

JEE Main Maths Functions Previous Year Questions With Solutions

Question 1:

The total number of functions, $f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6\}$ such that f(1) + f(2) = f(3), is equal to (A) 60

- (B) 90
- (C) 108
- (D) 126

Solution:

Case 1:

If f(3) = 3 then f(1) and f(2) take 1 OR 2

Number of ways = 2×6

= 12

Case 2:

If f(3) = 5 then f(1) and f(2) take 2 OR 3

OR 1 and 4

Number of ways = $2 \times 6 \times 2$

= 24

Case 3:

If f(3) = 2

then f(1) = f(2) = 1

Number of ways = 6

Case 4:

If f(3) = 4 then f(1) = f(2) = 2

Number of ways = 6

OR f(1) and f(2) take 1 and 3

Number of ways = 12

Case 5:

If f(3) = 6 then f(1) = f(2) = 3 => 6 ways

OR f(1) and f(2) take 1 and 5 => 12 ways

OR f(2) and f(1) take 2 and 4 => 12 ways

Total number of functions = 12 + 24 + 6 + 6 + 12 + 6 + 12 + 12

= 90

Hence, option (B) is the answer.

Question 2:

Let f be any function defined on R and let it satisfy the condition: $|f(x) - f(y)| \le |(x - y)^2|$, $\forall x, y \in R$. If f (0) = 1, then:

- (A) f(x) < 0, $\forall x \in R$
- (B) f (x) can take any value in R

(C)
$$f(x) = 0$$
, $\forall x \in R$

(D)
$$f(x) > 0$$
, $\forall x \in R$

Solution:

Given that $|f(x) - f(y)| \le |(x - y)^2|$, $\forall x, y \in R$

 $|[f(x) - f(y)] / [(x - y)]| \le |x - y|$

 $\lim_{x\to y} |[f(x) - f(y)] / [(x - y)]| \le 0$

 $|f'(y)| \leq 0$

f'(y) = 0

f(y) = c

As f(0) = 1, f(y) = 1, for all y belongs to R.

 $\Rightarrow f(x) = 1$

Hence, option (D) is the answer.

Question 3:

The sum of the maximum and minimum values of the function $f(x) = |5x - 7| + [x^2 + 2x]$ in the interval [5/4, 2], where [t] is the greatest integer \leq t, is

Solution:

Given that $f(x) = |5x - 7| + [x^2 + 2x]$

 $= |5x - 7| + [(x + 1)^{2}] - 1$

Critical points of f(x) = 7/5, $\sqrt{5} - 1$, $\sqrt{6} - 1$, $\sqrt{7} - 1$, $\sqrt{8} - 1$, 2

The minimum or maximum value of f(x) occurs at critical points.

So $f(5/4) = (\frac{3}{4}) + 4$

= 19/4

f(7/5) = 0 + 4 = 4

Since both |5x - 7| and $x^2 + 2x$ are increasing in nature after x = 7/5.

So, f(2) = 3 + 8

= 11

 $f(7/5)_{min} = 4$

 $f(2)_{max} = 11$

Therefore the sum of the maximum and minimum values of the function f(x) = 4 + 11 = 15

Question 4:

Let f: R \rightarrow R be a continuous function such that f(3x) - f(x) = x. If f(8) = 7, then f(14) is equal to

- (A) 4
- (B) 10
- (C) 11
- (D) 16

Solution:

Given that f(3x) - f(x) = x ...(1)

$$x \rightarrow x/3$$

$$\Rightarrow$$
 f(x) - f(x/3) = x/3 ...(2)

Again
$$x \rightarrow x/3$$

$$\Rightarrow$$
 f(x/3) - f(x/9) = x/3² ...(3)

Similarly,

$$f(x/3^{n-2}) - f(x/3^{n-1}) = x/3^{n-1}$$
 ...(n)

Adding above equations and put n→ ∞

$$\lim_{n\to\infty} [f(3x) - f(x/3^{n-1})] = x(1 + \frac{1}{3} + \frac{1}{3^2} + \dots)$$

$$f(3x) - f(0) = 3x/2$$

Put
$$x = 8/3$$

$$f(8) - f(0) = 4$$

Given that f(8) = 7

So
$$f(0) = 3$$

Put
$$x = 14/3$$

$$f(14) - 3 = 7$$

$$\Rightarrow$$
 f(14) = 10

Hence, option (B) is the answer.

Question 5:

Let $f: R \to R$ be defined as f(x) = 2x-1 and $g: R - \{1\} \to R$ be defined as $g(x) = (x-\frac{1}{2})/(x-1)$. Then the composition function f(g(x)) is:

- (A) Both one-one and onto
- (B) onto but not one-one
- (C) Neither one-one nor onto
- (D) one-one but not onto

Solution:

Given that f(x) = 2x-1

$$g(x) = (x-\frac{1}{2})/(x-1)$$

$$f(g(x)) = 2g(x) - 1$$

$$= 2[(x - 1/2)/(x - 1)] - 1$$

$$= x/(x - 1)$$

$$f(g(x)) = 1 + 1/(x - 1)$$

So the function is one-one but not onto.

Hence, option (D) is the answer.

Question 6:

If f: $R \rightarrow R$ is a function defined by $f(x) = [x - 1] \cos ((2x - 1)/2)\pi$, where [.] denotes the greatest integer function, then f is:

- (A) discontinuous only at x = 1
- (B) discontinuous at all integral values of x except at x = 1
- (C) continuous only at x = 1
- (D) continuous for every real x

Solution:

Given that $f(x) = [x - 1] \cos ((2x - 1)/2)\pi$

Doubtful points are x = n, n∈I

We find the LHL and RHL.

LHL = $\lim_{x\to n} [x - 1] \cos((2x - 1)/2)\pi$

 $= (n-2) \cos((2n - 1)/2)\pi$

= 0

RHL = $\lim_{x\to n+} [x - 1] \cos((2x - 1)/2)\pi$

 $= (n-1) \cos((2n-1)/2)\pi$

= 0

 \Rightarrow f(n) = 0

 \Rightarrow continuous for every real x.

Hence, option (D) is the answer.

Question 7:

The function $f(x) = ((4x^3 - 3x^2)/6) - 2\sin x + (2x - 1)\cos x$

(A) increases in [1/2, ∞)

(B) decreases (-∞, 1/2]

(C) increases in (-∞, 1/2]

(D) decreases [1/2, ∞)

Solution:

Given that $f(x) = ((4x^3 - 3x^2)/6) - 2\sin x + (2x - 1)\cos x$

 $f'(x) = (2x^2 - x) - 2\cos x + 2\cos x - \sin x(2x-1)$

 $= (2x - 1) (x - \sin x)$

When x>0, $x - \sin x > 0$

When x < 0, $x - \sin x < 0$

 $f'(x) \ge 0$ in $x \in (-\infty, 0] \cup [1/2, \infty)$

and $f'(x) \le 0$ in $x \in [0, \frac{1}{2}]$

 \Rightarrow f(x) increases in [1/2, ∞).

Hence, option (A) is the answer.

Question 8:

Let $f: R \to R$ be defined as

$$f(x) = \begin{cases} -55x & if x < -5\\ 2x^3 - 3x^2 - 120x & if -5 \le x \le 4\\ 2x^3 - 3x^2 - 36x - 336 & if x > 4 \end{cases}$$

Let $A = \{x \in R : f \text{ is increasing}\}$. Then A is equal to:

 $(A) (-5, -4) \cup (4, \infty)$

(B) (-5, ∞)

(C) (-∞, -5) ∪ (4, ∞)

(D) (-∞, -5) U (-4, ∞)

Solution:

Given

$$f(x) = \begin{cases} -55x & if x < -5\\ 2x^3 - 3x^2 - 120x & if -5 \le x \le 4\\ 2x^3 - 3x^2 - 36x - 336 & if x > 4 \end{cases}$$

$$f'(x) = \{-55 \; ; \; x < -5; \; 6(x^2 - x - 20) \; ; \; -5 < x < 4; \; 6(x^2 - x - 6) \; ; \; x > 4$$

=
$$\{-55; x < -5; 6(x - 5)(x + 4); -5 < x < 4; 6(x - 3)(x + 2); x > 4\}$$

Hence, f(x) is monotonically increasing in (-5, -4) \cup (4, ∞)

Hence, option (A) is the answer.

Question 9:

Let f, g: $N \rightarrow N$ such that f(n + 1) = f(n) + f(1) for all $n \in N$ and g be any arbitrary function. Which of the following statements is NOT true?

(A) f is one-one

(B) If fog is one-one, then g is one-one

(C) If g is onto, then fog is one-one

(D) If f is onto, then f(n) = n for all $n \in N$

Solution:

Given that f(n + 1) = f(n) + f(1)

$$=> f(n + 1) - f(n) = f(1)$$

This implies an A.P. with common difference = f(1)

Here, the general term = $T_n = f(1) + (n-1)f(1)$

= nf(1)

$$f(n) = nf(1)$$

Therefore, f(n) is one-one.

For fog to be one-one, g should be one-one.

For f to be onto, f(n) must take all the values of natural numbers.

Since f(x) is increasing, f(1) = 1

$$f(n) = n$$

If g is many one, then fog is many one.

So the statement "if g is onto, then fog is one-one" is not true.

Hence, option (C) is the answer.

Question 10:

Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions from the set A to the set A \times B. Then:

- (A) y = 273x
- (B) 2y = 91x
- (C) y = 91x
- (D) 2y = 273x

Solution:

Number of elements in A, n(A) = 3

Number of elements in B, n(B) = 5

Number of elements in $A \times B = 15$

Number of one-one function is $x = 5 \times 4 \times 3$

x = 60

Number of one-one function is $y = 15 \times 14 \times 13$

 $y = 15 \times 4 \times (14/4) \times 13$

 $y = 60 \times 7/2 \times 13$

2y = (13)(7x)

2y = 91x

Hence, option (B) is the answer.

Question 11:

The number of bijective functions $f : \{1, 3, 5, 7, ..., 99\} \rightarrow \{2, 4, 6, 8,, 100\}$ such that $f(3) \ge f(9) \ge f(15) \ge f(21) \ge \ge f(99)$, is

- $(A)^{50}P_{17}$
- (B) ${}^{50}P_{33}$
- (C) 33! ×17!
- (D) 50!/2

Solution:

Since the function is one-one and onto, out of 50 elements of domain set 17 elements are following restriction

 $f(3) > f(9) > f(15) \dots > f(99)$

Therefore the number of ways = ${}^{50}C_{17} \times 1 \times 33!$

 $= {}^{50}P_{33}$

Hence, option (B) is the answer.

Question 12:

If $g(x) = x^2 + x - 1$ and $(gof)(x) = 4x^2 - 10x + 5$, then f(5/4) is equal to

- (A) -3/2
- (B) 1/2
- (C) 1/2
- (D) 3/2

Solution:

Given that
$$g(x) = x^2 + x - 1$$

 $gof(x) = 4x^2 - 10x + 5$
 $g(f(5/4)) = 4 \times (5/4)^2 - 10 \times (5/4) + 5$
 $= (25/4) - (25/2) + 5$
 $= (-25/4) + 5$
 $= -5/4$
 $g(f(x)) = (f(x))^2 + f(x) - 1$
 $g(f(5/4)) = (f(5/4))^2 + f(5/4) - 1$
 $-5/4 = (f(5/4))^2 + f(5/4) - 1$
 $(f(5/4))^2 + f(5/4) + (1/4) = 0$
 $=> [f(5/4) + (1/2)]^2 = 0$
 $=> f(5/4) = -1/2$
Hence, option (B) is the answer.