

MOLARITY AND NORMALITY

MISSION MBBS | NEET 2024

MOLE CONCEPT

- L8

CLASS 11 | CHEMISTRY

PDF

Take the Aakash BYJU'S All India NEET Mock Test 2022

Molarity

Number of moles of the solute present in 1 litre of the solution

Molarity

①

Molarity (M) =

No. of moles of solute
Volume of solution in litres

$$\frac{n}{V(L)} = \text{mol/L}^{-1}$$

② if mass of solute is given

$$M = \frac{\omega_2}{M_2 \times V_{\text{soln}} (\text{lit})} = \frac{\omega_2}{M} \times \frac{1000}{V_{\text{soln}} (\text{ml})}$$

Molarity

$1 \text{ L} = 1 \text{ dm}^3$

$= 1000 \text{ ml}$

$1 \text{ ml} = 1 \text{ cm}^3$

mol L^{-1}

mol dm^{-3}

M

Molar

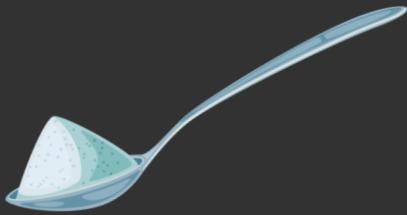
SI unit

Volume of beaker = 750 mL

$$M = \frac{n}{V(L)} = \frac{n \times 1000}{V(mL)}$$

$$= 2 \times \frac{1000}{750} = 4M$$

$$= \underline{\underline{4 \text{ mol L}^{-1}}}$$



Mixing NaCl
(2 moles) in Water
(500 mL)

**Molarity of Salt
Solution**

Volume of beaker = 1 L

**Mixing NaCl (117 g)
in Water (750 mL)**

**Molarity of Salt
Solution**

→ Molarity depends upon temp

Temp ↑, Volume of solution ↑, molarity ↓

$$\rightarrow M = \frac{n \text{ (moles)}}{V_{\text{soln}} \text{ (L)}}$$

$$\text{moles} = M \times V \text{ (L)}$$

$$1 \text{ mol} = 1000 \text{ millimol}$$

$$\text{millimol} = M \times V \text{ (ml)}$$

Ques :- 4.9 g (g) H_2SO_4 dissolved in 500 ml H_2O

Find Molality of H_2SO_4 ?

Given :- $w_2 = 4.9$ g

$M_2 = 98$ g mol⁻¹

$V_{soln} = 500$ ml

$$M = \frac{w_2}{M_2} \times \frac{1000}{V \text{ ml}} = \frac{4.9}{98} \times \frac{1000}{500} = 0.1 \text{ M}$$

0.1 mol L⁻¹

Ques:- 342 g $\text{Al}_2(\text{SO}_4)_3$ dissolve in to 2 L H_2O . B

$$M = \frac{342}{342} \times \frac{1}{2} \times 5$$

$$M = 0.005 \text{ mol L}^{-1}$$

$$342 \text{ g} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{96}{342} \text{ g}$$

$$\text{Al}_2(\text{SO}_4)_3 = 23$$

$$23$$

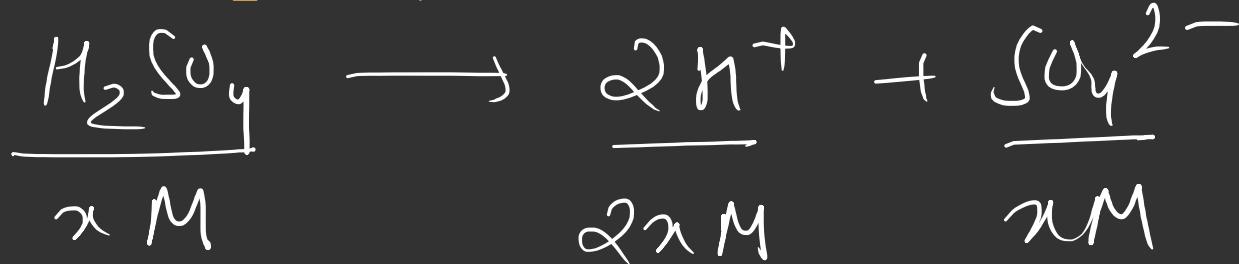
$$23$$

$$96$$

$$96$$

$$96$$

$$96$$


Calculate the molarity of H^+ ions in a solution of H_2SO_4 prepared by dissolving 49 g of H_2SO_4 in 250 mL of water. (Assume H_2SO_4 to be completely dissociated)

A. 4 M

B. 2 M

C. 1 M

D. 6 M

$$M = \frac{\omega}{M} \times \frac{1000}{V(\text{ml})}$$

(H_2SO_4)

$$M = \frac{49}{98} \times \frac{1000}{250} = 2 \text{ M}$$

(H_2SO_4)

$$M_{\text{H}^+} = M \times 2 = 2 \times 2 = \underline{\underline{4 \text{ M}}}$$

What is the molarity of a 49% H_3PO_4 solution by mass?
(Density of the solution = 1.33 g/mL)

A. 0.66 M

B. 4.9 M

C. 6.64 M

D. 5 M

$$M \Rightarrow \frac{w_2}{M_2} \times \frac{1000 \times d_{sol}^n}{100}$$

$$M = \frac{w_2 \times 10 \times d_{sol}^n (\text{g mL}^{-1})}{M_2}$$

What is the molarity of 4.9% H_2SO_4 solution by mass? (density of H_2SO_4 solution = 1.22 g/mL)

+4

A. 0.61 M

B. 4.9 M

C. 1.22 M

D. 1 M

$$M = \frac{w}{M} \times 10 \times d_{\text{soln}}$$

$$M = \frac{4.9 \times 10 \times 1.22}{98.2} = \underline{\underline{0.61 \text{ M}}}$$

Strength of solution

Strength of solution : weight of solute (g) present in 1 L of solution

$$= \frac{\omega_2 \text{ (g)}}{V_{\text{soln}} \text{ (L)}}$$

Unit = g/L

4:3

Take a beaker containing 100 mL of water. Add to it, 40 g of NaOH. What will be the percentage strength of NaOH in the solution? (take the density of NaOH to be 2 g/cm^3)

- A. 333.33 g/L
- B. 33.33 g/L
- C. 66.66 g/L
- D. 666.66 g/L

~~100 ml~~ 40 g NaOH

Take a beaker containing 100 mL of water. Add to it, 40 g of NaOH. What will be the percentage strength of NaOH in the solution? (take the density of NaOH to be 2 g/cm³)

Step 1 :- find the volume of soln $(V_{NaOH} + V_{NaOH})$
 100 ml
 $20 \text{ ml} = 120$

$$d_{NaOH} = \frac{m_{NaOH}}{V_{NaOH}}$$

$$V_{NaOH} = \frac{m}{d} = \frac{40}{2} = 20 \text{ ml}$$

$$S = \frac{\omega}{V(L)} = \frac{40}{120} = \frac{40 \times 1000}{120} = 33.33$$

Normality

Normality (N) : Normality is the number of equivalents of solute present in **1 L of the solution**.

Unit = eqv/L or Normal (N)

$$N = \frac{\text{gsm Eqvalents (eq)}}{\text{V soln (L)}}$$

$$\text{unit} = \underline{\text{eqv L}^{-1}}$$

$$\text{moles} = \frac{\text{Given mass}}{\text{Molar mass}}$$

Equivalents = ?

$$\text{No of eqv} \Rightarrow \frac{\text{Given mass (g)}}{\text{Equivalent mass}}$$

①

$$\text{Equivalent mass} \Rightarrow \frac{\text{Molar mass}}{n \text{ factor} (?)}$$

②

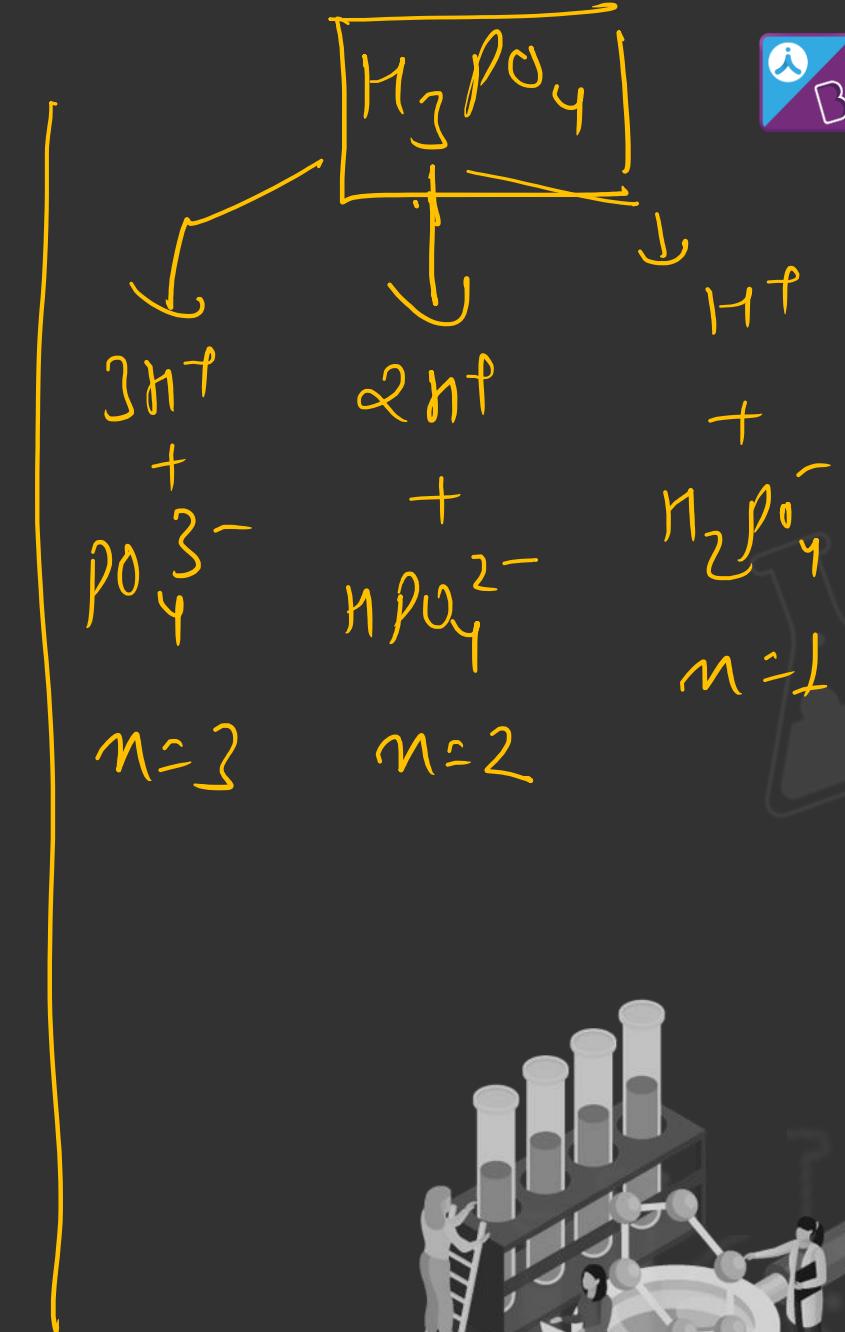
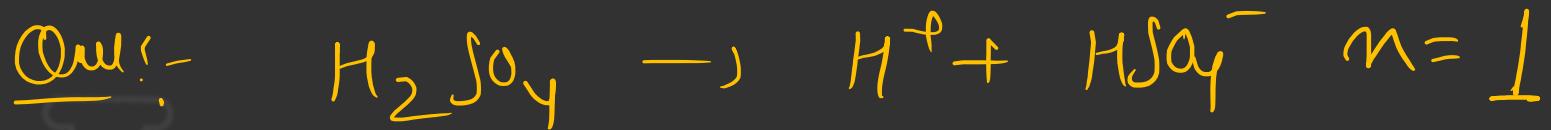
$$\text{No of eqv} \Rightarrow \frac{\text{mass}}{\text{molar mass}} \times n \text{ factor}$$

③

$$\text{No of eqv} = \text{moles} \times n \text{ factor}$$

④

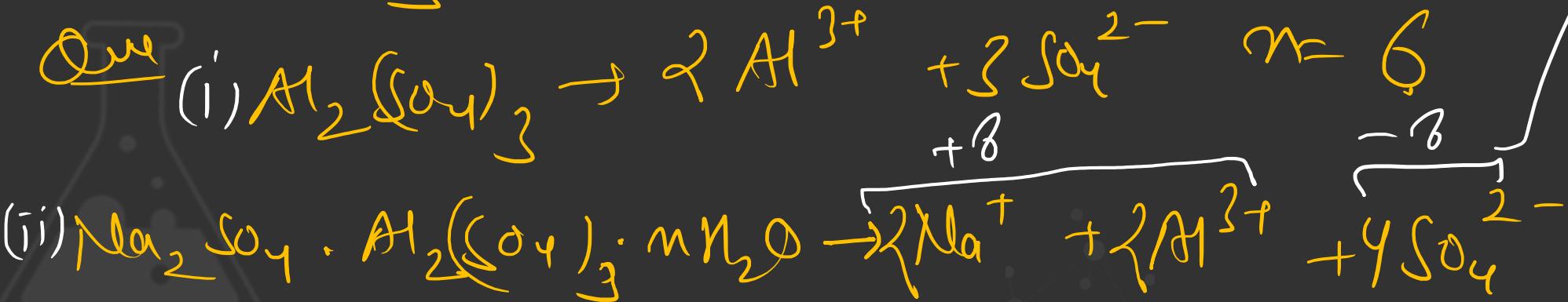
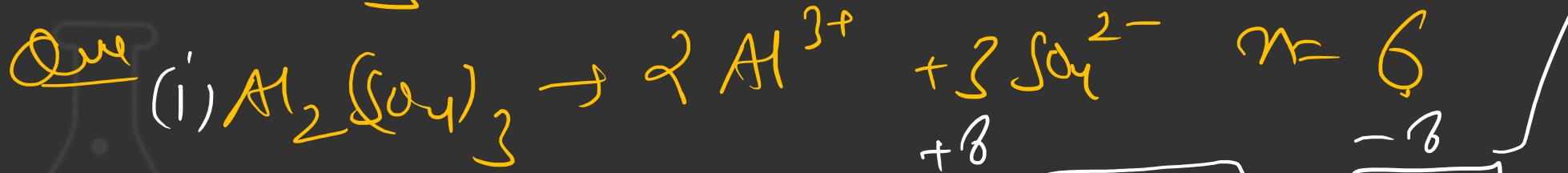
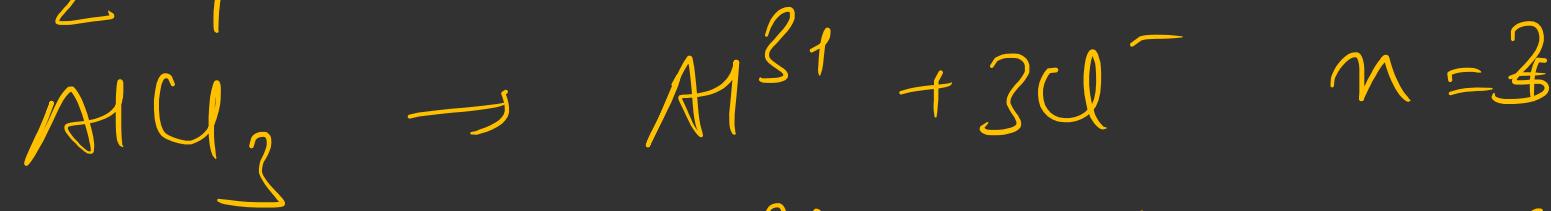
NEI NEI NEI



Important

n factor of Acid :-

No of H^+ produced by acid -

Molar factor of Base :-




No of OH^- produced by Base in 1g sol¹.

n factor of salt :-

After ionization Total positive or negative charge produce

$n=8$

n - factor

$$+ve = 3 \times 2 = +6 \quad -ve = 2 \times -3 = -6$$

$$n = 6$$

For Acids

HCl

H_2SO_4

H_3PO_4

For Bases

KOH

$\text{Ca}(\text{OH})_2$

$\text{Al}(\text{OH})_3$

For Salts

NaCl

BaCl_2

$\text{Ca}_3(\text{PO}_4)_2$

$$N \Rightarrow \frac{N_A}{V(L)}$$

$$\textcircled{1} \text{ No of } \text{Eqv} \Rightarrow N \times V(L)$$

$$\textcircled{2} \quad 1 \text{ Eqv} = \text{loss millieqv}$$

$$\text{No of millieqv} = N \times V(mL)$$

$$\textcircled{3} \text{ No of Eqv} \ni \frac{\text{Given mass}}{\text{Eqv mass}}$$

$$\textcircled{4} \text{ No of Eqv} = \frac{\text{Given mass}}{\text{Molar mass}} \times \text{N factor}$$

$$\textcircled{5} \quad \begin{aligned} \text{No of Eqv} \\ = \text{moles} \times \text{N factor} \end{aligned}$$

Relation b/w Normality & Molality

$$N = \frac{\frac{EqV}{V(L)}}{\frac{Eq\text{ molar}}{V(mol)}} = \frac{\frac{\omega_2}{Eq\text{ molar}} \times \frac{1000}{V(mol)}}{\frac{\omega_2}{Eq\text{ molar}} \times \frac{1000}{V(mol)}} = \frac{\omega_2}{\text{Molar mass}} \times \frac{1000}{V(mol)}$$

n factor

$$N = \frac{\frac{\omega_2}{M_2} \times \frac{1000}{V(mol)}}{\text{Molar mass}} \times n \text{ factor}$$

$$N = M \times n \text{ factor}$$

Take a glass containing 100 mL of water. Add to it, 40 g of NaOH. What will be the normality of the solution? (Take the density of NaOH to be 2 g/cm³)

- A.** 1.32 N
- B.** 11.46 N
- C.** 3.82 N
- D.** 8.33 N

Take a glass containing 100 mL of water. Add to it, 40 g of NaOH. What will be the normality of the solution? (Take the density of NaOH to be 2 g/cm³)

Calculate the molarity and normality of 1/10 moles of H_2SO_4 in 500 mL solution.

- A. 0.2, 0.1
- B. 0.4, 0.2
- C. 0.2, 0.4
- D. 0.1, 0.2

$$N = M \times n$$

$$n_{\text{250mL}} = n_{\text{factor}} = 2$$

$$M = \frac{N n_{\text{factor}} \times 1000}{V_{\text{ml}}}$$

$$= \frac{1}{10} \times \frac{1000}{500} \times 2 = 0.2 \text{ mol L}^{-1}$$

$$N = M \times n_{\text{factor}}$$

$$= 0.2 \times 2 = 0.4 \text{ equiv L}^{-1}$$

Calculate the molarity and normality of 1/10 moles of H_2SO_4 in 500 mL solution.

What is the equivalent mass of H_3PO_4 for the given reaction? (Molar mass is given as 'M')

A. $M/1$

B. $M/2$

C. $2M$

D. $M/4$

$$\text{Eqv mass} = \frac{M \cdot M}{\text{n factor}} = \frac{M}{2}$$

$$= \frac{M}{2}$$

What is the equivalent mass of H_3PO_4 for the given reaction? (Molar mass is given as 'M')

Which of the following properties will change on increasing the temperature?

- A.** Molality
- B.** Mole fraction
- C.** Molarity
- D.** Percentage mass

FREE FOR 14 DAYS!

Aakash
+ **BYJU'S**

Next class wed → 6 - 7

Mole One Molarity / Normality

"Stay Positive, Work Hard, Make It Happen"

THANK YOU

