ m/s}^2$
- D. $a_A = a_B = \frac{10}{3}\text{ m/s}^2$

Friction

The FBDs of the masses are as shown

from the FBD we have

$$N_1 = F \sin 37^\circ + 2g = \left(\frac{3F}{5} + 20 \right) \text{ N}$$

As per the given condition i.e. mass 2 kg will not slide on the mass 4 kg, we have

$$\text{Limiting friction } f_{\max} = \mu N_1 = 0.5 \left(\frac{3F}{5} + 20 \right) \text{ N}$$

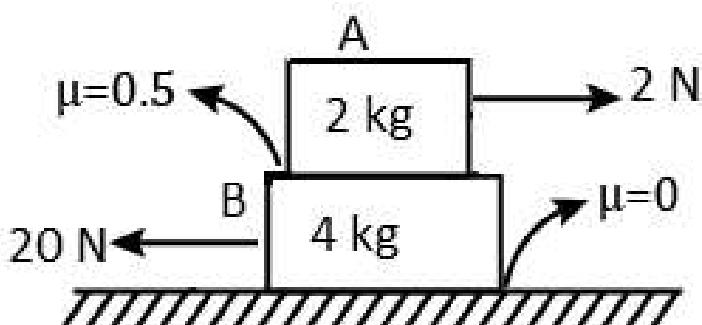
Also, Horizontal applied force $\leq f_{\max}$

$$\Rightarrow F \cos 37^\circ \leq 0.5 \left(\frac{3F}{5} + 20 \right)$$

$$\Rightarrow \frac{4F}{5} \leq 0.5 \left(\frac{3F}{5} + 20 \right)$$

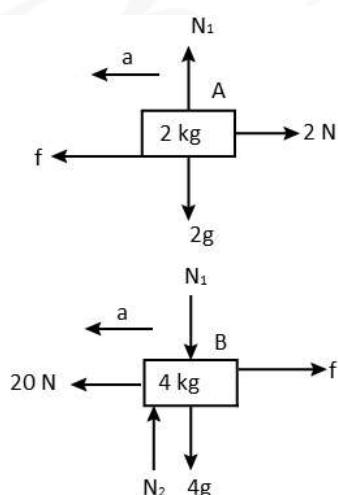
$$\Rightarrow \left(\frac{4F}{5} - \frac{3F}{10} \right) \leq 10$$

$$\Rightarrow F \leq 20 \text{ N}$$


Thus, the maximum value of applied external force can be $F_{\max} = 20 \text{ N}$

\therefore common acceleration of the masses is

$$a_c = \frac{F \cos 37^\circ}{m_A + m_B} = \frac{20 \times 0.8}{6} = \frac{16}{6} = \frac{8}{3} \text{ m/s}^2$$


Friction

4. In the arrangement shown in the figure, the coefficient of friction between the two blocks is $\mu = 0.5$ and the surface is smooth. The force of friction acting between the two blocks is

- A. 10 N
- B. 12 N
- C. 8 N
- D. 4 N

The FBDs of the blocks are as shown

From the FBD we have

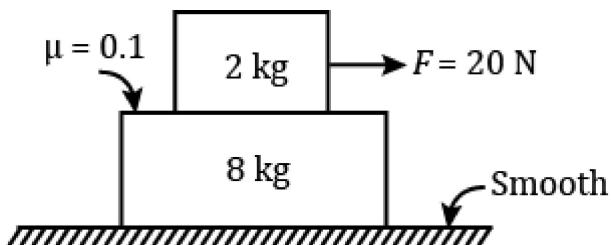
$$N_1 = 2g = 20 \text{ N}$$

Maximum friction between the two blocks is

$$f_{\max} = \mu N_1 = 0.5 \times 20 = 10 \text{ N}$$

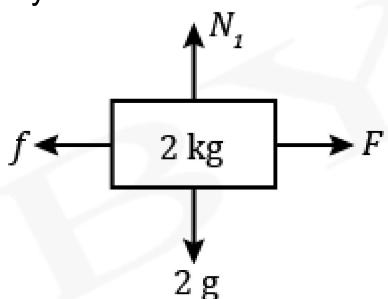
Let us assume that the blocks move together towards left with the common acceleration. Then,

$$a = \frac{f - 2}{2} = \frac{20 - f}{4}$$


$$\Rightarrow 2f - 4 = 20 - f \Rightarrow f = 8 \text{ N}$$

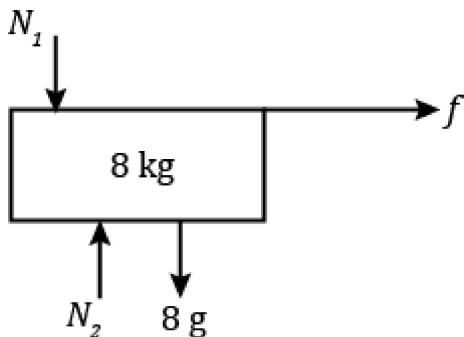
Since, $8 \text{ N} < 10 \text{ N}$ i.e. $f < f_{\max}$, our assumption is right.

Hence, friction between the two blocks is $f = 8 \text{ N}$


Friction

5. Find the frictional force between the two blocks. Take $g = 10 \text{ m/s}^2$.

A. 2 N
 B. 1.5 N
 C. 1 N
 D. 3 N


By FBD we write the force equation,

$$N_1 = 2g = 20 \text{ N}$$

$$f_{\max} = \mu N_1 = 0.1 \times 20$$

$$= 2 \text{ N}$$

Assume them to move together with common acceleration

$$a_c = \frac{F}{m_1 + m_2} = \frac{20}{10} = 2 \text{ m/s}^2$$

For 8 kg body: $f = 8a_c = 16 \text{ N}$ is required to make them move together. But maximum frictional force act between two surface is equal to limiting friction ($f_{\max} = 2 \text{ N}$). Hence, the blocks separate and frictional force act between two surfaces is equal to 2 N.