


## Alternating Current- L3

1. A 20 V, 50 Hz AC source is connected across a resistor of resistance  $R$  and a capacitor of capacitance  $C$  as shown in the figure. The voltage across the resistor is 12 V. The voltage across the capacitor is



- A. 18 V
- B. 16 V
- C. 10 V
- D. 12 V



For an AC RC circuit,

$$V^2 = V_R^2 + V_C^2$$

$$\Rightarrow 20^2 = 12^2 + V_C^2$$

$$\Rightarrow V_C = 16 \text{ V}$$

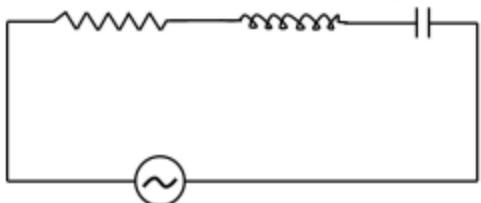
Hence, option (B) is the correct answer.

2. An AC circuit consists of a  $220\ \Omega$  resistance and  $0.7\text{ H}$  choke. Find the average power absorbed from  $220\text{ V}$  and  $50\text{ Hz}$  source connected in this circuit if the resistance and choke are joined in parallel.

- A.  $110\text{ W}$
- B.  $220\text{ W}$
- C.  $310\text{ W}$
- D.  $410\text{ W}$

When the resistance and choke are in parallel, the entire power is absorbed in resistance, as the choke having small resistance absorbs negligible power.

So, the average power,


$$P_{\text{avg}} = \mathcal{E}_{\text{rms}} i_{\text{rms}} \cos \phi = \mathcal{E}_{\text{rms}} \times \frac{\mathcal{E}_{\text{rms}}}{R} \times \cos 0^\circ = \frac{\mathcal{E}_{\text{rms}}^2}{R}$$

$$\Rightarrow P_{\text{avg}} = \frac{220^2}{220} = 220\text{ W}$$

Hence, option (B) is the correct answer.


3. For the given AC RLC circuit, at a particular frequency of the AC source, the current -

$$R = 4 \Omega \quad X_L = 5 \Omega \quad X_C = 8 \Omega$$



- A. Lead the voltage by  $\tan^{-1}(3/4)$
- B. Lead the voltage by  $\tan^{-1}(5/8)$
- C. Lag the voltage by  $\tan^{-1}(3/4)$
- D. Lag the voltage by  $\tan^{-1}(5/8)$

$$R = 4 \Omega \quad X_L = 5 \Omega \quad X_C = 8 \Omega$$



Suppose, the AC source voltage is given by,

$$V = V_m \sin(\omega t)$$

Then, the AC in the circuit is,

$$I = I_m \sin(\omega t + \phi)$$

So,

$$\tan \phi = \frac{X_C - X_L}{R} = \frac{8 - 5}{4} = \frac{3}{4}$$

$$\Rightarrow \phi = \tan^{-1}(3/4)$$

Hence, option (A) is the correct answer.

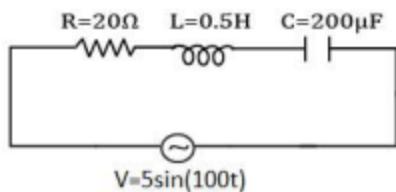
4. Average power dissipated in a series AC RLC circuit connected to a source whose voltage is given by,  $\mathcal{E} = \mathcal{E}_0 \sin(\omega t)$ , if  $X_L = X_C$  is -

$R$  is the resistance of the resistor.

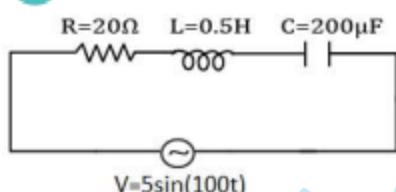
- A.  $\frac{(\mathcal{E}_0)^2}{R}$
- B.  $\frac{(\mathcal{E}_0)^2}{2R}$
- C.  $\frac{2(\mathcal{E}_0)^2}{R}$
- D.  $\frac{3(\mathcal{E}_0)^2}{R}$

Average power dissipated in a series AC RLC circuit,

$$P = \mathcal{E}_{\text{rms}} i_{\text{rms}} \cos \phi$$


$$\Rightarrow P = \mathcal{E}_{\text{rms}} \left( \frac{\mathcal{E}_{\text{rms}}}{Z} \right) \left( \frac{R}{Z} \right) = \frac{(\mathcal{E}_{\text{rms}})^2 R}{Z^2}$$

$$\Rightarrow P = \frac{(\mathcal{E}_0)^2 R}{2Z^2} = \frac{(\mathcal{E}_0)^2 R}{2(R^2 + (X_C - X_L)^2)}$$


$$\Rightarrow P = \frac{(\mathcal{E}_0)^2 R}{2R^2} = \frac{(\mathcal{E}_0)^2}{2R} \quad [\text{Given } X_L = X_C]$$

Hence, option (B) is the correct answer.

5. Consider the following AC RLC circuit. The maximum voltage drop across the inductor is -



- A. 17.5 V
- B. 15.5 V
- C. 12.5 V
- D. 19.5 V



Here,

$$X_L = \omega L = 100 \times 0.5 = 50 \Omega$$

$$X_C = \frac{1}{\omega C} = \frac{1}{100 \times 200 \times 10^{-6}} = 50 \Omega$$

The impedance is,

$$Z = \sqrt{R^2 + (X_C - X_L)^2}$$

$$\Rightarrow Z = \sqrt{20^2 + (50 - 50)^2} = 20 \Omega$$

Now,

$$I_0 = \frac{V_0}{Z} = \frac{5}{20} = \frac{1}{4} \text{ A}$$

So, the maximum voltage drop across the inductor is,

$$V_{L0} = I_0 X_L = \frac{1}{4} \times 50 = 12.5 \text{ V}$$

Hence, option (C) is the correct answer.