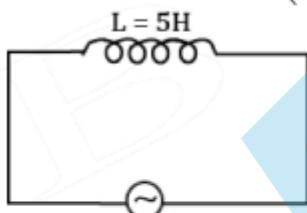


Alternating Current-L2


1. A coil has negligible resistance and an inductive reactance of $20\ \Omega$ at 50 Hz .

If an AC source of 200 V and 100 Hz frequency is connected across the coil, the rms current in the coil will be

- A. 2.0 A
- B. 5.0 A
- C. 7.0 A
- D. 10.0 A

2. An inductor of inductance, $L = 5\text{ H}$ is connected to an AC source having

voltage, $V = 10 \sin\left(10t + \frac{\pi}{6}\right)$. Find the inductive reactance.

- A. $20\ \Omega$
- B. $30\ \Omega$
- C. $50\ \Omega$
- D. $70\ \Omega$

3. A capacitor of capacitive reactance, 12Ω is connected with an AC source having voltage, $V = 3 \sin(\omega t + \pi/6)$. Find the expression of instantaneous current in the circuit.

- A.** $0.35 \sin(\omega t + 2\pi/3)$
- B.** $0.25 \sin(\omega t + 2\pi/3)$
- C.** $0.57 \sin(\omega t - 2\pi/3)$
- D.** $0.15 \sin(\omega t - 2\pi/3)$

4. An inductor of 1 H and a capacitor of $1 \mu\text{F}$ have equal reactance when connected to the same AC source at the same condition. The value of reactance is -

- A.** $10^4 \Omega$
- B.** $10^2 \Omega$
- C.** $10^3 \Omega$
- D.** $10^5 \Omega$

5. An inductor of 1 H and a capacitor of $1 \mu\text{F}$ have equal reactance when connected to the same AC source at the same condition. The value of reactance is -

- A.** $10^4 \Omega$
- B.** $10^2 \Omega$
- C.** $10^3 \Omega$
- D.** $10^5 \Omega$

1. (B)
2. (C)
3. (B)
4. (B)
5. (C)