

Magnetism

Questions

1. When a substance is kept in a magnetic field, it gets weakly repelled by the field. Which of the following represents its susceptibility?

- A. -0.0004
- B. -4
- C. 0.0004
- D. 4

The material gets repelled by the magnetic field, this means that it gets oppositely magnetized to that of the external field.

$\Rightarrow \vec{I}$ and \vec{H} have opposite signs.

As, $\vec{I} = \chi \vec{H}$,

\therefore Magnetic susceptibility (χ) is negative for the material.

Also, $|I| \ll |H|$

$$\Rightarrow \left| \frac{I}{H} \right| \ll 1$$

$$\therefore |\chi| \ll 1$$

So, χ is negative and $|\chi| \ll 1$.

Hence, option (A) is correct.

2.

The magnetic moment of a magnet of dimensions ($10\text{ cm} \times 4\text{ cm} \times 1\text{ cm}$) is 4 A-m^2 . Its intensity of magnetisation is :

- A. 10^3 A/m
- B. 10^2 A/m
- C. 10^5 A/m
- D. 10^4 A/m

$$|I| = \frac{|M|}{V}$$

$|M| \rightarrow$ Magnetic moment

$V \rightarrow$ Volume

$$|I| = \frac{4}{10 \times 10^{-2} \times 4 \times 10^{-2} \times 10^{-2}}$$

$$|I| = 10^5\text{ A/m}$$

Hence, option (C) is the correct answer.

3.

An ideal solenoid having 40 turns cm^{-1} has an aluminium core, and carries a current of 2.0 A . Calculate the magnetic field B at the centre. The susceptibility χ of aluminium $= 2.3 \times 10^{-5}$.

- A. $3.2\pi \times 10^{-4} \text{ T}$
- B. $1.6\pi \times 10^{-4} \text{ T}$
- C. $0.8\pi \times 10^{-4} \text{ T}$
- D. $\pi \times 10^{-4} \text{ T}$

$$n = 40 \text{ turns cm}^{-1} = 4000 \text{ turns m}^{-1}$$

$$i = 2A, \chi = 2.3 \times 10^{-5}$$

Magnetization is given by,

$$I = \chi H = \chi ni = (2.3 \times 10^{-5} \times 4000 \times 2)$$

$$I = 0.18 \text{ Am}^{-1}$$

$$\text{Now, } B = \mu_0(H + I)$$

$$B = 4\pi \times 10^{-7}(8000 + 0.18)$$

$$B = 3.2\pi \times 10^{-4} \text{ T}$$

4.

An iron rod of susceptibility 599 is subjected to a magnetizing field of 1200 Am^{-1} . The permeability of the material of the rod is :

Take, $\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1}$

- A. $2.4\pi \times 10^{-3} \text{ TmA}^{-1}$
- B. $2.4\pi \times 10^{-5} \text{ TmA}^{-1}$
- C. $2.4\pi \times 10^{-7} \text{ TmA}^{-1}$
- D. $2.4\pi \times 10^{-4} \text{ TmA}^{-1}$

Given:

$$H = 1200 \text{ A/m}$$

$$\chi = 599$$

Now,

$$\mu_r = 1 + \chi = 1 + 599 = 600$$

So,

$$\mu = \mu_0 \mu_r$$

$$\Rightarrow \mu = 4\pi \times 10^{-7} \times 600$$

$$\Rightarrow \mu = 2.4\pi \times 10^{-4} \text{ TmA}^{-1}$$

Hence, option (D) is correct.

5.

A dip needle vibrates in the vertical plane perpendicular to the magnetic meridian. The time period of vibration is found to be 2 sec. The same needle is then allowed to vibrate in the horizontal plane and the time period is again found to be 2 sec. Then the angle of dip is

- A. 0°
- B. 30°
- C. 45°
- D. 90°

In a vertical plane, perpendicular to magnetic meridian the time period is given by

$$T = 2\pi \sqrt{\frac{I}{MB_V}} \quad \dots \dots \dots (i)$$

In the horizontal plane,

$$T = 2\pi \sqrt{\frac{I}{MB_H}} \quad \dots \dots \dots (ii)$$

Given, $T = 2$ in both the cases.

Equating equation (i) and (ii) we conclude that $B_V = B_H$ at the given place.

$$\text{Now } \tan \delta = \frac{B_V}{B_H} = 1$$

$$\therefore \delta = 45^\circ$$

Hence, option (C) is the correct answer.