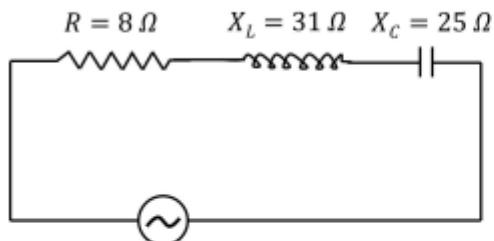
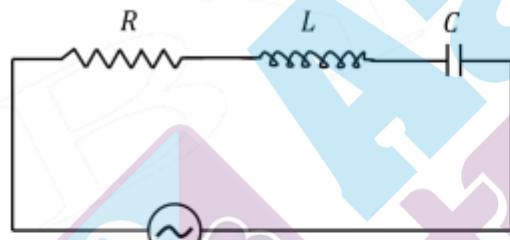


Alternating Current-L4

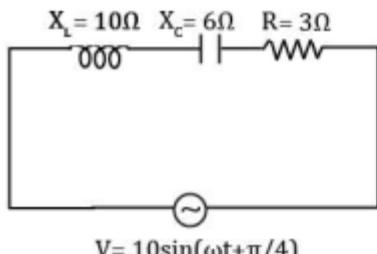
1. In an AC circuit, the power factor


- A. is unity when the circuit contains an ideal resistor only.
- B. is zero when the circuit contains an ideal inductor only.
- C. Both options (A) and (B)
- D. None of these

2. In the circuit shown in the figure, the power factor of the box is 0.5 and the power factor of the circuit is $\sqrt{3}/2$. Current leads the voltage. Find the effective resistance of the box.


- A. 1Ω
- B. 3Ω
- C. 5Ω
- D. 7Ω

3. The given AC RLC circuit is connected to an AC source of 110 V; 50 Hz. The power factor of the circuit is -


- A. 0.56
- B. 0.64
- C. 0.80
- D. 0.33

4. For the given AC RLC circuit, at a particular frequency (f) of the AC source, the current leads the voltage by 45° . The relation between R , L and C is -

- A. $C = \frac{1}{2\pi f(2\pi fL - R)}$
- B. $C = \frac{1}{2\pi f(2\pi fL + R)}$
- C. $C = \frac{1}{\pi f(2\pi fL - R)}$
- D. $C = \frac{1}{\pi f(2\pi fL + R)}$

5. For the given AC LCR circuit, at a particular frequency of the AC source, the expression for current (i) as a function of time (t) will be -

- A.** $i = 4 \sin(\omega t + 8^\circ)$
- B.** $i = 4 \sin(\omega t - 8^\circ)$
- C.** $i = 2 \sin(\omega t - 8^\circ)$
- D.** $i = 2 \sin(\omega t + 8^\circ)$

1. (C)
2. (C)
3. (C)
4. (B)
5. (C)