

Series: AABB4/3

SET-1

प्रश्न-पत्र कोड 56/3/1 Q.P. Code

राल न.											
Roll No.											

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Q.P. Code on the title page of the answer-book.

- ullet कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ $oldsymbol{12}$ हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 12 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 12 printed pages.
- Q.P. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 12 questions.
- Please write down the Serial Number of the question in the answerbook before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय: 2 घण्टे अधिकतम अंक: 35

Time allowed: 2 hours Maximum Marks: 35

56/3/1

222 A

1

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख्ती से पालन कीजिए:

- (i) इस प्रश्न-पत्र में कुल 12 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **तीन** खंडों में विभाजित हैं खंड **क, ख** एवं **ग** /
- (iii) **खंड क** प्रश्न संख्या 1 से 3 तक अति लघु उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंक का है।
- (iv) **खंड ख** प्रश्न संख्या 4 से 11 तक लघु उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंक का है।
- (७) खंड ग प्रश्न संख्या 12 केस आधारित प्रश्न है। यह प्रश्न 5 अंक का है।
- (vi) लॉग टेबल एवं कैलुक्युलेटर का प्रयोग वर्जित है।

×

खंड – क

- 1. निम्नलिखित रूपान्तरण करने के लिए अभिकर्मक की प्रागुक्ति कीजिए : (कोई दो)
 - (i) बेन्जॉयल क्लोराइड को बेन्जैल्डिहाइड में
 - (ii) ऐथेनैल को 3-हाइड्रॉक्सी ब्यूटेनैल में
 - (iii) एथेनॉइक अम्ल को 2-क्लोरोऐथेनॉइक अम्ल में

 $1 \times 2 = 2$

- 2. (i) CH_3COOH का तनुकरण करने पर $^{\wedge}m$ द्रुत गित से बढ़ता है, जबिक CH_3COONa के लिए वह धीरे-धीरे बढ़ता है । क्यों ?
 - (ii) क्या होता है जब लगाया गया बाह्य विभव किसी वैद्युत-रासायनिक सेल के E° सेल से अधिक हो जाता है ? $1 \times 2 = 2$
- 3. C_3H_7NO अणुसूत्र वाला कोई कार्बनिक यौगिक (A), Br_2 और KOH के साथ गरम किए जाने पर यौगिक (B) बनाता है । यौगिक (B) $CHCl_3$ और ऐल्कोहॉलिक पोटैशियम हाइड्रॉक्साइड के साथ गर्म करने पर दुर्गन्थ युक्त यौगिक (C) बनाता है तथा $C_6H_5SO_2Cl$ के साथ अभिक्रिया करने पर यौगिक (D) बनाता है जो क्षार में विलेय होता है । (A), (B), (C) और (D) की संरचनाएँ लिखिए।

2

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper contains 12 questions. All questions are compulsory.
- (ii) This question paper is divided into three Sections Section A, B and C.
- (iii) Section A Q. Nos. 1 to 3 are very short answer type questions carrying 2 marks each.
- (iv) Section B Q. Nos. 4 to 11 are short answer type questions carrying 3 marks each.
- (v) Section C Q. No. 12 is case based question carrying 5 marks.
- (vi) Use of log tables and calculators is NOT allowed.

SECTION - A

- 1. Predict the reagent for carrying out the following transformations: (Any two)
 - (i) Benzoyl chloride to Benzaldehyde
 - (ii) Ethanal to 3-hydroxy butanal
 - (iii) Ethanoic acid to 2-chloroethanoic acid

 $1 \times 2 = 2$

- 2. (i) Why on dilution the \(^{\mathbb{M}}\) of CH₃COOH increases very fast, while that of CH₃COONa increases gradually?
 - (ii) What happens if external potential applied becomes greater than E° cell of electrochemical cell? $1 \times 2 = 2$
- 3. An Organic compound (A) with molecular formula C_3H_7NO on heating with Br_2 and KOH forms a compound (B). Compound (B) on heating with $CHCl_3$ and alcoholic KOH produces a foul smelling compound (C) and on reacting with $C_6H_5SO_2Cl$ forms a compound (D) which is soluble in alkali. Write the structures of (A), (B), (C) and (D).

56/3/1

P.T.O.

2

खंड – ख

- 4. निम्नलिखित के लिए कारण लिखिए:
 - (i) Cu^{2+} लवण रंगीन होते हैं जबिक Zn^{2+} लवण रंगहीन हैं।
 - $m (ii)~~Mn^{3+}/Mn^{2+}$ युग्म के लिए $m E^\circ$ का मान $m Cr^{3+}/Cr^{2+}$ के मान से बहुत अधिक धनात्मक होता है।
 - (iii) संक्रमण धातुएँ मिश्रातु बनाती हैं।

 $1 \times 3 = 3$

5. (क) निम्नलिखित सेल के लिए $\Delta_{\rm r} {
m G}^{\circ}$ और $\log {
m Kc}$ परिकलित कीजिए :

$$Ni(s) + 2 Ag^{+}(aq) \rightarrow Ni^{2+}(aq) + 2Ag(s)$$

दिया है :
$$E^{\circ}$$
 सेल = 1.05V, $IF = 96,500 \text{ Cmol}^{-1}$.

3

अथवा

(ख) 298K पर निम्नलिखित सेल के लिए e.m.f. परिकलित कीजिए:

$$Fe(s) \mid Fe^{2+} (0.001 \text{ M}) \mid \mid H^{+} (0.01M) \mid H_{2}(g) (1 \text{ bar}) \mid Pt(s)$$

दिया है : E° सेल = $\pm 0.44~{
m V}$

$$[\log 2 = 0.3010 \ \log 3 = 0.4771 \ \log 10 = 1]$$

- 3
- 6. (a) संयोजकता आबंध सिद्धांत का उपयोग करते हुए $[{
 m CoF}_6]^{3-}$ के संकरण एवं चुम्बकीय व्यवहार की प्रागुक्ति कीजिए । $[{
 m Uv}]$ फ्रमांक : ${
 m Co}=27$
 - (b) निम्नलिखित संकुल का IUPAC नाम लिखिए :

 $[\mathrm{CoBr}_2(\mathrm{en})_2]^+$

(c) विलयन में संकुल $[{
m Co(NH_3)_6}]{
m C}l_2$ द्वारा कितने आयन उत्पादित होते हैं ?

 $1 \times 3 = 3$

SECTION - B

- Account for the following: 4.
 - Cu^{2+} salts are coloured while Zn^{2+} salts are white. (i)
 - E° value for the Mn³+/Mn²+ couple is much more positive than that for Cr^{3+}/Cr^{2+} .
 - (iii) Transition metals form alloys.

 $1 \times 3 = 3$

Calculate $\Delta_r G^\circ$ and log Kc for the following cell : 5.

$$Ni(s) + 2 Ag^{+}(aq) \rightarrow Ni^{2+}(aq) + 2Ag(s)$$

Given that
$$E^{\circ}$$
cell = 1.05V, IF = 96,500 Cmol⁻¹.

3

OR

Calculate the e.m.f. of the following cell at 298K: (b)

Fe(s)
$$| \text{Fe}^{2+} (0.001 \text{ M}) | | H^+ (0.01 \text{M}) | H_2(g) (1 \text{ bar}) | Pt(s)$$

Given that E° cell = +0.44 V

$$[\log 2 = 0.3010 \quad \log 3 = 0.4771 \quad \log 10 = 1]$$

3

6. Using valence bond theory, predict the hybridization and magnetic character of following:

 $[CoF_6]^{3-}$ [Atomic number of Co = 27]

(b) Write IUPAC name of the following complex:

 $[\mathrm{CoBr}_2(\mathrm{en})_2]^+$

(c) How many ions are produced from the complex [Co(NH₃)₆]Cl₂ in solution? $1 \times 3 = 3$

(क) निम्नलिखित के मध्य अंतर कीजिए: अधिशोषण एवं अवशोषण (i) (ii) द्रवविरागी सॉल और द्रवरागी सॉल (iii) बहुआण्विक कोलॉइड एवं वृहदाण्विक कोलॉइड $1 \times 3 = 3$ अथवा निम्नलिखित पदों को परिभाषित कीजिए: (**ख**) (I) जीटा विभव (i) (ii) स्कंदन (II) जब AgNO_3 विलयन को KI विलयन में मिलाया जाता है तो ऋण आवेशित सॉल क्यों प्राप्त होता है ? 3 संक्रमण धातुओं को परिभाषित कीजिए । Zn, Cd और Hg संक्रमण धातुएँ क्यों नहीं कहलाती हैं ? 8. संक्रमण धातुओं की ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता p-ब्लॉक तत्त्वों की ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता से किस प्रकार भिन्न है ? 3 (क) क्या होता है जब 9. प्रोपेनोन की $\mathrm{CH_3MgBr}$ के साथ अभिक्रिया करने के पश्चात् जल-अपघटित किया (i) जाता है ? एथेनैल को एथेनॉल के आधिक्य और अम्ल के साथ अभिकृत किया जाता है ? (iii) मेथेनैल कैनिज़ारो अभिक्रिया देता है ? $1 \times 3 = 3$ अथवा (ख) निम्नलिखित अभिक्रियाओं के मुख्य उत्पाद लिखिए: $2\text{CH}_3\text{COC}l + (\text{CH}_3)_2\text{Cd} \rightarrow$ (i) $\operatorname{CH_3CH_2CHO} \xrightarrow{\quad \text{Zn (Hg) / Hig HC} l}$ (ii)

56/3/1

(iii)

 $1 \times 3 = 3$

 $- \text{COONa} + \text{NaOH} \xrightarrow{\text{CaO}} \Lambda$

7. (a)		Differentiate between the following:						
		(i)	Adsorption and Absorption					
		(ii)	Lyophobic Sol and Lyophilic Sol					
		(iii)	Multimolecular Colloid and Macromolecular colloid.	d. $1 \times 3 = 3$				
			OR					
(b	(b)	(I)	Define the following terms:					
			(i) Zeta Potential					
			(ii) Coagulation					
	(II)	Why a negatively charged sol is obtained when ${\rm AgNO}_3$ solutions of the solution of the s	ıtion					
			is added to KI solution ?	3				
9.	diffe (a)		from that of p-block elements?	3				
<i>5.</i> (<i>a</i>)	(α)	(i)	Propanone is treated with CH_3MgBr and then hydrolysed?					
		(ii)	Ethanal is treated with excess ethanol and acid?					
		(iii)	Methanal undergoes Cannizzaro reaction?	$1 \times 3 = 3$				
			OR					
(b)	Write the main product in the following reactions:							
		(i)	$2\mathrm{CH_3COC}l + (\mathrm{CH_3})_2\mathrm{Cd} \rightarrow$					
		(ii)	$\operatorname{CH}_{3}\operatorname{CH}_{2}\operatorname{CHO} \xrightarrow{\operatorname{Zn}\left(\operatorname{Hg}\right)/\operatorname{Conc}\operatorname{HC}l}$					
		(iii)	$\bigcirc - \text{COONa} + \text{NaOH} \xrightarrow{\text{CaO}} $	$1 \times 3 = 3$				

10. कारण दीजिए:

- (i) शुद्ध प्राथमिक ऐमीनों के विरचन के लिए ऐल्किल हैलाइडों का अमोनी अपघटन एक अच्छी विधि नहीं है।
- (ii) ऐनिलीन फ्रीडेल-क्राफ्टस अभिक्रिया नहीं देता है।
- (iii) यद्यपि $-NH_2$ समूह इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में o/p निर्देशक होता है फिर भी ऐनिलीन के नाइट्रीकरण से m-नाइट्रोऐनिलीन की महत्त्वपूर्ण मात्रा बनती है । $1 \times 3 = 3$
- 11. (क) (i) आपके विचार से नीचे दिए गए अम्लों के जोड़े (युगल) में से कौन सा अम्ल अधिक प्रबल होगा ?

F-CH₂-COOH अथवा CH₃-COOH

(ii) निम्नलिखित यौगिकों को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए:

 CH_3CH_2OH , CH_3 -CHO, CH_3 -COOH

अथवा

- (ख) (i) कौन नाभिकरागी योगज अभिक्रिया तीव्रता से देगा ? ऐसीटैल्डिहाइड या प्रोपेनोन
 - (ii) फेलिंग अभिकर्मक का संयोजन क्या है ?
 - (iii) ऐथेनैल के सेमीकार्बेज़ोन की संरचना बनाइए।

 $1 \times 3 = 3$

खंड – ग

12. नीचे दिए गए अनुच्छेद को पढ़िए और दिए गए प्रश्नों के उत्तर लिखिए :

अभिक्रिया वेग, इकाई समय में अभिकारकों की सांद्रता घटने तथा उत्पादों की सांद्रता वृद्धि से संबंधित होता है। इसे किसी क्षण विशेष पर तात्क्षणिक वेग के रूप में और किसी दीर्घ समय अंतराल में औसत वेग से प्रदर्शित किया जा सकता है। अभिक्रिया वेग पर अनेक कारक, जैसे ताप, अभिकारकों की सांद्रता तथा उत्प्रेरक प्रभाव डालते हैं। अभिक्रिया वेग का गणितीय निरूपण वेग नियम द्वारा किया जाता है:

वेग =
$$k[A]^x[B]^y$$

x एवं y इंगित करते हैं कि अभिक्रिया का वेग, A एवं B के सांद्रता परिवर्तन से कैसे प्रभावित होता है । x+y का योग अभिक्रिया की कुल कोटि को दर्शाता है ।

जब प्राथमिक अभिक्रियाएँ कई पदों में सम्पन्न होकर उत्पाद बनाती हो, तब ऐसी अभिक्रियाओं को जटिल अभिक्रिया कहते हैं। किसी प्राथमिक अभिक्रिया की आण्विकता एवं कोटि एक समान होती है। शून्य कोटि की अभिक्रियाएँ अपेक्षाकृत असामान्य हैं, किंतु विशेष परिस्थितियों में यह घटित होती हैं। अस्थायी नाभिकों के सभी प्राकृतिक एवं कृत्रिम रेडियोसिक्रिय क्षय प्रथम कोटि की बलगतिकी द्वारा होते हैं।

10. Give reasons:

- (i) Ammonolysis of alkyl halides is not a good method to prepare pure primary amines.
- (ii) Aniline does not give Friedel-Crafts reaction.
- (iii) Although -NH₂ group is o/p directing in electrophilic substitution reactions, yet aniline on nitration gives good yield of m-nitroaniline.

 $1 \times 3 = 3$

- 11. (a) (i) Which acid of the following pair would you expect to be stronger ? $F-CH_9-COOH \ or \ CH_3-COOH$
 - (ii) Arrange the following compounds in increasing order of their boiling points:

CH₃CH₂OH, CH₃-CHO, CH₃-COOH

(iii) Give simple chemical test to distinguish between Benzaldehyde and Acetophenone. $1 \times 3 = 3$

OR

- (b) (i) Which will undergo faster nucleophilic addition reaction?

 Acetaldehyde or Propanone
 - (ii) What is the composition of Fehling's reagent?
 - (iii) Draw structure of the semicarbazone of Ethanal.

 $1 \times 3 = 3$

SECTION - C

12. Read the following passage and answer the questions that follow:

The rate of reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. A number of factors such as temperature, concentration of reactants, catalyst affect the rate of reaction. Mathematical representation of rate of a reaction is given by rate law:

Rate =
$$k[A]^x[B]^y$$

x and y indicate how sensitive the rate is to the change in concentration of A and B. Sum of x + y gives the overall order of a reaction.

When a sequence of elementary reactions gives us the products, the reactions are called complex reactions. Molecularity and order of an elementary reaction are same. Zero order reactions are relatively uncommon but they occur under special conditions. All natural and artificial radioactive decay of unstable nuclei take place by first order kinetics.

P.T.O.

- (a) किसी अभिक्रिया के वेग स्थिरांक पर ताप का क्या प्रभाव होता है ?
- (b) किसी अभिक्रिया $A+B\to 3$ त्पाद, के लिए वेग नियम है वेग $=k[A]^2~[B]^{1/2}$ अभिक्रिया की कोटि क्या है ?
- (c) जटिल अभिक्रियाओं के लिए कोटि और आण्विकता किस प्रकार भिन्न हैं ?
- (d) एक प्रथम कोटि की अभिक्रिया का वेग स्थिरांक $2 \times 10^{-3}~{\rm s}^{-1}$ है । इस अभिक्रिया में अभिकारक के $6{\rm g}$ को घटकर $2{\rm g}$ होने में कितना समय लगेगा ?

अथवा

 $^{14}{
m C}$ की रेडियोसक्रिय क्षय की अर्थायु 6930 वर्ष है । लकड़ी से युक्त एक पुरातात्विक अश्मोपकरण (युक्ति) में $^{14}{
m C}$ की मात्रा जीवित वृक्ष की अपेक्षा केवल 75% है । नमूने की आयु ज्ञात कीजिए ।

 $[\log 4 = 0.6021 \quad \log 3 = 0.4771 \quad \log 2 = 0.3010 \quad \log 10 = 1]$

1 + 1 + 1 + 2

- (a) What is the effect of temperature on the rate constant of a reaction?
- (b) For a reaction $A + B \rightarrow Product$, the rate law is given by, Rate = $k[A]^2 [B]^{1/2}$. What is the order of the reaction?
- (c) How order and molecularity are different for complex reactions?
- (d) A first order reaction has a rate constant $2 \times 10^{-3} s^{-1}$. How long will 6g of this reactant take to reduce to 2g?

OR

The half life for radioactive decay of $^{14}{\rm C}$ is 6930 years. An archaeological artifact containing wood had only 75% of the $^{14}{\rm C}$ found in a living tree. Find the age of the sample.

 $[\log 4 = 0.6021 \quad \log 3 = 0.4771 \quad \log 2 = 0.3010 \quad \log 10 = 1]$

1 + 1 + 1 + 2

