

Electromagnetic Waves-L1

1. A capacitor is connected across a battery, which delivers a current of 1 A at an instant in the capacitor. The displacement current through the capacitor at that instant is

- A. 1 A
- B. 0 A
- C. 2 A
- D. $\frac{1}{2}$ A

2. A parallel-plate capacitor, with plate area A and separation between the plates d , is charged by a constant current i . Consider a plane surface of area $\frac{A}{2}$ parallel to the plates and drawn symmetrically between the plates. Find the displacement current through this area.

- A. $\frac{i}{4}$
- B. $\frac{i}{2}$
- C.
- D. Zero

3. Assertion:

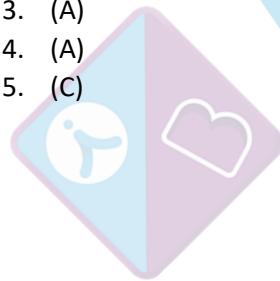
When a variable frequency AC source is connected to a capacitor, displacement current increases with increases in frequency.

Reason:

As frequency increases, conduction current also increases.

- A.** Both Assertion and Reason are correct, and Reason is the correct explanation for Assertion
- B.** Both Assertion and Reason are correct, but Reason is not the correct explanation for Assertion
- C.** Assertion is correct, but Reason is incorrect
- D.** Both Assertion and Reason are incorrect

4. Assertion : Kirchhoff's current law is valid at each plate of a capacitor carrying displacement current.


Reason : Magnitude of conduction current is equal to the magnitude of the displacement current.

- A.** Both assertion and reason are true, and reason is the correct explanation of assertion.
- B.** Both assertion and reason are true, but reason is not a correct explanation of assertion.
- C.** Assertion is true, but reason is false.
- D.** Assertion is false, but reason is true.

5. Displacement current goes through the gap between the plates of a capacitor when the charge of the capacitor -

- A.** increases non-linearly with time
- B.** decreases non-linearly with time
- C.** Both options (A) and (B)
- D.** is zero

1. (A)
2. (B)
3. (A)
4. (A)
5. (C)

