

Miscellaneous Exercise

Page No: 29

1. Let f : R \rightarrow R be defined as f(x) = 10x + 7. Find the function g : R \rightarrow R such that g o f = f o g = I_R.

Solution:

Firstly, Find the inverse of f. Let say, g is inverse of f and y = f(x) = 10x + 7

y = 10x + 7

or x = (y-7)/10

or g(y) = (y-7)/10; where $g : Y \rightarrow N$

Now, gof = g(f(x)) = g(10x + 7)

 $=\frac{(10x+7)-7}{10}$

= X

= I_R

Again, fog = f(g(x)) = f((y-7)/10)

= 10((y-7)/10) + 7

= y - 7 + 7 = y

 $= I_R$

Since $g \circ f = f \circ g = I_R$. f is invertible, and

Inverse of f is x = g(y) = (y-7)/10

2. Let f : W \rightarrow W be defined as f(n) = n - 1, if n is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Solution:

 $f:W\rightarrow W$ be defined as f(n) = n-1, if n is odd and f(n) = n + 1, if n is even.

Function can be defined as:

 $f(n) = \begin{cases} n-1, & \text{if } n \text{ is odd} \\ n+1, & \text{if } n \text{ is even} \end{cases}$

f is invertible, if f is one-one and onto.

For one-one:

```
There are 3 cases:
for any n and m two real numbers:
```

Case 1: n and m : both are odd

 $\begin{array}{l} f(n) = n + 1 \\ f(m) = m + 1 \\ lf f(n) = f(m) \\ => n + 1 = m + 1 \\ => n = m \end{array}$

Case 2: n and m : both are even

f(n) = n - 1 f(m) = m - 1 If f(n) = f(m) => n - 1 = m - 1=> n = m

Case 3: n is odd and m is even

 $\begin{array}{l} f(n) = n + 1 \\ f(m) = m - 1 \\ If f(n) = f(m) \\ => n + 1 = m - 1 \\ => m - n = 2 \ (not \ true, \ because \ Even - \ Odd \neq Even \) \end{array}$

Therefore, f is one-one

Check for onto:

$$f(n) = \begin{cases} n-1, & \text{if } n \text{ is odd} \\ n+1, & \text{if } n \text{ is even} \end{cases}$$

Say f(n) = y, and $y \in W$

Case 1: if n = odd

f(n) = n - 1

n = y + 1Which show, if n is odd, y is even number.

Case 2: If n is even

f(n) = n + 1

y = n + 1

or n = y - 1If n is even, then y is odd.

In any of the cases y and n are whole numbers.

This shows, f is onto.

Again, For inverse of f

 $f^{-1}: y = n - 1$

or n = y + 1 and y = n + 1

 \Rightarrow n = y - 1

 $f^{-1}(n) = \begin{cases} n-1, & \text{if n is odd} \\ n+1, & \text{if n is even} \end{cases}$

Therefore, $f^{-1}(y) = y$. This show inverse of f is f itself.

3. If f : R \rightarrow R is defined by f(x) = x² - 3x + 2, find f (f(x)).

Solution:

Given: $f(x) = x^2 - 3x + 2$

 $f(f(x)) = f(x^2 - 3x + 2)$

 $= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$

 $= x^4 - 6x^3 + 10x^2 - 3x$

4. Show that the function f : R \rightarrow {x \in R : – 1 < x < 1} defined by f(x) = $\frac{x}{1+|x|}$, x \in R is one one and onto function.

Solution:

The function f : R \rightarrow {x \in R : -1 < x < 1} defined by f(x) = $\frac{x}{1+|x|}$, x \in R

For one-one:

Say x, $y \in R$ As per definition of |x|;

$$|x| = \begin{cases} -x, \ x < 0\\ x, \ x \ge 0 \end{cases}$$

So f(x) = $\{\frac{\frac{x}{1-x}}{x}, x < 0 \\ \frac{x}{1+x}, x \ge 0 \}$

For $x \ge 0$

f(x) = x/(1+x)

f(y) = y/(1+y)

If f(x) = f(y), then

$$x/(1+x) = y/(1+y)$$

x(1 + y) = y(1+x)⇒ x= y

For x < 0

$$f(x) = x/(1-x)$$

$$f(y) = y/(1-y)$$

If f(x) = f(y), then

$$x/(1-x) = y/(1-y)$$

In both the conditions, x = y.

Therefore, f is one-one.

Again for onto:

$$f(x) = \{\frac{\frac{x}{1-x}}{\frac{x}{1+x}}, x < 0$$

$$y = f(x) = x/(1-x)$$

y(1-x) = x

or
$$x(1+y) = y$$

or x = y/(1+y) ...(1)

For $x \ge 0$

y = f(x) = x / (1+x)

y(1+x) = x

or $x = y/(1-y) \dots (2)$

Now we have two different values of x from both the case.

Since $y \in \{x \in R : -1 < x < 1\}$ The value of y lies between -1 to 1.

If y = 1

x = y/(1-y) (not defined)

If y = -1

x = y/(1+y) (not defined)

So x is defined for all the values of y, and $x \in R$

This shows that, f is onto.

Answer: f is one-one and onto.

5. Show that the function $f : R \rightarrow R$ given by $f(x) = x^3$ is injective.

Solution:

The function $f : R \rightarrow R$ given by $f(x) = x^3$ Let x , y \in R such that f(x) = f(y)

This implies , $x^3 = y^3$

x = y f is one-one. So f is injective.

6. Give examples of two functions $f : N \rightarrow Z$ and $g : Z \rightarrow Z$ such that g o f is injective but g is not injective. (Hint : Consider f(x) = x and g(x) = |x|)

Solution:

Given: two functions are $f:N\to Z$ and $g:Z\to Z$

Let us say, f(x) = x and g(x) = x

gof = (gof)(x) = f(f(x)) = g(x)

Here gof is injective but g is not. Let us take a example to show that g is not injective: Since g(x) = |x|g(-1) = |-1| = 1 and g(1) = |1| = 1But $-1 \neq 1$

7. Give examples of two functions $f:N\to Z$ and $g:Z\to Z$ such that g o f is injective but g is not injective.

(Hint : Consider f(x) = x +1 and g (x) = $\begin{cases} x - 1 & if \ x > 1 \\ 1 & if \ x = 1 \end{cases}$)

Solution:

Given: Two functions $f:N\to Z$ and $g:Z\to Z$

Say f(x) = x + 1And $g(x) = \begin{cases} x - 1 & if \ x > 1 \\ 1 & if \ x = 1 \end{cases}$

Check if f is onto:

$$f: N \rightarrow N$$
 be $f(x) = x + 1$

say y = x + 1

or x = y - 1

for y = 1, x = 0, does not belong to N

Therefore, f is not onto.

Find gof

For x = 1; gof = g(x + 1) = 1 (since g(x) = 1) For x > 1; gof = g (x + 1) = (x + 1) - 1 = x (since g(x) = x - 1)

So we have two values for gof.

As gof is a natural number, as y = x. x is also a natural number. Hence gof is onto.

8. Given a non empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A \subset B. Is R an equivalence relation on P(X)? Justify your answer.

Solution:

 $A \subseteq A$ \therefore R is reflexive.

 $A \subseteq B \neq B \subseteq A \therefore R$ is not commutative.

If $A \subseteq B$, $B \subseteq C$, then $A \subseteq C \stackrel{\sim}{\rightarrow} R$ is transitive

Therefore, R is not equivalent relation

9. Given a non-empty set X, consider the binary operation $* : P(X) \times P(X) \rightarrow P(X)$ given by A * B = A \cap B \forall A, B in P(X), where P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *.

Solution:

Let T be a non-empty set and P(T) be its power set. Let any two subsets A and B of T.

 $A \cup B \subset T$

So, $A \cup B \in P(T)$

Therefore, \cup is an binary operation on P(T).

Similarly, if A, B \in P(T) and A – B \in P(T), then the intersection of sets and difference of sets are also binary operation on P(T) and A \cap T = A = T \cap A for every subset A of sets

 $A \cap T = A = T \cap A$ for all $A \in P(T)$

T is the identity element for intersection on P(T).

10. Find the number of all onto functions from the set {1, 2, 3,, n} to itself.

Solution:

Step 1: Compute the total number of one-one functions in the set {1, 2, 3} As f is onto, every element of {1, 2, 3} will have a unique pre-image

Element	Number of possible pairings
1	3
2	2
3	1

Total number of one-one function = 3 x 2 x 1 = 6

Step 2 - Compute the total number of onto functions in the given set As f is onto, every element of {1, 2, 3, n} will have a unique pre-image

Element	Number of possible pairings			
1	n			
2	n - 1			
3	n - 2			
n - 1	2			
n	1			
Total number of one-one function				

Total number of one-one function = $n \ge (n - 1) \ge (n - 2) \ge \dots \ge 2 \ge 1$ = n!

Hence, the number of all onto functions from the set {1, 2, 3, n} to itself is n!.

11. Let S = {a, b, c} and T = {1, 2, 3}. Find F^{-1} of the following functions F from S to T, if it exists.

(i) $F = \{(a, 3), (b, 2), (c, 1)\}$ (ii) $F = \{(a, 2), (b, 1), (c, 1)\}$

Solution:

(i) $F = \{(a, 3), (b, 2), (c, 1)\}$ F(a) = 3, F(b) = 2 and F(c) = 1 $F^{-1}(3) = a, F^{-1}(2) = b \text{ and } F^{-1}(1) = c$ $F^{-1} = \{(3, a), (2, b), (1, c)\}$

(ii) $F = \{(a, 2), (b, 1), (c, 1)\}$

Since element b and c have the same image 1 i.e. (b, 1), (c, 1).

Therefore, F is not one-one function.

12. Consider the binary operations $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $o : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as a * b = |a - b| and a $o b = a, \forall a, b \in \mathbb{R}$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that $\forall a, b, c \in \mathbb{R}, a * (b \circ c) = (a * b) \circ (a * c)$. [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.

Solution:

Step 1: Check for commutative and associative for operation *.

a * b = |a - b| and b * a = |b - a| = (a, b)

Operation * is commutative.

 $a^{*}(b^{*}c) = a^{*}|b-c| = |a-(b-c)| = |a-b+c|$ and

 $(a^{*}b)^{*}c = |a-b|^{*}c = |a-b-c|$

Therefore, a*(b*c) ≠ (a*b)*c

Operation * is associative.

Step 2: Check for commutative and associative for operation o.

aob = a \forall a, b \in R and boa = b

This implies aob boa

Operation o is not commutative.

Again, a o (b o c) = a o b = a and (aob)oc = aoc = aHere ao(boc) = (aob)oc

Operation o is associative.

Step 3: Check for the distributive properties

If * is distributive over o then, $a^*(boc) = a^*b = |a-b|$

RHS:

$$(a^*b)o(a^*b) = (a-b)o(a-c) = |a-b|$$

= LHS
And, $ao(b^*c) = (aob)^*(aob)$
LHS
 $ao(b^*c) = ao(|b-c|) = a$
 $(aob)^*(aob) = a^*a = |a-a| = 0$

LHS ≠ RHS

Hence, operation o does not distribute over.

13. Given a non-empty set X, let * : $P(X) \times P(X) \rightarrow P(X)$ be defined as A * B = (A – B) \cup (B – A), \forall A, B \in P(X). Show that the empty set ϕ is the identity for the operation * and all the elements A of P(X) are invertible with A⁻¹ = A. (Hint : (A – ϕ) \cup (ϕ – A) = A and (A – A) \cup (A – A) = A * A = ϕ). Solution: $x \in P(x)$

 $\phi^* A = (\phi - A) \cup (A - \phi) _ \phi \cup A = A$ And $A^* \phi = (A - \phi) \cup (\phi - A) _ A \cup \phi = A$

 ϕ is the identity element for the operation * on P(x).

Also $A^*A = (A - A) \cup (A - A)$

$$= \phi \cup \phi = \phi$$

Every element A of P(X) is invertible with $A^{-1} = A$.

14. Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as

 $a * b = \{ \begin{matrix} a+b & if a+b < 6 \\ a+b-6 & if a+b \ge 0 \end{matrix}$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6 – a being the inverse of a.

Solution:

Let $x = \{0, 1, 2, 3, 4, 5\}$ and operation * is defined as

 $a * b = \begin{cases} a+b & if a+b < 6\\ a+b-6 & if a+b \ge 0 \end{cases}$

Let us say, $e \in X$ is the identity for the operation *, if $a^*e = a = e^*a$ $\forall a \in X$

 $\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6, & \text{if } a+b \ge 6 \end{cases}$

That is a = -b or b = 6 - a, which shows $a \neq -b$

Since $x = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$

Inverse of an element $a \in x$, $a \neq 0$, and $a^{-1} = 6 - a$.

15. Let A = {- 1, 0, 1, 2}, B = {- 4, - 2, 0, 2} and f, g : A \rightarrow B be functions defined by $f(x) = x^2 - x, x \in A$ and $g(x) = 2|x - \frac{1}{2}| - 1, x \in A$. Are f and g equal?

Justify your answer. (Hint: One may note that two functions $f : A \rightarrow B$ and $g : A \rightarrow B$ such that $f(a) = g(a) \forall a \in A$, are called equal functions).

Solution:

Given functions are: $f(x) = x^2 - x$ and $g(x) = 2|x - \frac{1}{2}| - 1$

At x = -1 $f(-1) = 1^2 + 1 = 2$ and $g(-1) = 2|-1 - \frac{1}{2}| - 1 = 2$ At x = 0 F(0) = 0 and g(0) = 0At x = 1 F(1) = 0 and g(1) = 0

At x = 2F(2) = 2 and g(2) = 2

So we can see that, for each $a \in A$, f(a) = g(a)

This implies f and g are equal functions.

16. Let A = $\{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4

Solution:

Option (A) is correct.

As 1 is reflexive and symmetric but not transitive.

17. Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is

(A) 1 (B) 2 (C) 3 (D) 4

Solution:

Option (B) is correct.

18. Let $f : \mathbb{R} \to \mathbb{R}$ be the Signum Function defined as

 $f(x) = \begin{cases} 1, \ x > 0 \\ 0, \ x = 0 \\ -1, \ x < 0 \end{cases}$

and g : $R \rightarrow R$ be the Greatest Integer Function given by g (x) = [x], where [x] is greatest integer less than or equal to x. Then, does fog and gof coincide in (0, 1]?

Solution:

Given: f : $R \rightarrow R$ be the Signum Function defined as

```
f(x) = \begin{cases} 1, \ x > 0 \\ 0, \ x = 0 \\ -1, \ x < 0 \end{cases}
```

and g : R \rightarrow R be the Greatest Integer Function given by g (x) = [x], where [x] is

greatest integer less than or equal to x.

Now, let say $x \in (0, 1]$, then

[x] = 1 if x =1 and [x] = 0 if 0< x < 1

Therefore:

$$fog(x) = f(g(x)) = f([x])$$

$$=\begin{cases} f(1), & \text{if } x=1\\ f(0), & \text{if } x \in (0,1) \end{cases}$$

$$=\begin{cases} 1, & \text{if } x = 1\\ 0, & \text{if } x \in (0,1) \end{cases}$$

Gof(x) = g(f(x)) = g(1) = [1] = 1For x > 0

When $x \in (0, 1)$, then fog = 0 and gof = 1 But fog $(1) \neq$ gof (1)

This shows that, fog and gof do not concide in 90, 1].

19. Number of binary operations on the set {a, b} are

(A) 10	(B) 16	(C) 20	(D) 8

Solution:

Option (B) is correct.

 $A = \{a, b\}$ and

 $A \times A = \{(a,a), (a,b), (b,b), (b,a)\}$

Number of elements = 4

So, number of subsets = 2^{4} = 16.