

Circular Motion L2

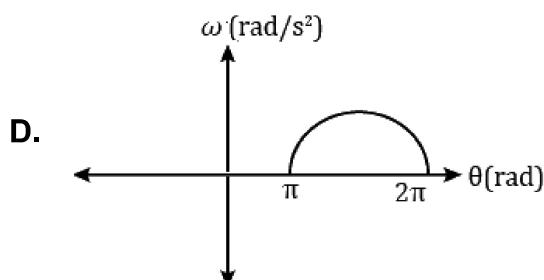
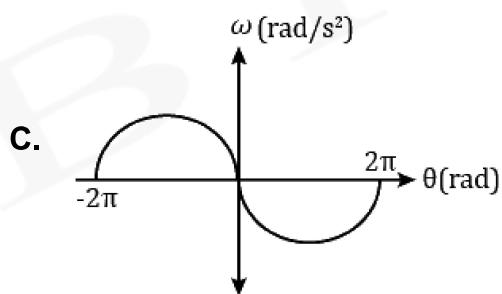
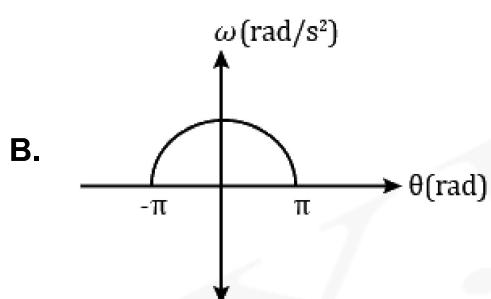
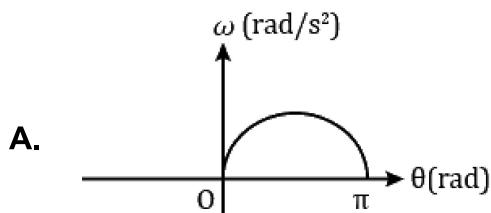
Disclaimer: Physics

Date: 23/09/2022

Subject: Physics

Topic : Tangential and Centripetal Acceleration

Class: Standard XI





Time: 00:20 hrs

1. A particle is initially at rest, moves along in a circle of radius $R = 2 \text{ m}$ with an angular acceleration $\alpha = \frac{\pi}{8} \text{ rad/sec}^2$. The magnitude of average velocity of the particle over the time it moves by half of the circle is
 - A. 4 m/s
 - B. 3 m/s
 - C. 2 m/s
 - D. 1 m/s

2. A particle is moving along a circular path of radius 5 cm , at a speed of $v = 5t^2$, where v is in cm/s and t is in seconds. The magnitudes of tangential acceleration and total acceleration (in mm/s^2) of the particle at time $t = 2 \text{ s}$ are
 - A. 200 and 825
 - B. 20 and 800
 - C. 200 and 1000
 - D. 100 and 825

Circular Motion L2

3. A solid body starts from rest. Angular acceleration of the body spinning about a stationary axis is given by $\alpha = 2 \cos \theta$ (in rad/s^2) where θ is the angle of rotation from initial position. Then which of the following graphs correctly represents the variation of angular velocity with respect to θ ?

Circular Motion L2

4. In a beyblade game, the beyblade has an initial angular speed of 180 rpm. It slows down and eventually comes to rest in a time of 5 minutes. The average angular acceleration of the beyblade is

- A. $\frac{\pi}{30} \text{ rad/s}^2$
- B. $\frac{\pi}{40} \text{ rad/s}^2$
- C. $\frac{\pi}{50} \text{ rad/s}^2$
- D. $\frac{\pi}{70} \text{ rad/s}^2$

5. A pulley wheel of diameter 2 cm has a 1 m long cord strapped across its periphery. The wheel is initially at rest. If it is given an angular acceleration of 0.1 rad/s^2 , then the time taken for the cord to unwind completely is

- A. 20 s
- B. $20\sqrt{3} \text{ s}$
- C. $20\sqrt{5} \text{ s}$
- D. $10\sqrt{10} \text{ s}$