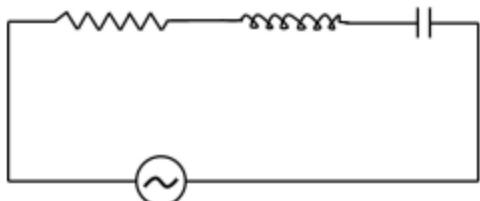


Alternating Current-L3

1. A 20 V, 50 Hz AC source is connected across a resistor of resistance R and a capacitor of capacitance C as shown in the figure. The voltage across the resistor is 12 V. The voltage across the capacitor is

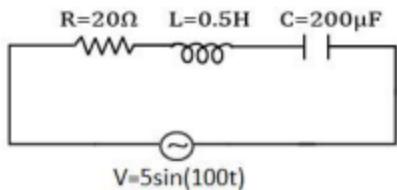

- A. 18 V
- B. 16 V
- C. 10 V
- D. 12 V

2. An AC circuit consists of a 220Ω resistance and 0.7 H choke. Find the average power absorbed from 220 V and 50 Hz source connected in this circuit if the resistance and choke are joined in parallel.

- A. 110 W
- B. 220 W
- C. 310 W
- D. 410 W

3. For the given AC RLC circuit, at a particular frequency of the AC source, the current -

$$R = 4 \Omega \quad X_L = 5 \Omega \quad X_C = 8 \Omega$$


- A. Lead the voltage by $\tan^{-1}(3/4)$
- B. Lead the voltage by $\tan^{-1}(5/8)$
- C. Lag the voltage by $\tan^{-1}(3/4)$
- D. Lag the voltage by $\tan^{-1}(5/8)$

4. Average power dissipated in a series AC RLC circuit connected to a source whose voltage is given by, $\mathcal{E} = \mathcal{E}_0 \sin(\omega t)$, if $X_L = X_C$ is -

R is the resistance of the resistor.

- A. $\frac{(\mathcal{E}_0)^2}{R}$
- B. $\frac{(\mathcal{E}_0)^2}{2R}$
- C. $\frac{2(\mathcal{E}_0)^2}{R}$
- D. $\frac{3(\mathcal{E}_0)^2}{R}$

5. Consider the following AC RLC circuit. The maximum voltage drop across the inductor is -

- A.** 17.5 V
- B.** 15.5 V
- C.** 12.5 V
- D.** 19.5 V

- 1. (B)
- 2. (B)
- 3. (A)
- 4. (B)
- 5. (C)