Miscellaneous Exercise

1. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that g of $=$ $\mathrm{f} \mathbf{0} \mathbf{g}=\mathrm{I}_{\mathrm{R}}$.

Solution:

Firstly, Find the inverse of f.
Let say, g is inverse of f and
$y=f(x)=10 x+7$
$y=10 x+7$
or $x=(y-7) / 10$
or $g(y)=(y-7) / 10$; where $g: Y \rightarrow N$
Now, $g \circ f=g(f(x))=g(10 x+7)$
$=\frac{(10 x+7)-7}{10}$
$=\mathrm{x}$
$=I_{R}$
Again, $f \circ g=f(g(x))=f((y-7) / 10)$
$=10((y-7) / 10)+7$
$=y-7+7=y$
$=I_{R}$
Since g of $=f \circ g=I_{R}$. f is invertible, and
Inverse of f is $x=g(y)=(y-7) / 10$
2. Let $f: W \rightarrow W$ be defined as $f(n)=n-1$, if n is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Solution:

$f: W \rightarrow W$ be defined as $f(n)=n-1$, if n is odd and $f(n)=n+1$, if n is even.

Function can be defined as:

$$
f(n)= \begin{cases}n-1, & \text { if } n \text { is odd } \\ n+1, & \text { if } n \text { is even }\end{cases}
$$

f is invertible, if f is one-one and onto.

For one-one:

There are 3 cases:
for any n and m two real numbers:
Case 1: n and m : both are odd
$\mathrm{f}(\mathrm{n})=\mathrm{n}+1$
$\mathrm{f}(\mathrm{m})=\mathrm{m}+1$
If $f(n)=f(m)$
$\Rightarrow \mathrm{n}+1=\mathrm{m}+1$
$\Rightarrow \mathrm{n}=\mathrm{m}$
Case 2: n and m : both are even
$\mathrm{f}(\mathrm{n})=\mathrm{n}-1$
$\mathrm{f}(\mathrm{m})=\mathrm{m}-1$
If $f(n)=f(m)$
$\Rightarrow \mathrm{n}-1=\mathrm{m}-1$
$\Rightarrow \mathrm{n}=\mathrm{m}$
Case 3: n is odd and m is even
$\mathrm{f}(\mathrm{n})=\mathrm{n}+1$
$f(m)=m-1$
If $f(\mathrm{n})=\mathrm{f}(\mathrm{m})$
$\Rightarrow \mathrm{n}+1=\mathrm{m}-1$
$\Rightarrow \mathrm{m}-\mathrm{n}=2$ (not true, because Even - Odd \neq Even)
Therefore, f is one-one

Check for onto:

$f(n)= \begin{cases}n-1, & \text { if } n \text { is odd } \\ n+1, & \text { if } n \text { is even }\end{cases}$
Say $f(n)=y$, and $y \in W$
Case 1: if $\mathbf{n}=$ odd
$\mathrm{f}(\mathrm{n})=\mathrm{n}-1$
$\mathrm{n}=\mathrm{y}+1$
Which show, if n is odd, y is even number.

Case 2: If \boldsymbol{n} is even

$f(n)=n+1$
$y=n+1$
or $n=y-1$
If n is even, then y is odd.
In any of the cases y and n are whole numbers.
This shows, f is onto.
Again, For inverse of f

$$
f^{-1}: y=n-1
$$

$$
\text { or } n=y+1 \text { and } y=n+1
$$

$$
\Rightarrow n=y-1
$$

$$
f^{-1}(n)= \begin{cases}n-1, & \text { if } n \text { is odd } \\ n+1, & \text { if } n \text { is even }\end{cases}
$$

Therefore, $f^{-1}(y)=y$. This show inverse of f is f itself.
3. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.

Solution:

Given: $f(x)=x^{2}-3 x+2$
$f(f(x))=f\left(x^{2}-3 x+2\right)$
$=\left(x^{2}-3 x+2\right)^{2}-3\left(x^{2}-3 x+2\right)+2$
$=x^{4}-6 x^{3}+10 x^{2}-3 x$
4. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one one and onto function.

Solution:

The function $\mathrm{f}: \mathrm{R} \rightarrow\{\mathrm{x} \in \mathrm{R}:-1<\mathrm{x}<1\}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x}{1+|x|}, \mathrm{x} \in \mathrm{R}$

For one-one:

Say $x, y \in R$
As per definition of $|x|$;

$$
|x|=\left\{\begin{array}{r}
-x, x<0 \\
x, x \geq 0
\end{array}\right.
$$

So $\mathrm{f}(\mathrm{x})=\left\{\begin{aligned} \frac{x}{1-x}, & x<0 \\ \frac{x}{1+x}, & x \geq 0\end{aligned}\right.$
For $x \geq 0$
$f(x)=x /(1+x)$
$f(y)=y /(1+y)$
If $f(x)=f(y)$, then
$x /(1+x)=y /(1+y)$
$x(1+y)=y(1+x)$
$\Rightarrow x=y$

For $\mathrm{x}<0$
$\mathrm{f}(\mathrm{x})=\mathrm{x} /(1-\mathrm{x})$
$f(y)=y /(1-y)$
If $f(x)=f(y)$, then
$x /(1-x)=y /(1-y)$
$x(1-y)=y(1-x)$
$\Rightarrow x=y$
In both the conditions, $\mathrm{x}=\mathrm{y}$.
Therefore, f is one-one.
Again for onto:
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}\frac{x}{1-x}, \\ \frac{x}{1+x}, \\ x \geq 0\end{array}\right.$
For $\mathrm{x}<0$
$y=f(x)=x /(1-x)$
$y(1-x)=x$
or $x(1+y)=y$
or $\mathrm{x}=\mathrm{y} /(1+\mathrm{y}) \ldots(1)$
For $\mathrm{x} \geq 0$
$y=f(x)=x /(1+x)$
$y(1+x)=x$
or $x=y /(1-y)$
Now we have two different values of x from both the case.

Since $y \in\{x \in R:-1<x<1\}$
The value of y lies between -1 to 1 .
If $y=1$
$x=y /(1-y)$ (not defined)
If $y=-1$
$x=y /(1+y)$ (not defined)
So x is defined for all the values of y, and $x \in R$
This shows that, f is onto.
Answer: f is one-one and onto.
5. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}$ is injective.

Solution:

The function $f: R \rightarrow R$ given by $f(x)=x^{3}$
Let $x, y \in R$ such that $f(x)=f(y)$
This implies, $x^{3}=y^{3}$
$\mathrm{x}=\mathrm{y}$
f is one-one. So f is injective.
6. Give examples of two functions $f: N \rightarrow \mathbf{Z}$ and $g: Z \rightarrow \mathbf{Z}$ such that g of is injective but g is not injective.
(Hint : Consider $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=|\mathrm{x}|$)

Solution:

Given: two functions are $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ and $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$
Let us say, $f(x)=x$ and $g(x)=x$
$\mathrm{gof}=(\mathrm{gof})(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(\mathrm{x})$
Here gof is injective but g is not.
Let us take a example to show that g is not injective: Since $g(x)=|x|$
$g(-1)=|-1|=1$ and $g(1)=|1|=1$
But $-1 \neq 1$
7. Give examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that g of is injective but g is not injective.
(Hint : Consider $f(x)=x+1$ and $g(x)=\left\{\begin{array}{cc}x-1 & \text { if } x>1 \\ 1 & \text { if } x=1\end{array}\right.$)

Solution:

Given: Two functions $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ and $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$
Say $f(x)=x+1$
And $\mathrm{g}(\mathrm{x})=\left\{\begin{array}{c}x-1 \text { if } x>1 \\ 1 \text { if } x=1\end{array}\right.$
Check if f is onto:
$f: N \rightarrow N$ be $f(x)=x+1$
say $y=x+1$
or $x=y-1$
for $\mathrm{y}=1, \mathrm{x}=0$, does not belong to N
Therefore, f is not onto.
Find gof
For $x=1$; gof $=g(x+1)=1($ since $g(x)=1)$
For $x>1 ; \operatorname{gof}=g(x+1)=(x+1)-1=x \quad($ since $g(x)=x-1)$
So we have two values for gof.
As gof is a natural number, as $\mathrm{y}=\mathrm{x} . \mathrm{x}$ is also a natural number. Hence gof is onto.
8. Given a non empty set X, consider $P(X)$ which is the set of all subsets of X.

Define the relation R in $P(X)$ as follows:
For subsets A, B in $P(X)$, $A R B$ if and only if $A \subset B$. Is R an equivalence relation on $P(X)$? Justify your answer.

NCERT Solutions for Class 12 Maths Chapter 1 Relations and

 Functions
Solution:

$A \subset A \therefore R$ is reflexive.
$A \subset B \neq B \subset A \therefore R$ is not commutative.
If $A \subset B, B \subset C$, then $A \subset C \therefore R$ is transitive

Therefore, R is not equivalent relation

9. Given a non-empty set X, consider the binary operation * $P(X) \times P(X) \rightarrow P(X)$ given by $A * B=A \cap B \forall A, B$ in $P(X)$, where $P(X)$ is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in $P(X)$ with respect to the operation *.

Solution:

Let T be a non-empty set and $P(T)$ be its power set. Let any two subsets A and B of T.
$A \cup B \subset T$
So, $A \cup B \in P(T)$
Therefore, U is an binary operation on $\mathrm{P}(\mathrm{T})$.
Similarly, if $A, B \in P(T)$ and $A-B \in P(T)$, then the intersection of sets and difference of sets are also binary operation on $P(T)$ and $A \cap T=A=T \cap A$ for every subset A of sets
$A \cap T=A=T \cap A$ for all $A \in P(T)$
T is the identity element for intersection on $\mathrm{P}(\mathrm{T})$.
10. Find the number of all onto functions from the set $\{1,2,3, \ldots \ldots, n\}$ to itself.

Solution:

Step 1: Compute the total number of one-one functions in the set $\{1,2,3\}$
As f is onto, every element of $\{1,2,3\}$ will have a unique pre-image
Element Number of possible pairings

3
1

Total number of one-one function
$=3 \times 2 \times 1$
$=6$
Step 2 - Compute the total number of onto functions in the given set
As f is onto, every element of $\{1,2,3, \ldots . \mathrm{n}\}$ will have a unique pre-image

Element	Number of po
1	n
2	$\mathrm{n}-1$
3	$\mathrm{n}-2$
\cdot	\cdot
-	-
$\mathrm{n}-1$	2
n	1

Total number of one-one function
$=n \times(n-1) \times(n-2) \times \ldots \ldots . . \times 2 \times 1$
$=n$!
Hence, the number of all onto functions from the set $\{1,2,3, \ldots . . n\}$ to itself is $n!$.
11. Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Find F^{-1} of the following functions F from S to T, if it exists.
(i) $F=\{(\mathbf{a}, 3),(b, 2),(c, 1)\}$
(ii) $\mathrm{F}=\{(\mathrm{a}, 2),(\mathrm{b}, \mathbf{1}),(\mathrm{c}, \mathbf{1})\}$

Solution:

(i) $F=\{(a, 3),(b, 2),(c, 1)\}$
$F(a)=3, F(b)=2$ and $F(c)=1$
$\mathrm{F}^{-1}(3)=\mathrm{a}, \mathrm{F}^{-1}(2)=\mathrm{b}$ and $\mathrm{F}^{-1}(1)=\mathrm{c}$
$F^{-1}=\{(3, a),(2, b),(1, c)\}$
(ii) $F=\{(a, 2),(b, 1),(c, 1)\}$

Since element b and c have the same image 1 i.e. $(b, 1),(c, 1)$.
Therefore, F is not one-one function.
12. Consider the binary operations * : $R \times R \rightarrow R$ and $0: R \times R \rightarrow R$ defined as $a * b=\mid a$ $-b \mid$ and $a \circ b=a, \forall a, b \in R$. Show that $*$ is commutative but not associative, o is associative but not commutative. Further, show that $\forall a, b, c \in R, a *(b o c)=(a * b) 0(a$ * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.

Solution:

Step 1: Check for commutative and associative for operation *.
$\mathrm{a}^{*} \mathrm{~b}=|\mathrm{a}-\mathrm{b}|$ and b * $\mathrm{a}=|\mathrm{b}-\mathrm{a}|=(\mathrm{a}, \mathrm{b})$
Operation * is commutative.
$a^{*}\left(b^{*} c\right)=a^{*}|b-c|=|a-(b-c)|=|a-b+c|$ and
$\left(a^{*} b\right)^{*} c=|a-b|^{*} c=|a-b-c|$
Therefore, $a^{*}\left(b^{*} c\right) \neq\left(a^{*} b\right)^{*} c$
Operation * is associative.
Step 2: Check for commutative and associative for operation o.
$\mathrm{aob}=\mathrm{a} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{boa}=\mathrm{b}$
This implies aob boa
Operation o is not commutative.

Again, $\mathrm{a} \circ(\mathrm{b} \circ \mathrm{c})=\mathrm{a} \circ \mathrm{b}=\mathrm{a}$ and (aob) $\mathrm{oc}=\mathrm{aoc}=\mathrm{a}$
Here ao(boc) $=(\mathrm{aob}) \mathrm{oc}$
Operation o is associative.
Step 3: Check for the distributive properties
If * is distributive over o then, $a^{*}(b o c)=a^{*} b=|a-b|$
RHS:
$\left(a^{*} b\right) o\left(a^{*} b\right)=(a-b) o(a-c)=|a-b|$
= LHS
And, $a \circ\left(b^{*} c\right)=(a o b) *(a o b)$
LHS

$$
\begin{aligned}
& a \circ\left(b^{*} c\right)=a \circ(|b-c|)=a \\
& (a \circ b) *(a \circ b)=a^{*} a=|a-a|=0
\end{aligned}
$$

LHS \neq RHS
Hence, operation o does not distribute over.
13. Given a non-empty set X, let $*: P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B=(A-B) \cup(B-A), \forall A, B \in P(X)$. Show that the empty set ϕ is the identity for the operation * and all the elements A of $P(X)$ are invertible with $A^{-1}=A$. (Hint : $(A-\phi) \cup(\phi$ $-A)=A$ and $(A-A) \cup(A-A)=A * A=\phi)$.
Solution: $x \in P(x)$
$\phi^{*} \mathrm{~A}=(\phi-\mathrm{A}) \cup(\mathrm{A}-\phi)-\phi \cup \mathrm{A}=\mathrm{A}$
And
$\mathrm{A} * \phi=(\mathrm{A}-\phi) \cup(\phi-\mathrm{A})=\mathrm{A} \cup \phi=\mathrm{A}$
ϕ is the identity element for the operation * on $\mathrm{P}(\mathrm{x})$.
Also $A^{*} A=(A-A) \cup(A-A)$
$=\phi \cup \phi=\phi$
Every element A of $P(X)$ is invertible with $A^{-1}=A$.
14. Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as
$a * b=\left\{\begin{array}{cc}a+b & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 0\end{array}\right.$
Show that zero is the identity for this operation and each element a $\neq 0$ of the set is invertible with 6 - a being the inverse of a.

Solution:

Let $x=\{0,1,2,3,4,5\}$ and operation * is defined as
$\mathrm{a}^{*} \mathrm{~b}=\left\{\begin{array}{cc}a+b & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 0\end{array}\right.$
Let us say, $e \in X$ is the identity for the operation *, if $\mathrm{a}^{*} \mathrm{e}=\mathrm{a}=\mathrm{e}^{*} \mathrm{a} \forall a \in X$
$\begin{cases}a+b=0=b+a, & \text { if } a+b<6 \\ a+b-6=0=b+a-6, & \text { if } a+b \geq 6\end{cases}$
That is $a=-b$ or $b=6-a$, which shows $a \neq-b$
Since $x=\{0,1,2,3,4,5\} \quad$ and $a, b \in X$
Inverse of an element $a \in x, a \neq 0$, and $a^{-1}=6-a$.
15. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x)=x^{2}-x, x \in A$ and $g(x)=2|x-1 / 2|-1, x \in A$. Are f and g equal?

Justify your answer. (Hint: One may note that two functions $f: A \rightarrow B$ and $g: A \rightarrow B$ such that $f(a)=g(a) \forall a \in A$, are called equal functions).

Solution:
Given functions are: $f(x)=x^{2}-x$ and $g(x)=2|x-1 / 2|-1$
At $x=-1$
$f(-1)=1^{2}+1=2$ and $g(-1)=2|-1-1 / 2|-1=2$
At $x=0$
$F(0)=0$ and $g(0)=0$
At $x=1$
$F(1)=0$ and $g(1)=0$

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions

At $x=2$
$F(2)=2$ and $g(2)=2$
So we can see that, for each $a \in A, f(a)=g(a)$
This implies f and g are equal functions.
16. Let $A=\{1,2,3\}$. Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
(A) 1
(B) 2
(C) 3
(D) 4

Solution:
Option (A) is correct.
As 1 is reflexive and symmetric but not transitive.
17. Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is
(A) 1
(B) 2
(C) 3
(D) 4

Solution:
Option (B) is correct.
18. Let $f: R \rightarrow R$ be the Signum Function defined as
$f(x)= \begin{cases}1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{cases}$
and $g: R \rightarrow R$ be the Greatest Integer Function given by $g(x)=[x]$, where $[x]$ is greatest integer less than or equal to x. Then, does fog and gof coincide in (0,1]?

Solution:

Given:
$f: R \rightarrow R$ be the Signum Function defined as
$f(x)=\left\{\begin{array}{cc}1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{array}\right.$
and $g: R \rightarrow R$ be the Greatest Integer Function given by $g(x)=[x]$, where $[x]$ is
greatest integer less than or equal to x .
Now, let say $x \in(0,1]$, then
[x$]=1$ if $\mathrm{x}=1$ and
$[x]=0$ if $0<x<1$
Therefore:

$$
\begin{aligned}
& f 0 g(x)=f(g(x))=f([x]) \\
&= \begin{cases}f(1), & \text { if } x=1 \\
f(0), & \text { if } x \in(0,1)\end{cases} \\
&= \begin{cases}1, & \text { if } x=1 \\
0, & \text { if } x \in(0,1)\end{cases}
\end{aligned}
$$

$$
\operatorname{Gof}(x)=g(f(x))=g(1)=[1]=1
$$

For $\mathrm{x}>0$
When $\mathrm{x} \in(0,1)$, then $\mathrm{fog}=0$ and $\mathrm{gof}=1$
But fog (1) \neq gof (1)
This shows that, fog and gof do not concide in 90, 1].
19. Number of binary operations on the set $\{a, b\}$ are
(A) 10
(B) 16
(C) 20
(D) 8

Solution:

Option (B) is correct.
$A=\{a, b\}$ and
$A \times A=\{(a, a),(a, b),(b, b),(b, a)\}$
Number of elements $=4$
So, number of subsets $=2^{\wedge} 4=16$.

