
1. The cell constant of a given cell is 0.47 cm^{-1} . The resistance of a solution placed in this cell is measured to be 31.6 ohm . The conductivity of the solution in S cm^{-1} is:

- A. 0.15
- B. 1.5
- C. 0.015
- D. 150

The conductivity (κ) is the product of reciprocal of resistance ($\frac{1}{R}$) and cell constant ($\frac{l}{a}$).

Hence,

$$\kappa = \frac{1}{R} \times \frac{l}{a}$$

$$\kappa = \frac{1}{31.6 \text{ ohm}} \times 0.47 \text{ cm}^{-1} = 0.015 \text{ S cm}^{-1}$$

Option C is correct.

2. Specific conductance of 0.1 M nitric acid is $6.3 \times 10^{-2}\text{ ohm}^{-1}\text{ cm}^{-1}$. The molar conductance of solution is

- A. $630\text{ ohm}^{-1}\text{ cm}^2\text{ mol}^{-1}$
- B. $315\text{ ohm}^{-1}\text{ cm}^2\text{ mol}^{-1}$
- C. $100\text{ ohm}^{-1}\text{ cm}^2\text{ mol}^{-1}$
- D. $1201\text{ ohm}^{-1}\text{ cm}^2\text{ mol}^{-1}$

Molar concentration, $(C) = 0.1\text{ M}$

Conductivity, $\kappa = 6.3 \times 10^{-2}\text{ ohm}^{-1}\text{ cm}^{-1}$

$$\text{Molar conductance, } \Lambda_m = \frac{K}{C}$$

Also, we know

$$1L = 1000\text{ cm}^3$$

$$1L^{-1} = 10^{-3}\text{ cm}^{-3}$$

Molar concentration, $(C) = 0.1\text{ mol L}^{-1}$

Molar concentration, $(C) = 0.1 \times 10^{-3}\text{ mol cm}^{-3}$

$$\text{Molar conductance, } \Lambda_m = \frac{6.3 \times 10^{-2}}{0.1 \times 10^{-3}}$$

$$\text{Molar conductance, } \Lambda_m = 6.3 \times 10^2\text{ ohm}^{-1}\text{ cm}^2\text{ mol}^{-1}$$

3. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100 ohm . The conductivity of this solution is 1.29 S m^{-1} . Resistance of the same cell when filled with 0.2 M of the same solution is 520 ohm . The molar conductivity of 0.2 M solution of the electrolyte will be:

- A. $124 \times 10^{-5}\text{ S m}^2\text{ mol}^{-1}$
- B. $124 \times 10^{-4}\text{ S m}^2\text{ mol}^{-1}$
- C. $62 \times 10^{-4}\text{ S m}^2\text{ mol}^{-1}$
- D. $62 \times 10^{-5}\text{ S m}^2\text{ mol}^{-1}$

Cell constant is same for a particular cell. It is a constant.

We know,

$$\text{Conductivity, } \kappa = \frac{1}{R} \times \text{Cell constant}$$

For 0.1 M solution,

$$\text{Resistance, } (R) = 100 \Omega$$

$$\text{Conductivity, } \kappa = 1.29 \text{ } S \text{ } m^{-1}$$

$$\kappa = \frac{1}{R} \times \frac{l}{A}$$

$$1.29 = \frac{1}{100} \times \frac{l}{A}$$

$$\text{Cell constant, } \frac{l}{A} = 129 \text{ } m^{-1}$$

For 0.2 M solution,

$$\text{Resistance, } (R) = 520 \Omega$$

$$\text{Conductivity, } \kappa = \frac{1}{R} \times \text{Cell constant}$$

$$\text{Conductivity, } \kappa = \frac{1}{520} \times 129$$

$$\text{Conductivity, } \kappa = 0.248 \text{ } S \text{ } m^{-1}$$

$$\Lambda_m = \frac{\kappa}{C}$$

Also, we know

$$1L = 10^{-3} \text{ } m^3$$

$$1L^{-1} = 10^3 \text{ } m^{-3}$$

$$\text{Molar concentration, } (C) = 0.2 \times 10^3 \text{ } mol \text{ } m^{-3}$$

$$\Lambda_m = \frac{0.248}{0.2 \times 10^3}$$

$$\Lambda_m = 124 \times 10^{-5} \text{ } S \text{ } m^2 \text{ } mol^{-1}$$

4. The specific conductivity of $0.02\text{ M }KCl$ solution at 25°C is $2.768 \times 10^{-3} \text{ ohm}^{-1} \text{ cm}^{-1}$. The resistance of this at 25°C when measured with a particular cell was 250.2 ohm . The resistance of $0.01\text{ M }CuSO_4$ solution at 25°C measured with the same cell was 8331 ohm . Calculate the molar conductivity of the copper sulphate solution.

- A. $2.42 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
- B. $14.24 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
- C. $6.02 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
- D. $8.31 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$

Cell constant is same for a particular cell. It is a constant.
For $0.02\text{ M }KCl$ solution,

$$\text{Resistance, } (R) = 250.2 \Omega$$

$$\text{Cell constant, } \frac{l}{A} = \text{Conductivity of KCl} \times \text{Resistance of KCl}$$

$$= 2.768 \times 10^{-3} \times 250.2$$

For $0.01\text{ M }CuSO_4$ solution

$$\text{Conductivity, } \kappa = \frac{\text{Cell constant}}{\text{Resistance}}$$

$$\kappa = 2.768 \times 10^{-3} \times 250.2 \times \frac{1}{8331}$$

$$\text{Molar conductance, } \Lambda_m = \text{Conductivity} \times \frac{1000}{C}$$

$$\Lambda_m = \frac{2.768 \times 10^{-3} \times 250.2}{8331} \times \frac{1000}{1/100} = 8.312 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$$

5. Calculate the equivalent conductivity of 1 M H_2SO_4 solution if its specific conductivity is 26×10^{-2} ohm $^{-1}$ cm $^{-1}$.

(Atomic weight of sulphur = 32 g/mol)

- A. $\Lambda_{eq} = 2.6 \times 10^2$ ohm $^{-1}$ cm 2 equiv $^{-1}$
- B. $\Lambda_{eq} = 1.3 \times 10^2$ ohm $^{-1}$ cm 2 equiv $^{-1}$
- C. $\Lambda_{eq} = 13 \times 10^{-5}$ ohm $^{-1}$ cm 2 equiv $^{-1}$
- D. $\Lambda_{eq} = 26 \times 10^{-5}$ ohm $^{-1}$ cm 2 equiv $^{-1}$

Relation between molarity and normality:

Normality = $n \times$ Molarity

n is n -factor

As H_2SO_4 is a diprotic acid

so, $n = 2$

Thus,

$$N = nM = 2 \times 1 M = 2 N$$

Specific conductivity, $\kappa = 26 \times 10^{-2}$ ohm $^{-1}$ cm $^{-1}$

$$1 \text{ L} = 1000 \text{ cm}^3$$

$$1 \text{ L}^{-1} = 10^{-3} \text{ cm}^{-3}$$

$$\text{Concentration, } (C) = 2 \text{ g equiv L}^{-1}$$

$$\text{Concentration, } (C) = 2 \times 10^{-3} \text{ g equiv cm}^{-3}$$

If κ is expressed in S cm $^{-1}$ and C in g equiv cm $^{-3}$

$$\Rightarrow \Lambda_{eq} = \frac{\kappa \times 1000}{N}$$

$$\Rightarrow \Lambda_{eq} = \frac{1000 \times 26 \times 10^{-2}}{2}$$

$$\Rightarrow \Lambda_{eq} = 1.3 \times 10^2 \text{ ohm}^{-1} \text{cm}^2 \text{equiv}^{-1}$$