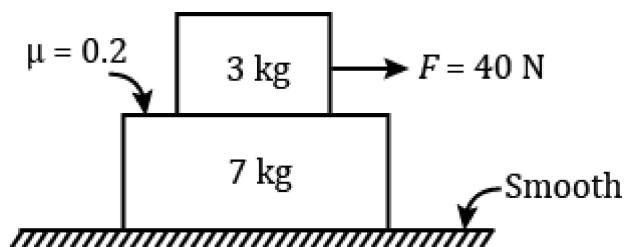


Friction

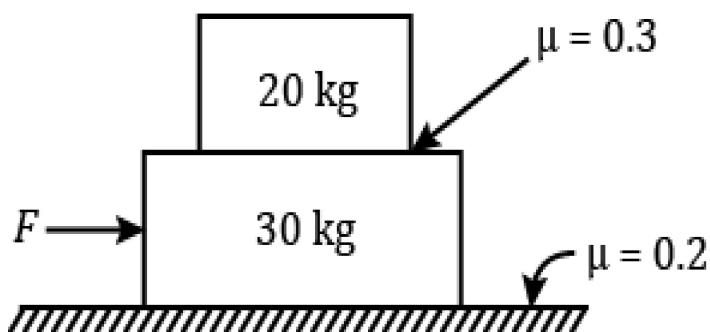
Date: 22/06/2023

Subject: Other


Class: Standard XII

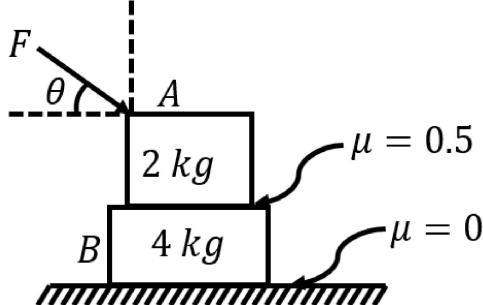
Topic : Friction

Time: 00:20 hrs

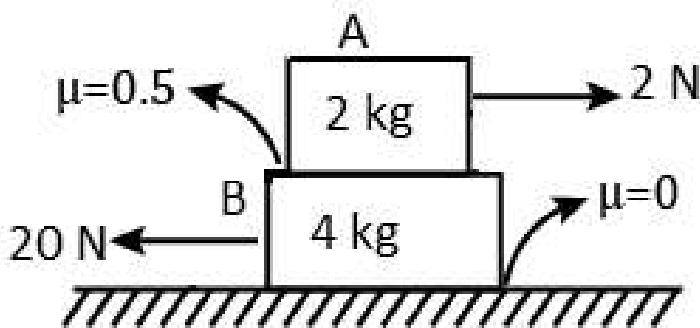


1. Find the frictional force between the two blocks. Take $g = 10 \text{ m/s}^2$.

A. 6 N
B. 28 N
C. 30 N
D. 70 N

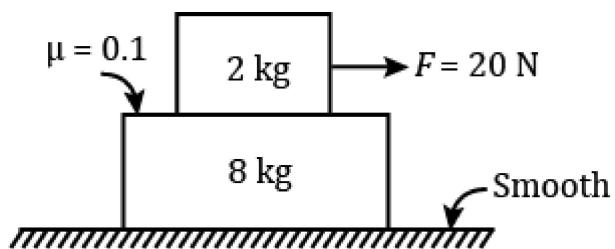

2. Find the maximum force F to be applied for the system shown, so that the two blocks move together. Take $g = 10 \text{ m/s}^2$.

A. 500 N
B. 250 N
C. 150 N
D. 300 N


Friction

3. If the system is initially at rest. Find the acceleration of 2 kg and 4 kg masses, where it is given that 2 kg mass does not slide on 4 kg mass for the figure shown. The external force F acting on the mass 2 kg at an angle $\theta = 37^\circ$. (Take $g = 10\text{ m/s}^2$)

- A. $a_A = a_B = \frac{4}{3}\text{ m/s}^2$
- B. $a_A = a_B = \frac{8}{3}\text{ m/s}^2$
- C. $a_A = a_B = \frac{3}{4}\text{ m/s}^2$
- D. $a_A = a_B = \frac{10}{3}\text{ m/s}^2$


4. In the arrangement shown in the figure, the coefficient of friction between the two blocks is $\mu = 0.5$ and the surface is smooth. The force of friction acting between the two blocks is

- A. 10 N
- B. 12 N
- C. 8 N
- D. 4 N

Friction

5. Find the frictional force between the two blocks. Take $g = 10 \text{ m/s}^2$.

- A. 2 N
- B. 1.5 N
- C. 1 N
- D. 3 N