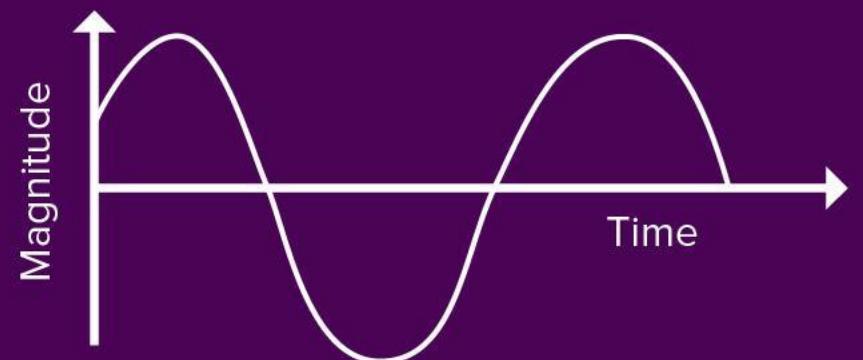


ALTERNATING CURRENT - L1



PHYSICS

ANTHE

AAKASH NATIONAL TALENT HUNT EXAM

Your Gateway To Success

For Class VII to XII

Current Students & Passouts

MON - SAT
4PM - 8PM

DROPPERS
BATCH

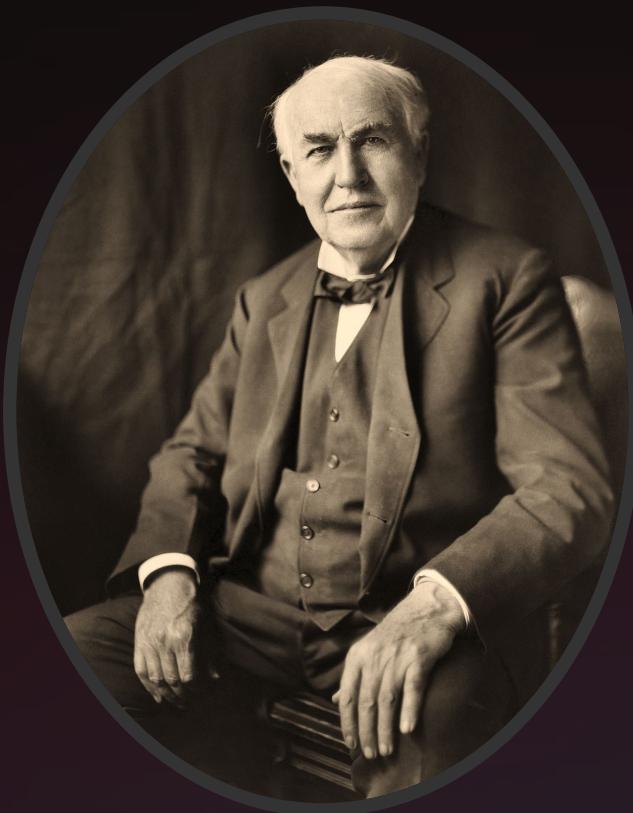
MON - FRI
2PM - 4PM

NEET + STUDENTS' SURVEY

LINK IN
DESCRIPTION

<https://t.me/neetaakashdigital>

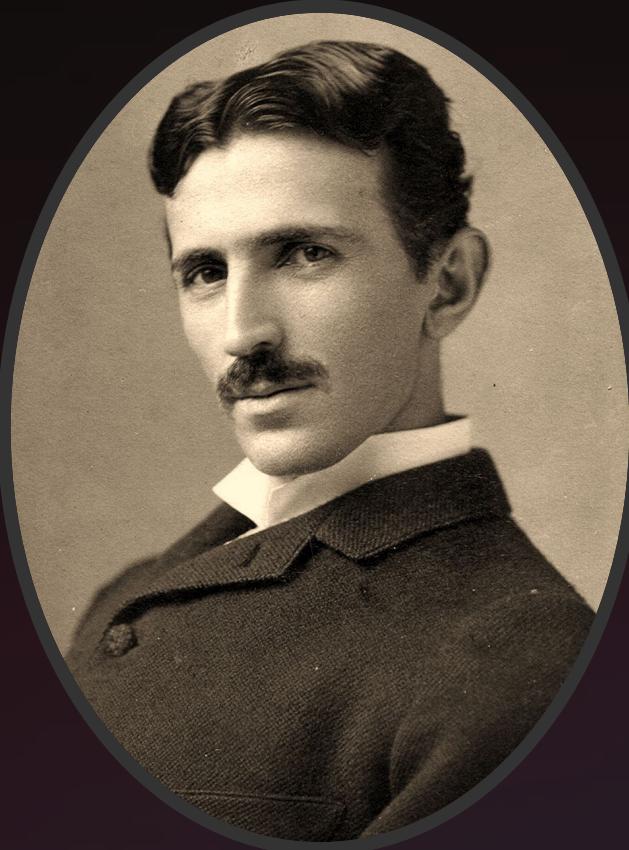
THE CURRENT WAR



THOMAS ALVA EDISON

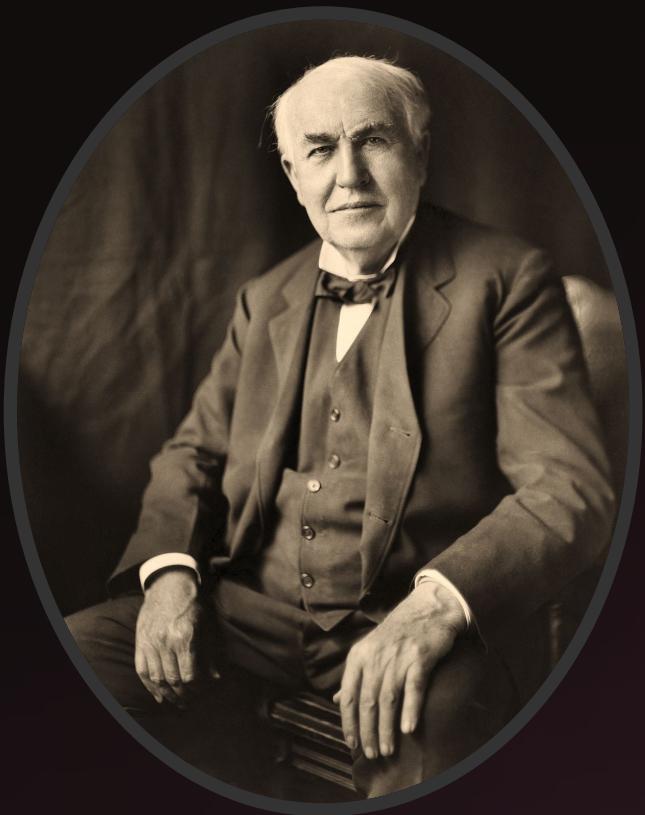
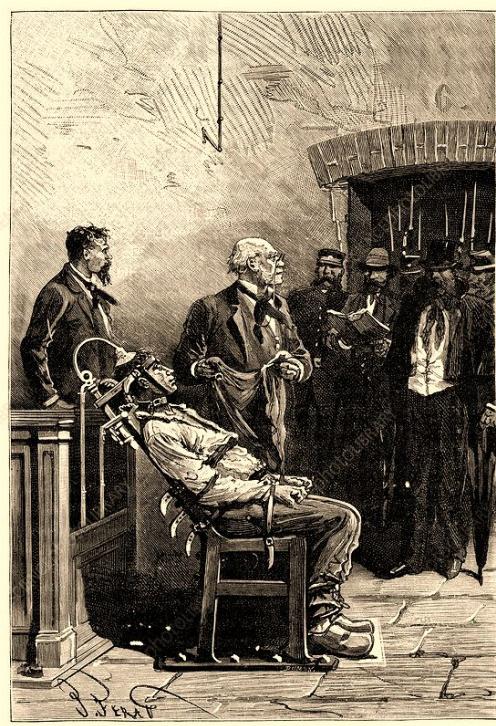
DIRECT CURRENT,
1880s

THE CURRENT WAR



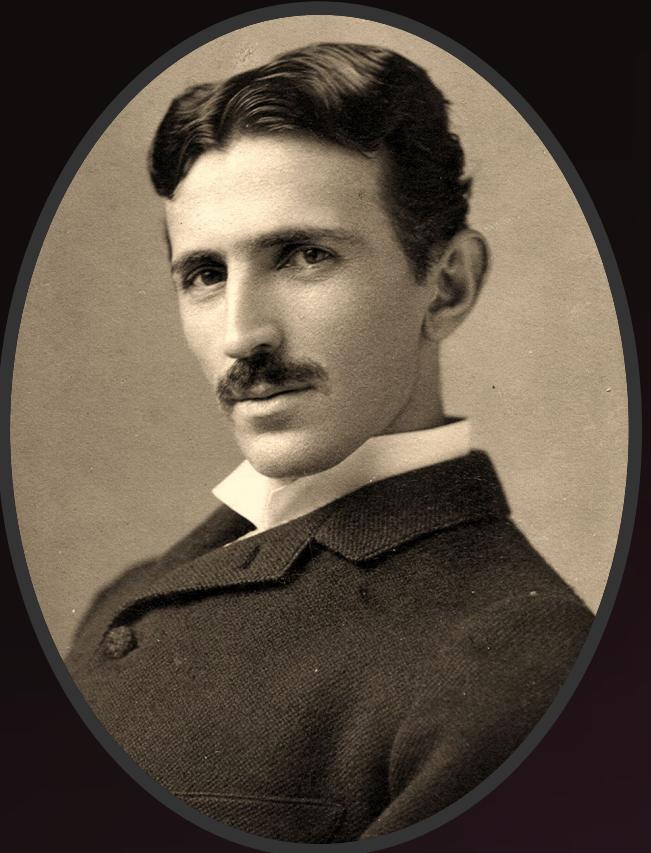
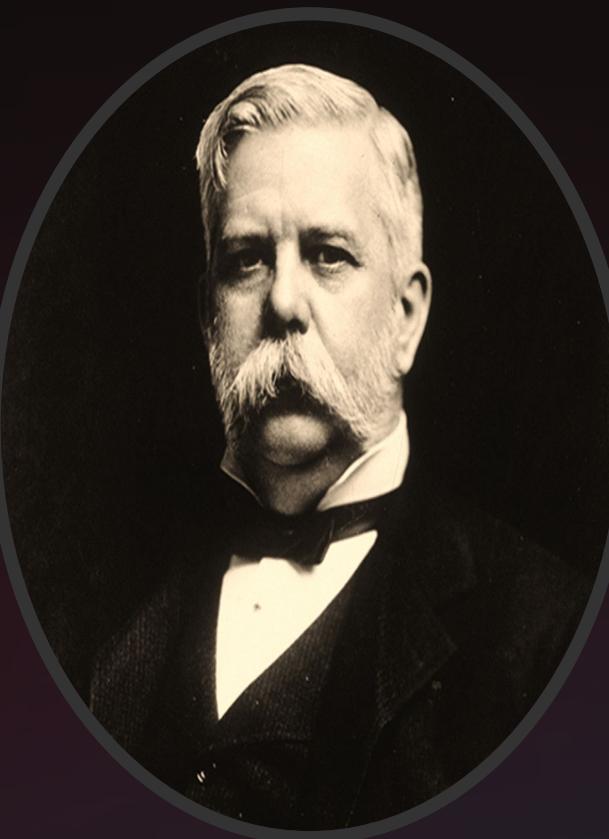
THE ALTERNATING CURRENT
SYSTEM, 1888

THE CURRENT WAR



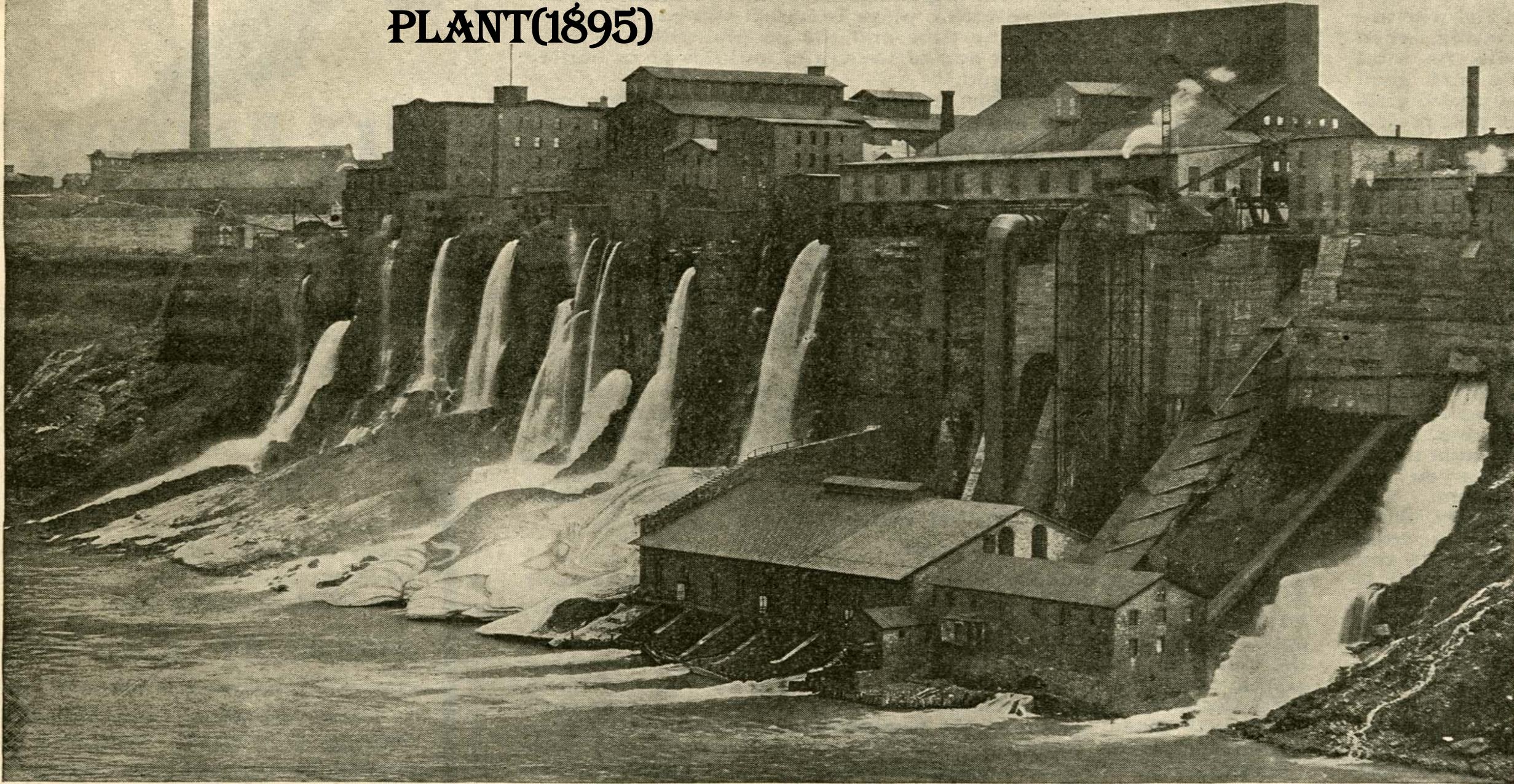
EDISON electrocuted animals and human to show that AC was **too** dangerous to use.

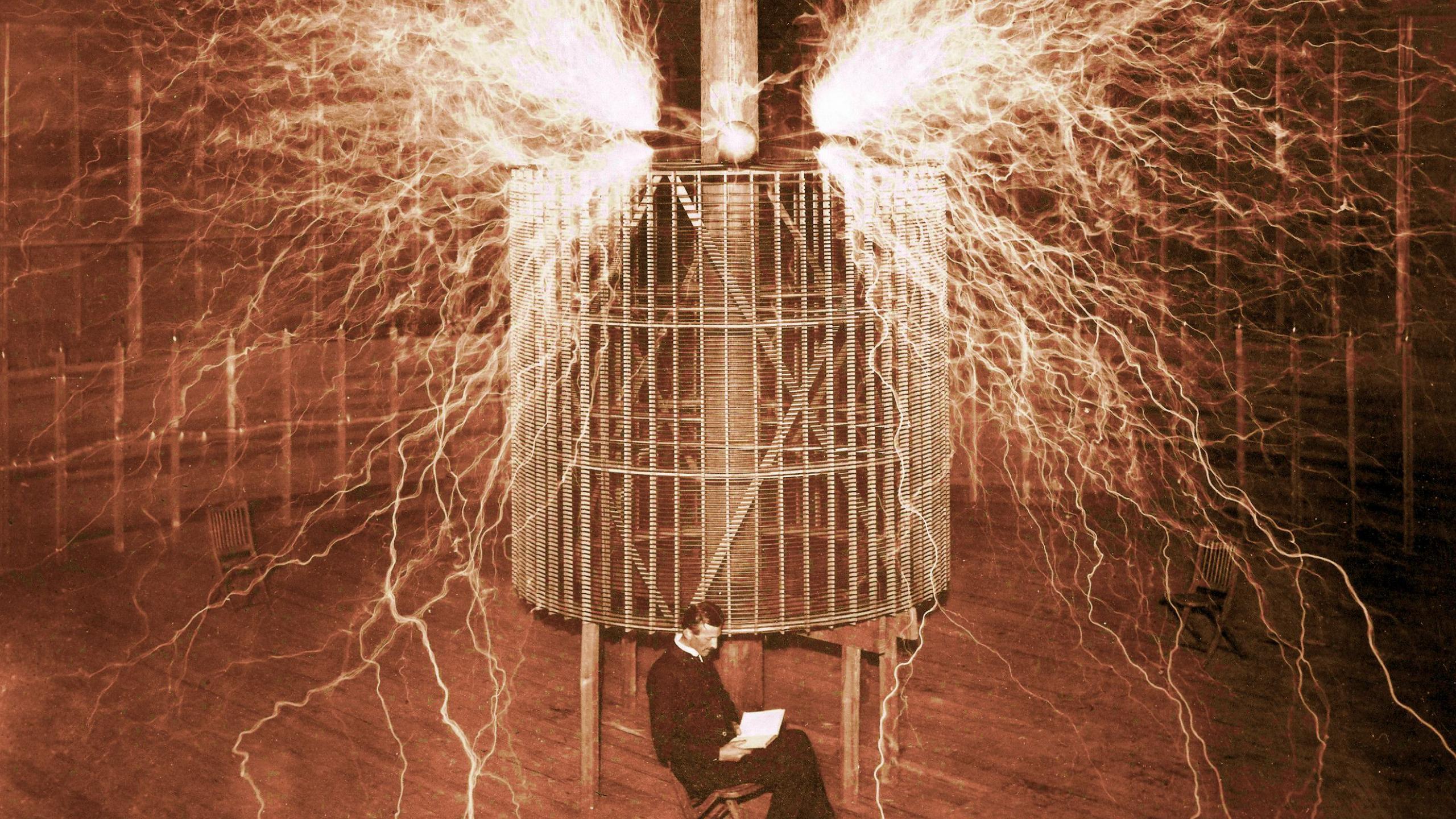
THE CURRENT WAR



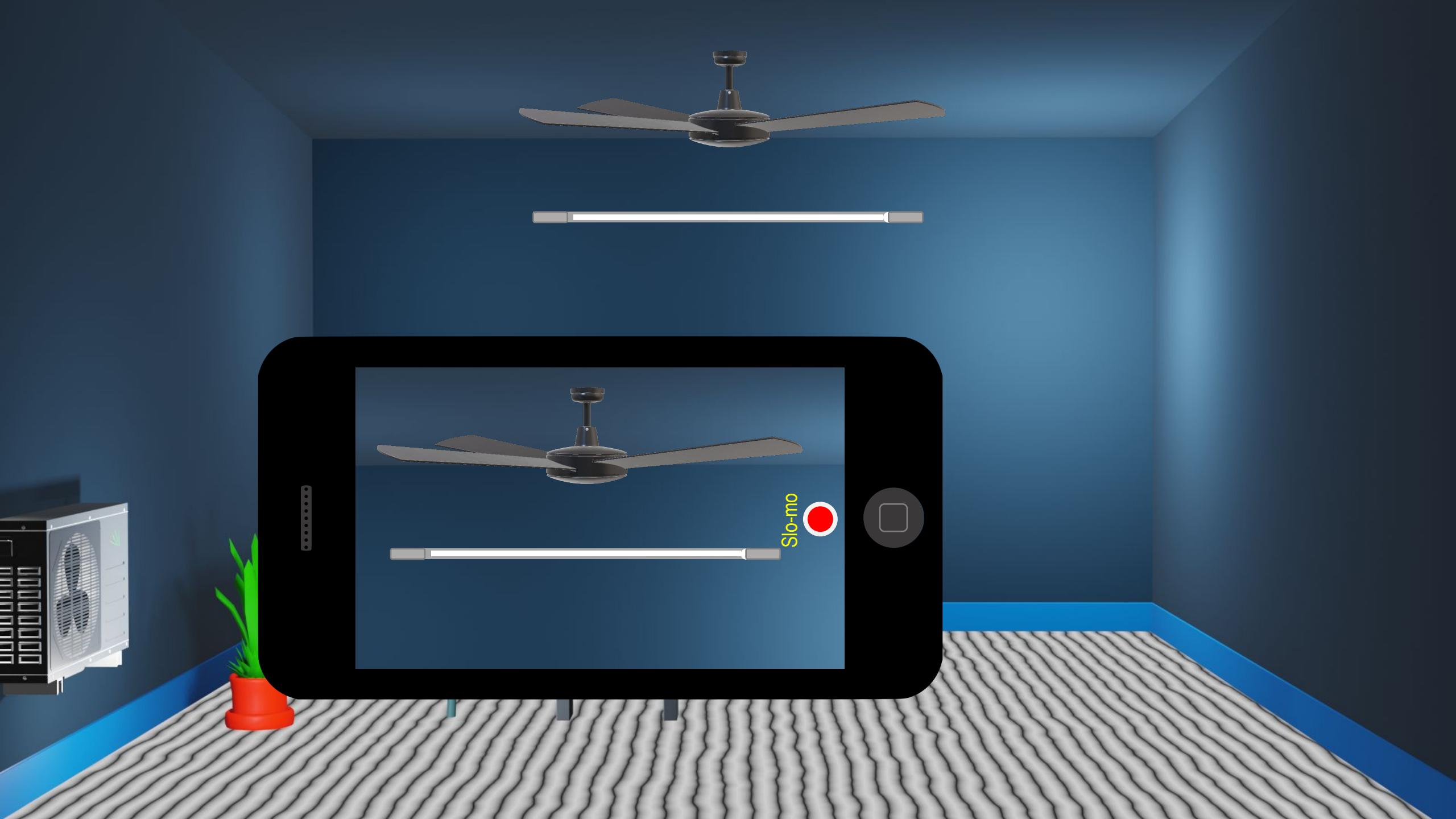
In July
1882

TESLA-WESTINGHOUSE NIAGARA FALLS POWER PLANT(1895)





POWER TRANSMISSION



CONTENTS

Alternating current

Mean or average value of current

Root mean square(rms) value

Phasor diagram

Pure resistive ac circuit

Pure inductive ac circuit

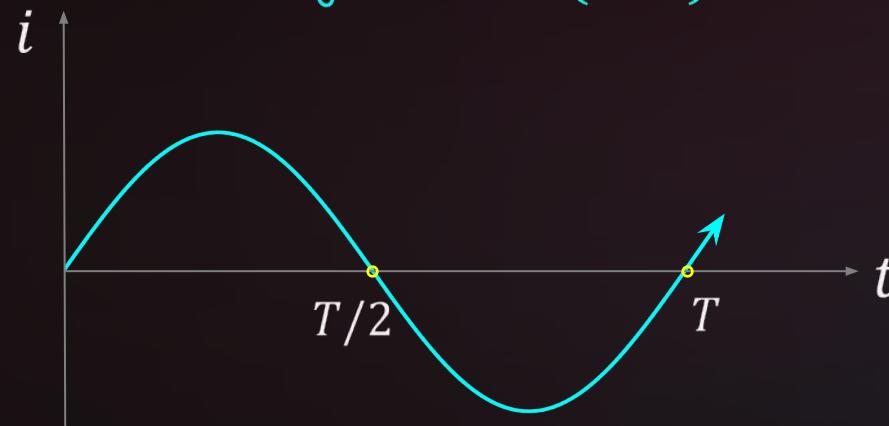
Alternating current

An electric current which **periodically reverses its direction** in contrast to direct current which flows only in one direction.

Direct Current (DC)

DC Source

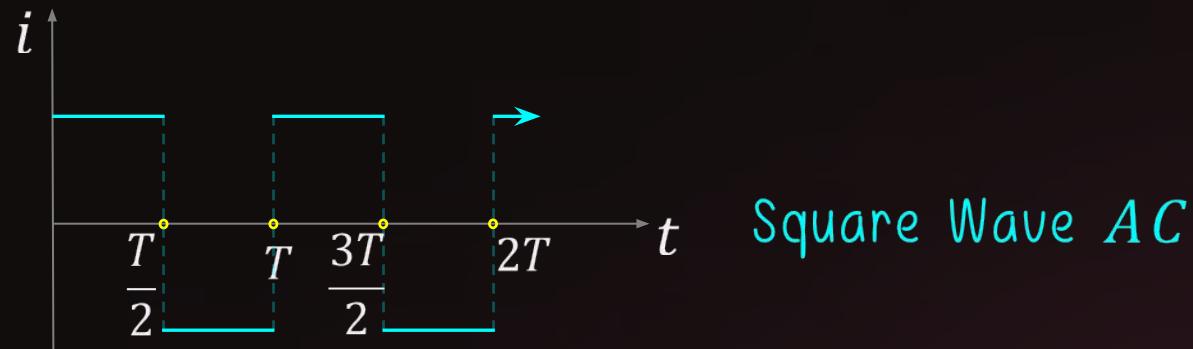
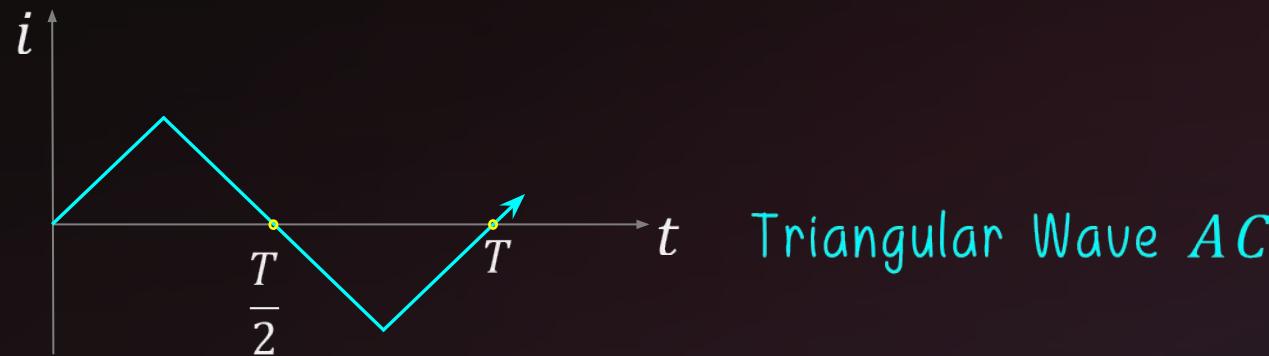
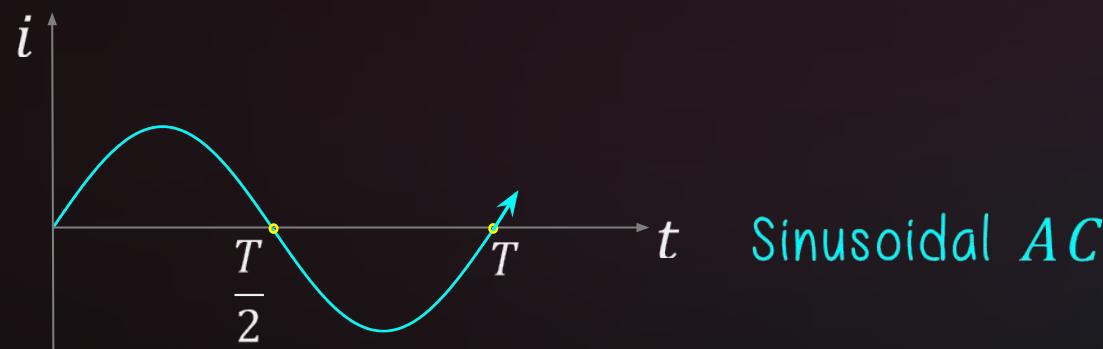
Alternating Current (AC)



AC Source

Alternating current

An electric current which **periodically reverses its direction** in contrast to direct current which flows only in one direction.



Question

Variation of emf with time for four types of generators are shown in the figures. Which amongst them can be called AC.

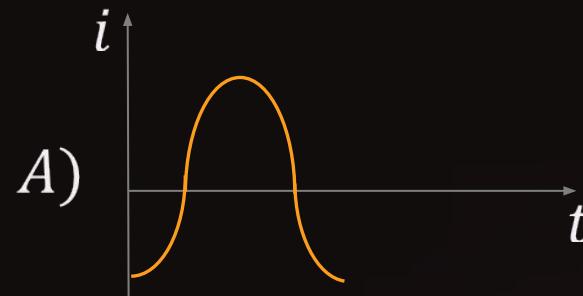
only A

A & D

A, B, C, D

A & B

DISCUSSION

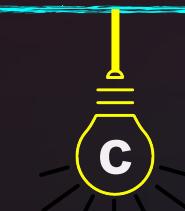


ANSWER

Which of the following are not alternating currents.

only A

A & D



A, B, C, D

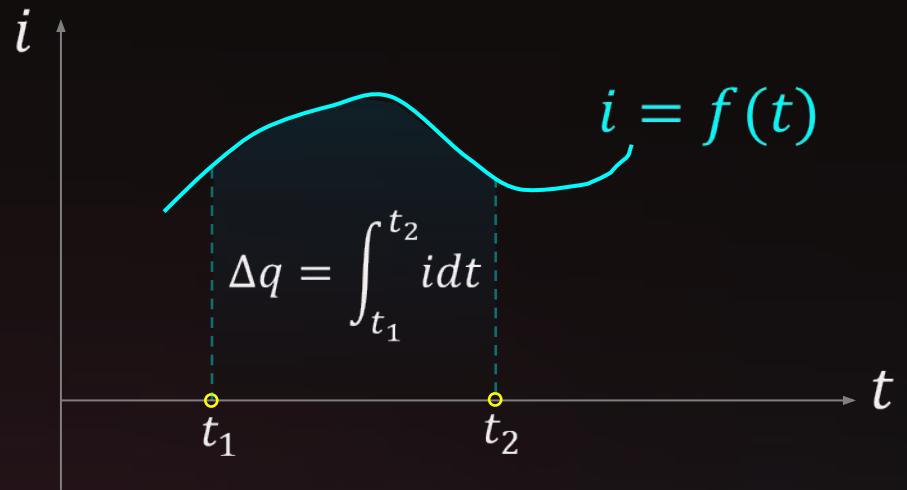
A & B

Current

$$\text{Average current} (i_{av}) = \frac{\Delta q}{\Delta t}$$

Average current representations

$$i_{av} = \langle i \rangle = \overline{(i)}$$



Average current (i_{av}) for time varying current is

$$i_{av} = \frac{\Delta q}{\Delta t} = \frac{\int_{t_1}^{t_2} i dt}{t_2 - t_1}$$

$$\text{~} i_{av} = \frac{1}{\Delta t} \int_{t_1}^{t_2} i dt \text{~}$$

Current

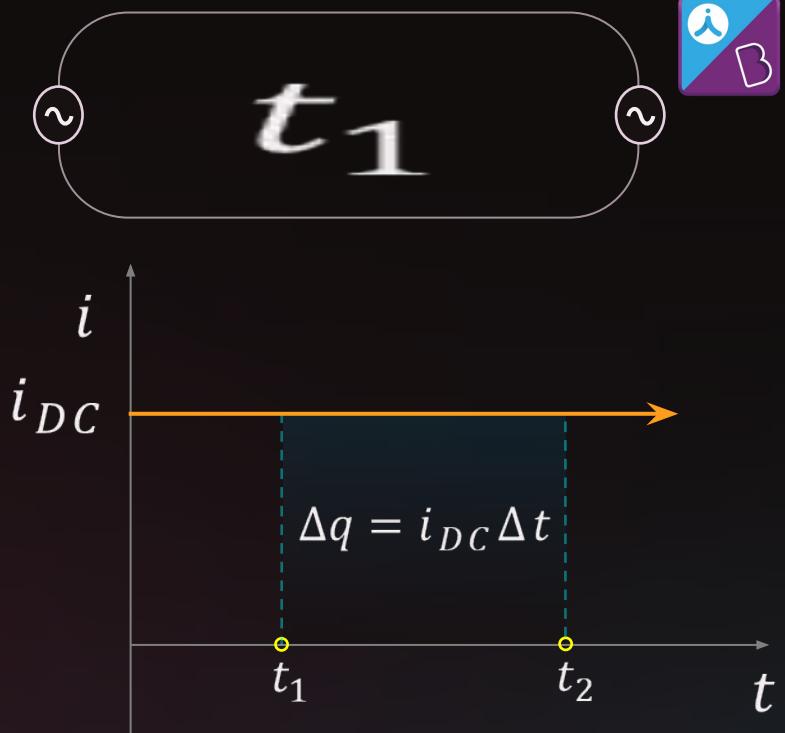
Average value of an AC is equal to that DC for which the amount of charge that flows in a given amount of time is the same as that of AC .

$$\Delta q_{DC} = i_{DC} \Delta t \quad \Delta q_{AC} = \int_{t_1}^{t_2} i dt$$

$$i_{DC} \Delta t = \int_{t_1}^{t_2} i dt$$

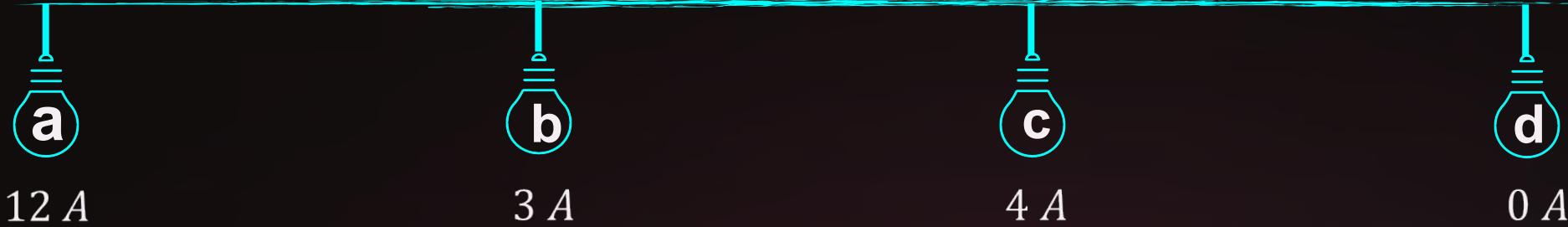
$$i_{DC} = \frac{1}{\Delta t} \int_{t_1}^{t_2} i dt$$

If $\Delta q_{DC} = \Delta q_{AC}$ \Rightarrow $\text{~} i_{av} = i_{DC} \text{~}$



Question

If $i = 3t^2$, find average current in 2 s.



SUMMARY

If $i = 3t^2$, find average current in 2 s.

$$i = 3t^2 \quad i_{av} = \frac{1}{\Delta t} \int_{t_1}^{t_2} i dt \quad t_1 = 0 \text{ s} \quad t_2 = 2 \text{ s}$$

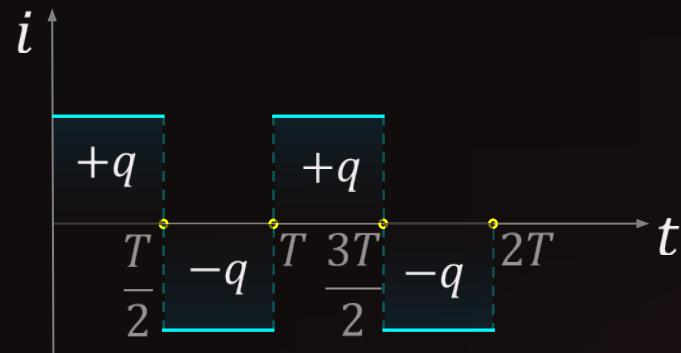
$$i_{av} = \frac{1}{2} \int_0^2 3t^2 dt$$

$$i_{av} = \frac{1}{2} \left(\frac{3t^3}{3} \right)_0^2 = \frac{8}{2} \text{ A}$$

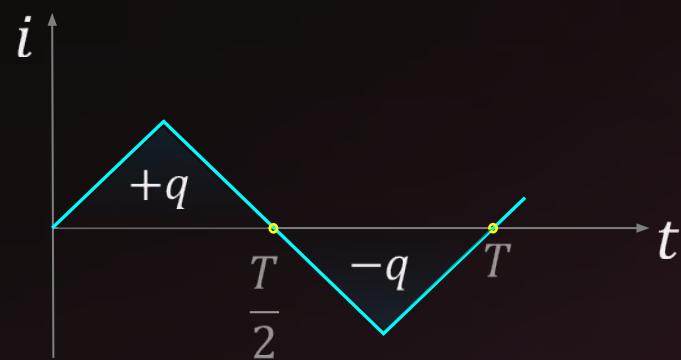
$$i_{av} = 4 \text{ A}$$

ANSWER

If $i = 3t^2$, find average current in 2 s.

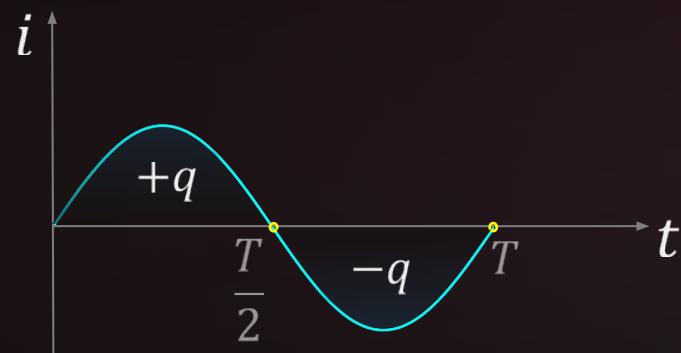


$$\therefore \int_0^T i dt = q - q = 0$$



$$i_{av} = \frac{1}{\Delta t} \int_0^T i dt = 0$$

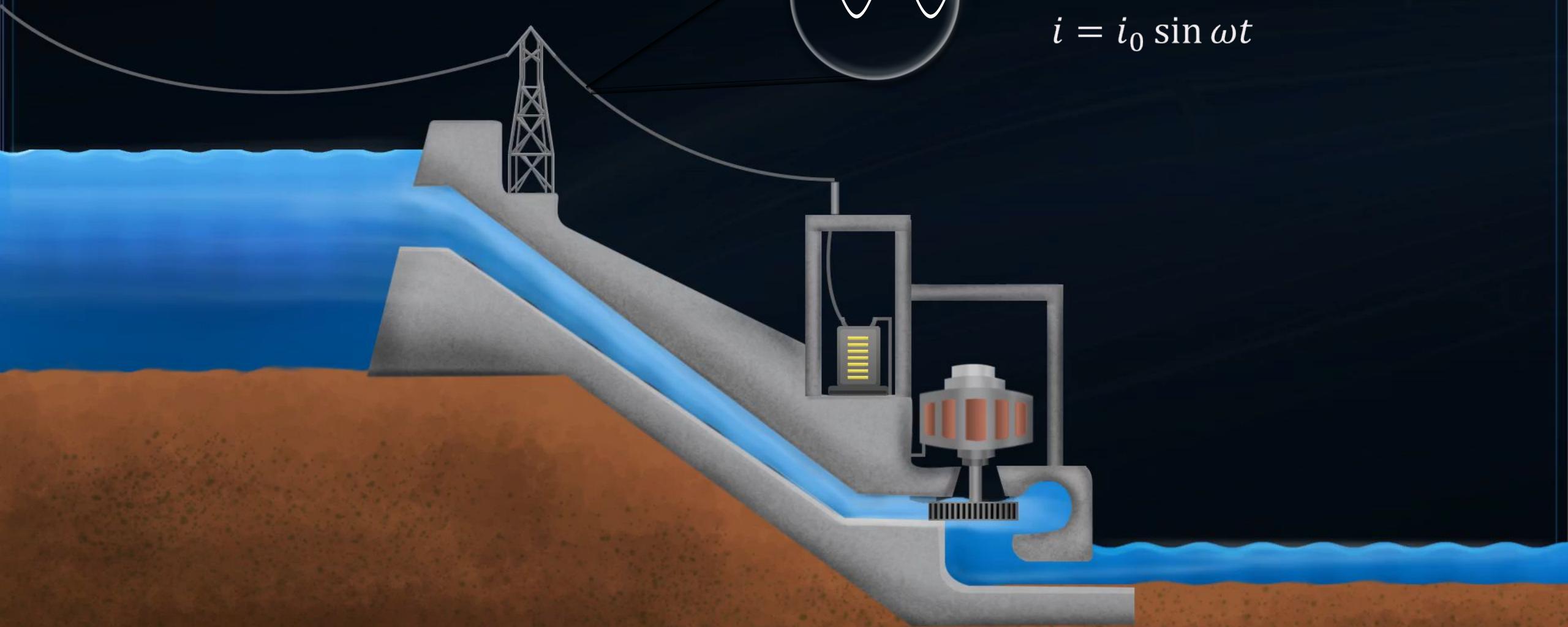
i_{av} for full cycle of AC is zero



current

$$\varepsilon = \varepsilon_0 \sin \omega t$$

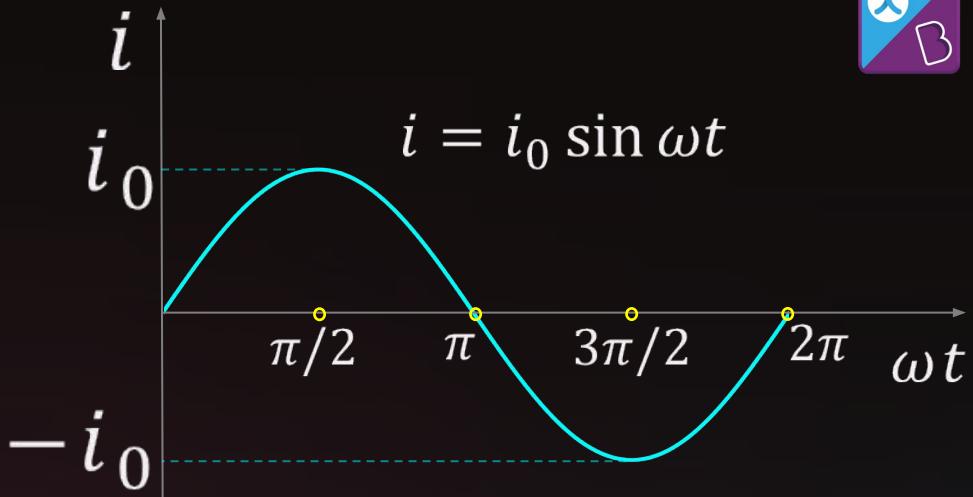
$$i = i_0 \sin \omega t$$



SINUSOIDAL AC

For full cycle

$$i_{av} = \frac{1}{(T-0)} \int_0^T i_0 \sin \omega t \, dt \quad \left(i_{av} = \frac{1}{\Delta t} \int_{t_1}^{t_2} i dt \right)$$



$$i_{av} = \frac{1}{T} i_0 \left(-\frac{\cos \omega t}{\omega} \right)_0^T = \frac{i_0}{T \omega} (\cos 0 - \cos \omega T)$$

$$i_{av} = \frac{i_0}{T \omega} (\cos 0 - \cos 2\pi) = 0 \quad \left(\omega = \frac{2\pi}{T} \right)$$

~~~~~  $(i_{av})_{full\ cycle} = 0$  ~~~~~

# SINUSOIDAL AC



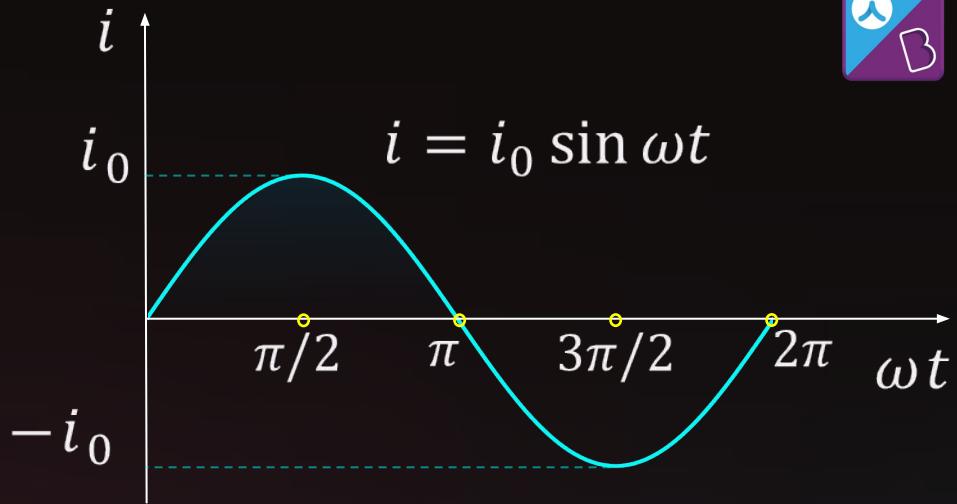
For half cycle

$$i_{av} = \frac{1}{\left(\frac{T}{2} - 0\right)} \int_0^{T/2} i_0 \sin \omega t \, dt$$

$$i_{av} = \frac{2}{T} i_0 \left( -\frac{\cos \omega t}{\omega} \right)_0^{T/2} = \frac{2i_0}{T\omega} \left( \cos 0 - \cos \frac{\omega T}{2} \right)$$

$$i_{av} = \frac{2i_0}{T\omega} (\cos 0 - \cos \pi) = \frac{4i_0}{T \times \frac{2\pi}{T}}$$

$$(i_{av})_{half\ cycle} = \frac{2i_0}{\pi}$$



# SINUSOIDAL AC



For full cycle

$$(i_{av})_{full\ cycle} = 0$$



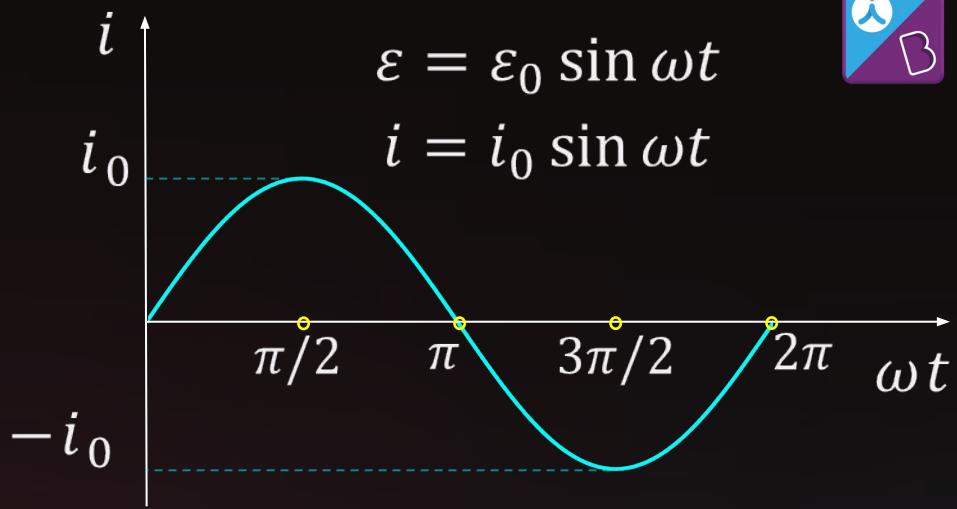
For half cycle

$$(i_{av})_{half\ cycle} = \frac{2i_0}{\pi}$$



For half cycle

$$(\varepsilon_{av})_{half\ cycle} = \frac{2\varepsilon_0}{\pi}$$



# Root mean square(rms) value



Root mean square

$$\sqrt{ \langle x^2 \rangle } = x_{rms}$$



$$i_{rms} = \sqrt{ \langle i^2 \rangle }$$

$$i_{rms} = \sqrt{ \frac{1}{\Delta t} \int_{t_1}^{t_2} i^2 dt }$$



$$\varepsilon_{rms} = \sqrt{ \langle \varepsilon^2 \rangle }$$

$$\varepsilon_{rms} = \sqrt{ \frac{1}{\Delta t} \int_{t_1}^{t_2} \varepsilon^2 dt }$$

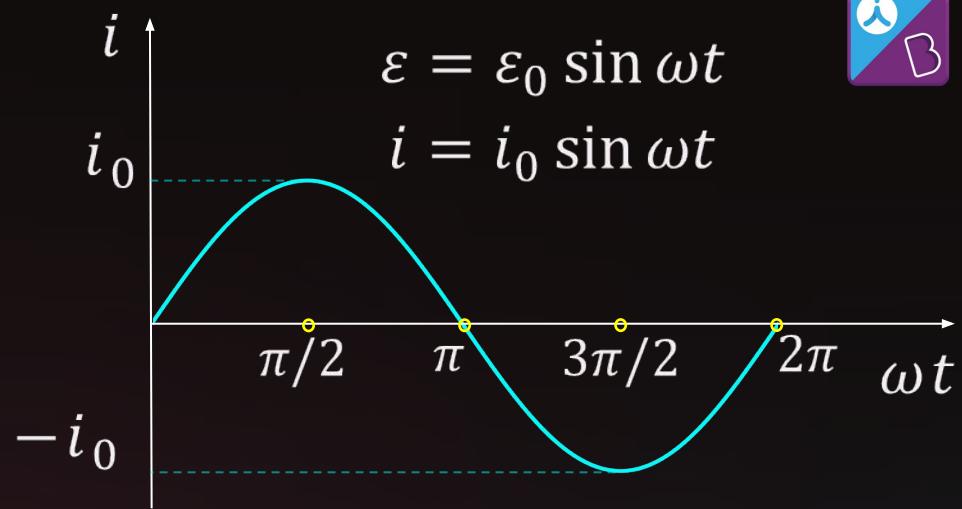
$$i_{rms} = \sqrt{ \langle i^2 \rangle }$$

$$i_{rms} = \sqrt{ \langle i_0^2 \sin^2 \omega t \rangle }$$

$$i_{rms}^2 = \frac{1}{T} \int_0^T i_0^2 \sin^2 \omega t \, dt = \frac{i_0^2}{T} \int_0^T \sin^2 \omega t \, dt$$

$$i_{rms}^2 = \frac{i_0^2}{T} \int_0^T \frac{1 - \cos 2\omega t}{2} \, dt \quad \left( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \right)$$

$$i_{rms}^2 = \frac{i_0^2}{2T} \left( t - \frac{\sin 2\omega t}{2\omega} \right)_0^T$$



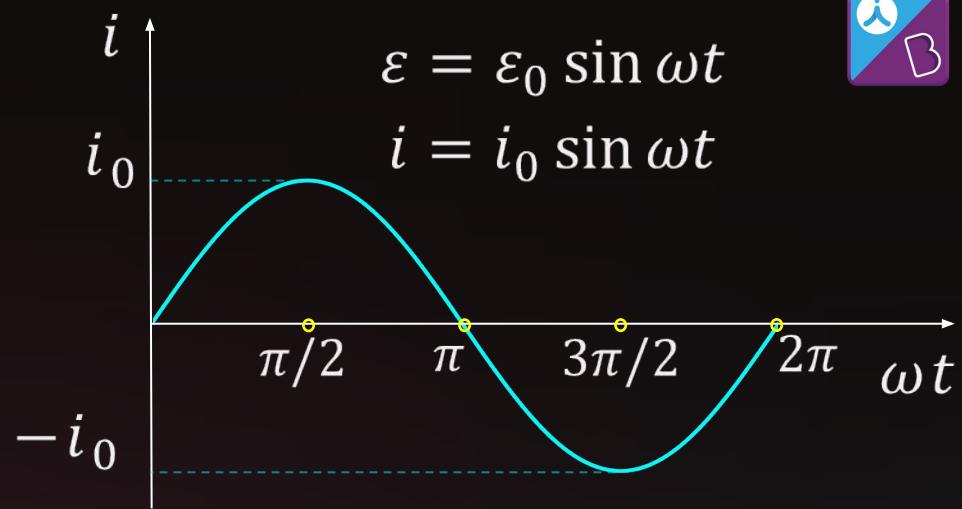
$$i_{rms} = \sqrt{< i^2 >}$$

$$i_{rms}^2 = \frac{i_0^2}{2T} \left( t - \frac{\sin 2\omega t}{2\omega} \right)_0^T \quad \left( T = \frac{2\pi}{\omega} \right)$$

$$i_{rms}^2 = \frac{i_0^2}{2T} \left( \left( T - \frac{\sin 2\omega \left( \frac{2\pi}{\omega} \right)}{2\omega} \right) - (0 - \sin 0) \right) = \frac{i_0^2}{2T} T$$

$$i_{rms}^2 = \frac{i_0^2}{2}$$

$$\text{AC} \quad i_{rms} = \frac{i_0}{\sqrt{2}}$$

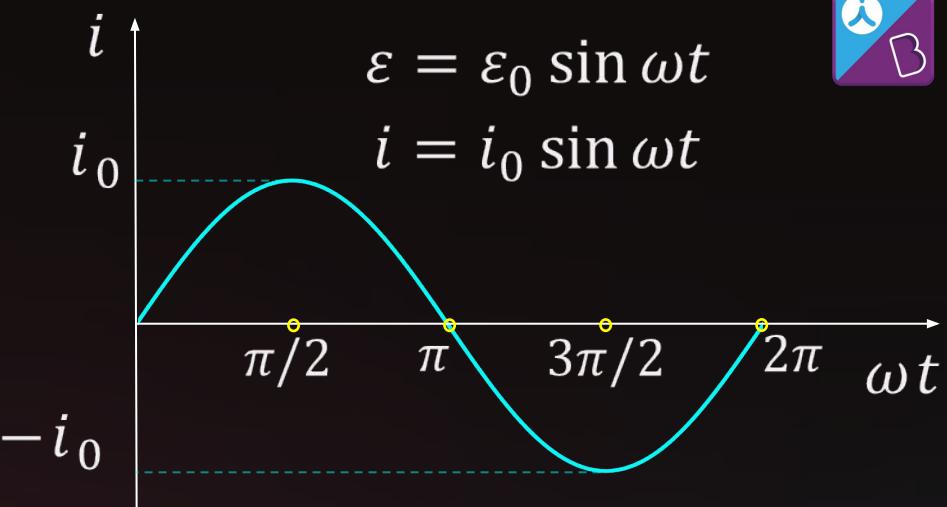


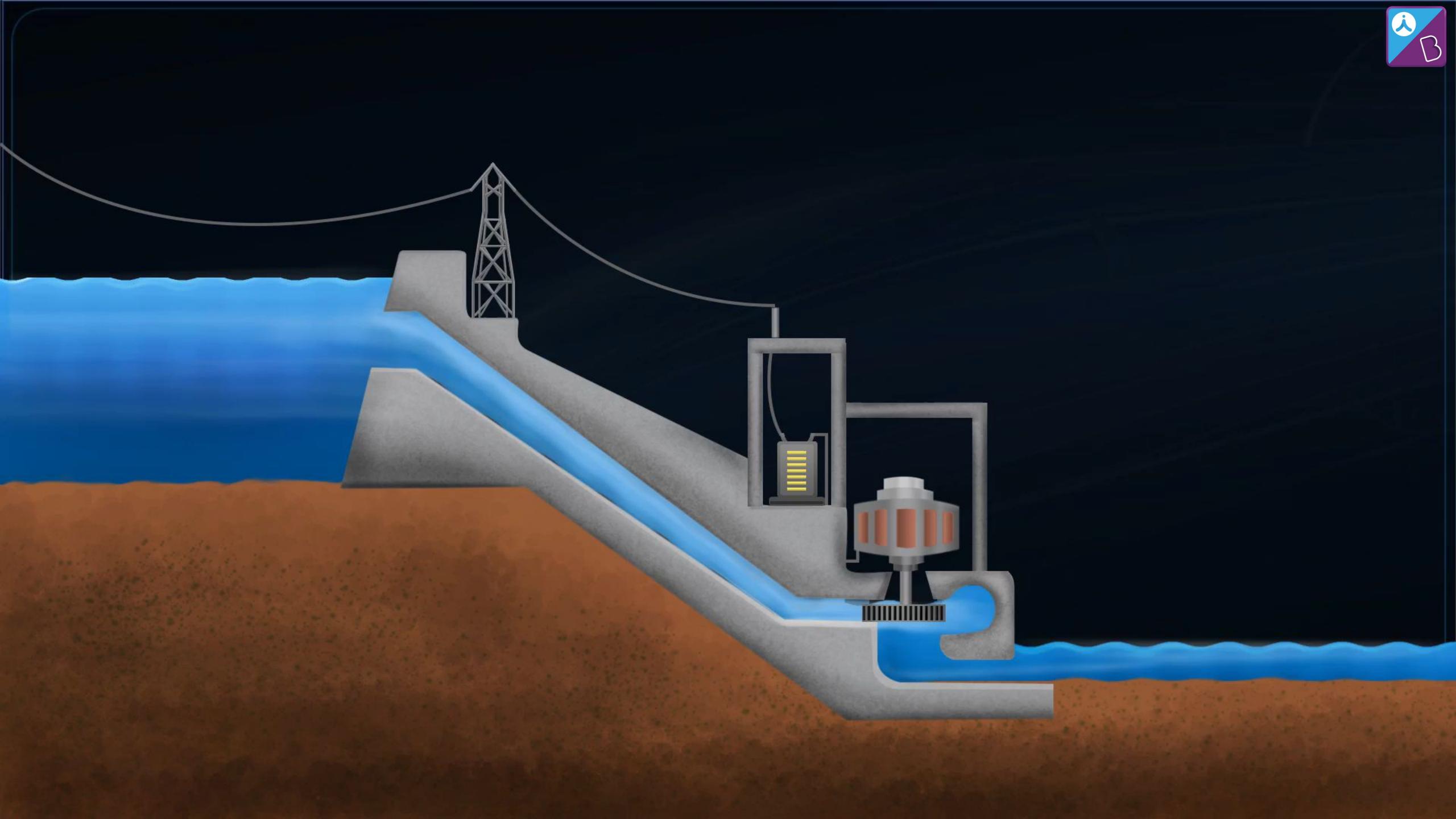
$$i_{rms} = \frac{i_0}{\sqrt{2}}$$

$$(i_{av})_{half\ cycle} = \frac{2i_0}{\pi}$$

$$\varepsilon_{rms} = \frac{\varepsilon_0}{\sqrt{2}}$$

$$(\varepsilon_{av})_{half\ cycle} = \frac{2\varepsilon_0}{\pi}$$







Household current  $\rightarrow$  sinusoidal AC ( $\varepsilon = \varepsilon_0 \sin \omega t$ )  
220 V, 50 Hz

# Significance OF Rms value



Household current  $\rightarrow$  sinusoidal AC ( $\varepsilon = \varepsilon_0 \sin \omega t$ )  
220 V, 50 Hz



$$\varepsilon_{rms} = 220 \text{ V}$$



$$\varepsilon_{av} = 0 \text{ V}$$



$$\varepsilon_0 = \sqrt{2} \varepsilon_{rms}$$

$$\varepsilon_0 = \sqrt{2} \times 220 = 311.12 \text{ V} \approx 311 \text{ V}$$

If problem states only  $\varepsilon$  (not  $\varepsilon_0, \varepsilon_{rms}, \varepsilon_{av}$ )  
then, consider it as  $\varepsilon_{rms}$

# Significance OF Rms value

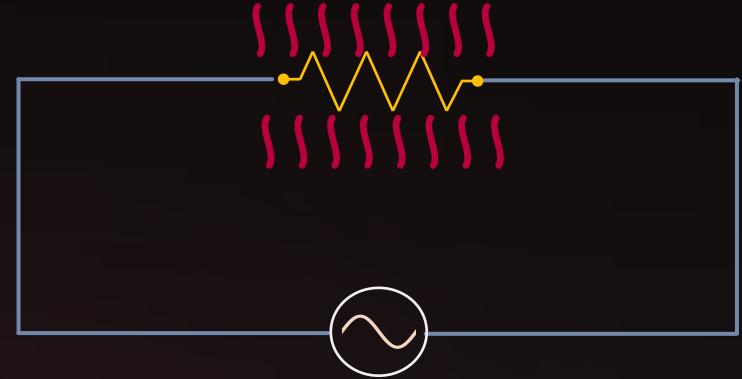


Heat produced in AC circuit through resistor  $R$  in time  $t_1$  to  $t_2$

$$H_{AC} = \int_{t_1}^{t_2} i_{AC}^2 R dt \quad i_{rms} = \sqrt{\frac{1}{\Delta t} \int_{t_1}^{t_2} i_{AC}^2 dt}$$

Heat produced in DC circuit through resistor  $R$  in time  $t_1$  to  $t_2$

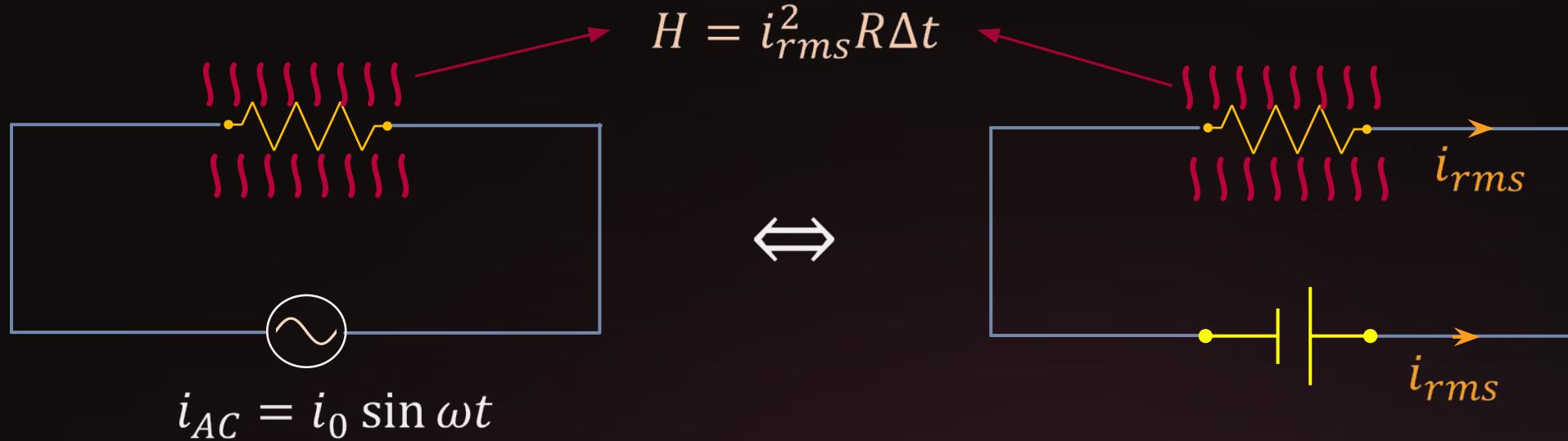
$$H_{DC} = i_{DC}^2 R \Delta t$$
$$i_{DC}^2 R \Delta t = \int_{t_1}^{t_2} i_{AC}^2 R dt$$
$$i_{DC} = \sqrt{\frac{1}{\Delta t} \int_{t_1}^{t_2} i_{AC}^2 dt}$$



$$i_{AC} = i_0 \sin \omega t$$

$$\therefore \text{If } \Delta H_{DC} = \Delta H_{AC} \Rightarrow i_{rms} = i_{DC}$$

# Significance OF Rms value



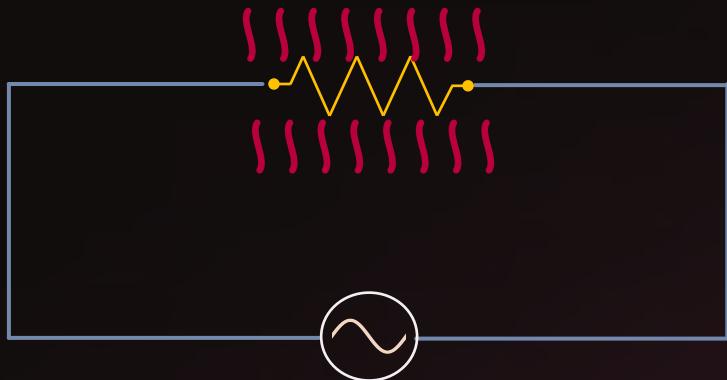
RMS value of a given AC can be defined as that DC value which produces same heat in a resistance which the AC produces in that resistance in same duration.

$i_{rms}$  is the effective DC value of a given AC

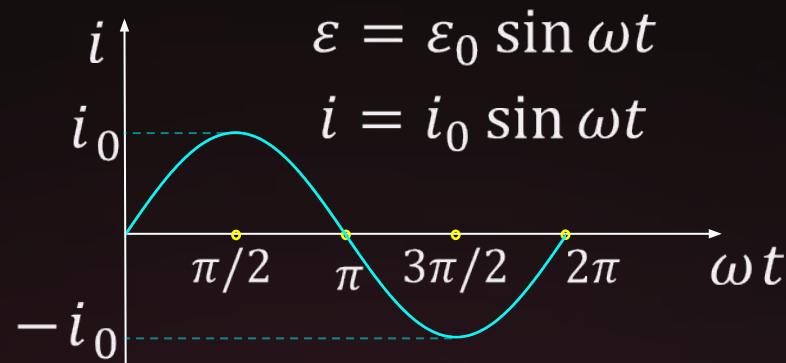
# Significance OF Rms value



$$H = i_{rms}^2 R \Delta t$$



$$i_{AC} = i_0 \sin \omega t$$



DC devices cannot measure alternating current or emf.  
Normal Ammeter, Voltmeter will show **only zero** for AC



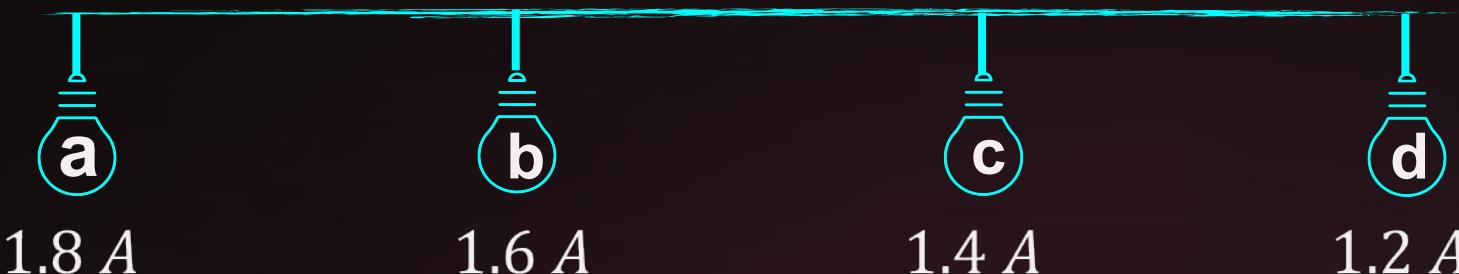
Hot Wire Ammeter & Hot Wire Voltmeter are used to measure AC. They measure RMS value of  $i$  &  $\varepsilon$ .



# Question



If the voltage of a source in an AC circuit is represented by the equation,  $E = 220\sqrt{2}\sin(314t)$ . Calculate the peak value of the current if the net resistance of the circuit is  $220\ \Omega$ . Take  $\sqrt{2} = 1.4$





# DISCUSSION



Given,

$$\text{Voltage, } \varepsilon = 220\sqrt{2}\sin(314t)$$

Comparing with  $\varepsilon = \varepsilon_o \sin \omega t$ , we get,

$$\varepsilon_o = 220\sqrt{2} \text{ V}$$

So, peak value of current

$$i_o = \frac{\varepsilon_o}{R} = \frac{220\sqrt{2}}{220}$$

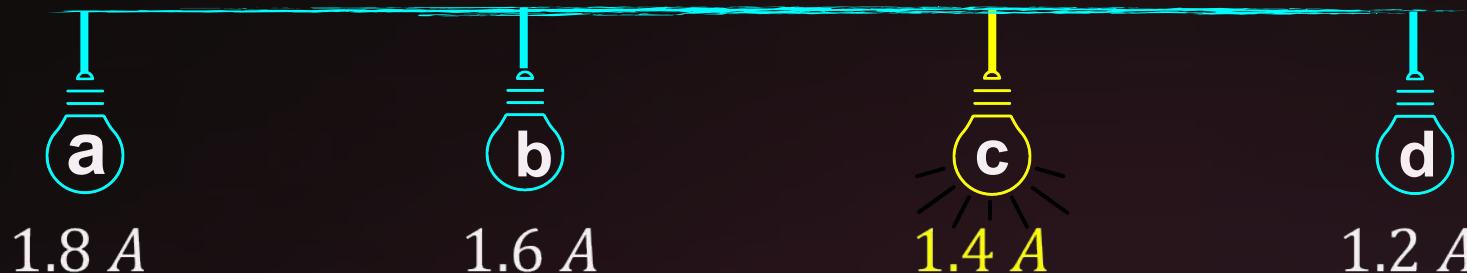
$$i_o = 1.4 \text{ A}$$



# ANSWER



If the voltage of a source in an AC circuit is represented by the equation,  $E = 220\sqrt{2}\sin(314t)$ . Calculate the peak value of the current if the net resistance of the circuit is  $220\ \Omega$ . Take  $\sqrt{2} = 1.4$

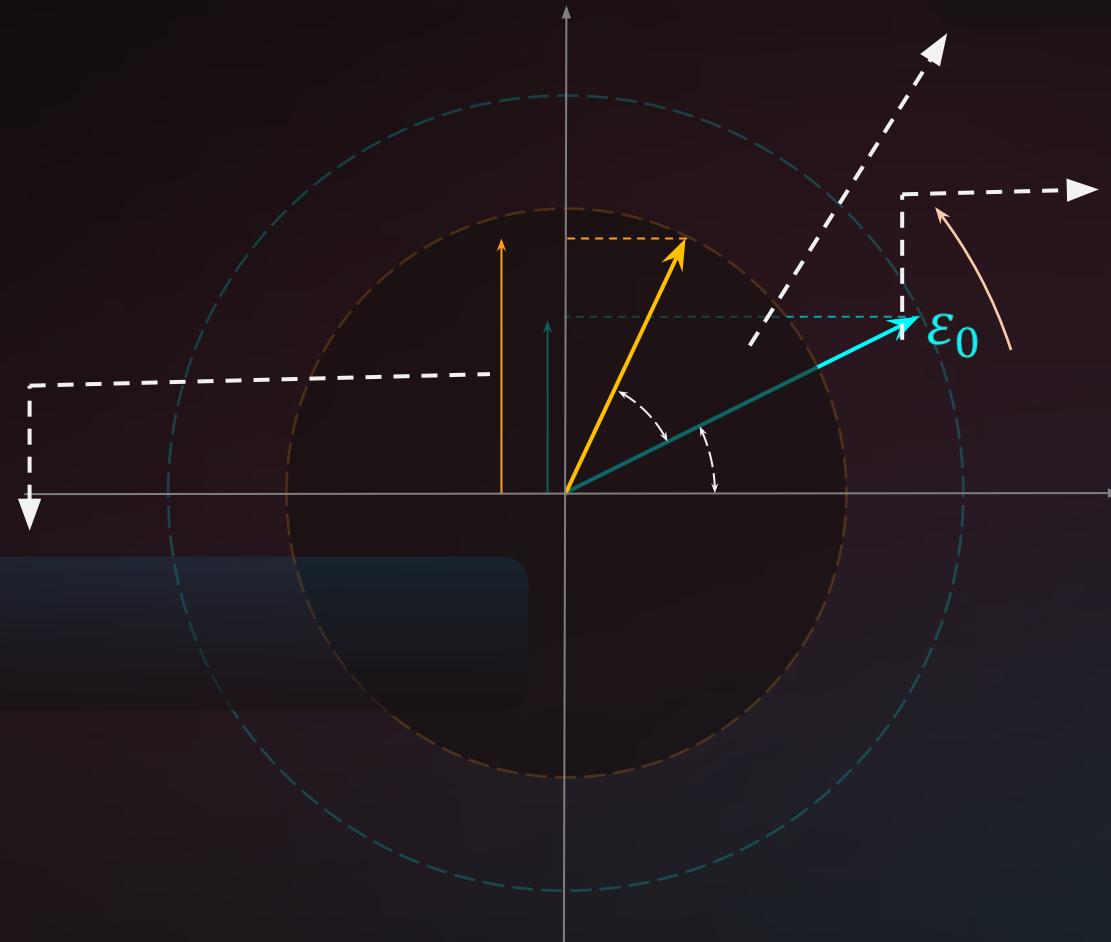


# diagram



A diagram that represents AC and voltage of same frequency as rotating vectors (phasors) along with proper phase angle between them.

Phase difference



# CIRCUITS



I. An AC source connected only to:



Resistor

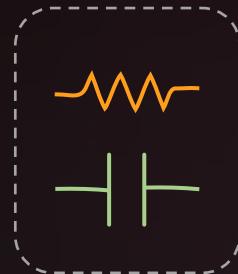


An Inductor

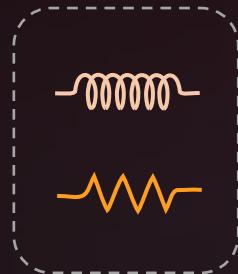


A Capacitor

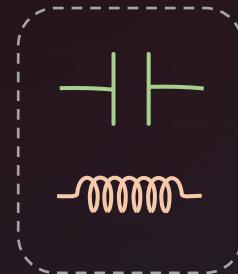
II. An AC source connected to more than one element.



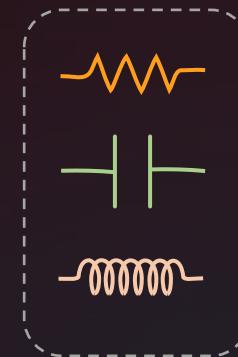
RC  
Circuit



LR  
Circuit



LC  
Circuit

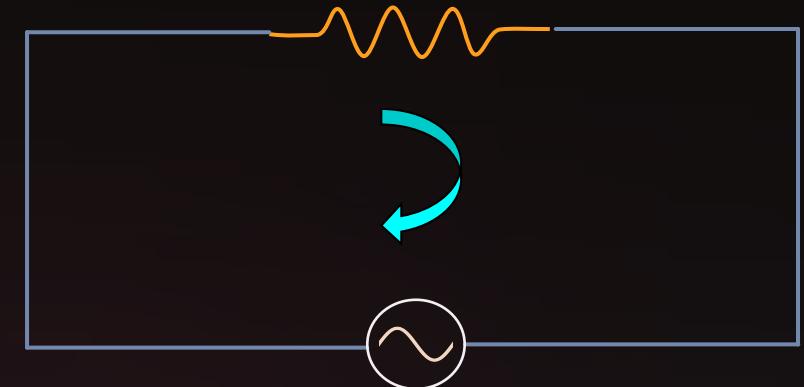


LCR  
Circuit

# Circuit



Apply KVL ;



Peak voltage



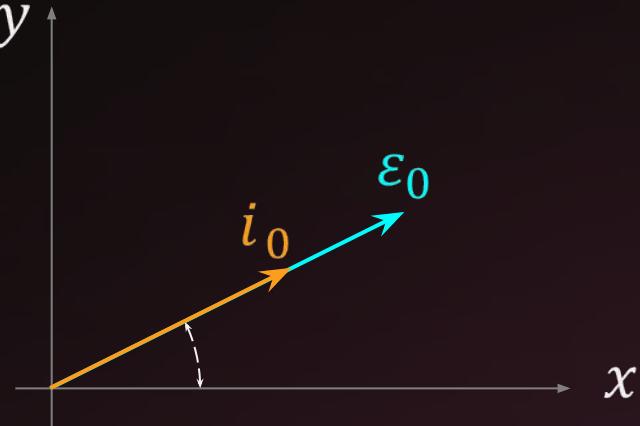
Peak current

Current is **in phase** with potential

# Circuit

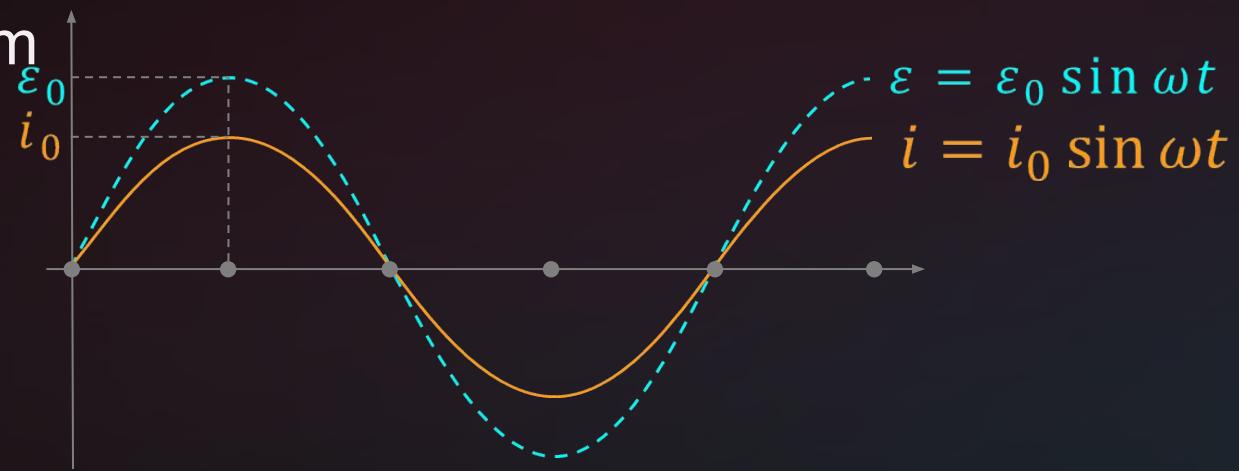


Current is **in phase** with  
potential  
Phasor diagram



$$i = i_0 \sin \omega t$$

Wave diagram



# Circuit



Potential drop across inductance,  
Apply KVL ;

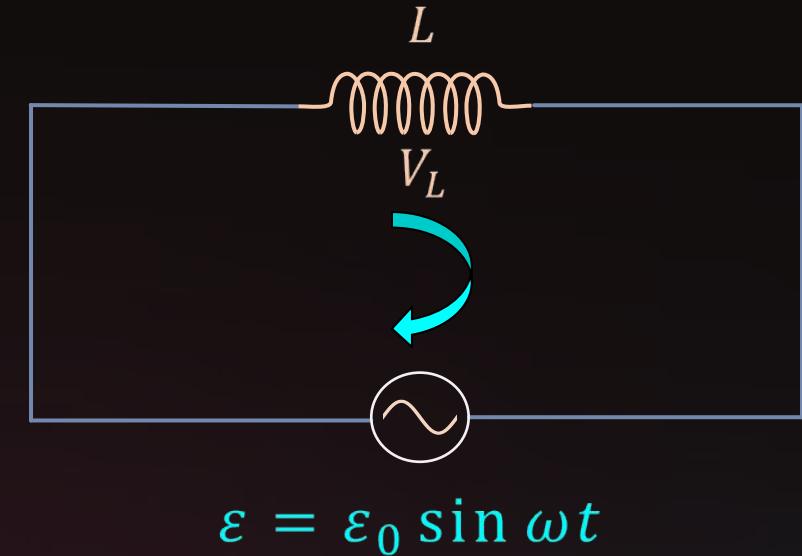
$$V_L = L \frac{di}{dt}$$

$$\varepsilon - V_L = 0$$

$$L \frac{di}{dt} = \varepsilon \Rightarrow di = \frac{\varepsilon}{L} dt$$

$$i = \int di = \int \frac{\varepsilon_0 \sin \omega t}{L} dt$$

$$i = \frac{\varepsilon_0}{L} \frac{(-\cos \omega t)}{\omega} = -\frac{\varepsilon_0}{L\omega} \cos \omega t$$



# Circuit



$$i = \frac{\varepsilon_0}{L} \frac{(-\cos \omega t)}{\omega} = -\frac{\varepsilon_0}{L\omega} \cos \omega t$$

$$i = -\frac{\varepsilon_0}{L\omega} \sin \left( \frac{\pi}{2} - \omega t \right) = \frac{\varepsilon_0}{L\omega} \sin \left( \omega t - \frac{\pi}{2} \right)$$

$$i = i_0 \sin \left( \omega t - \frac{\pi}{2} \right)$$

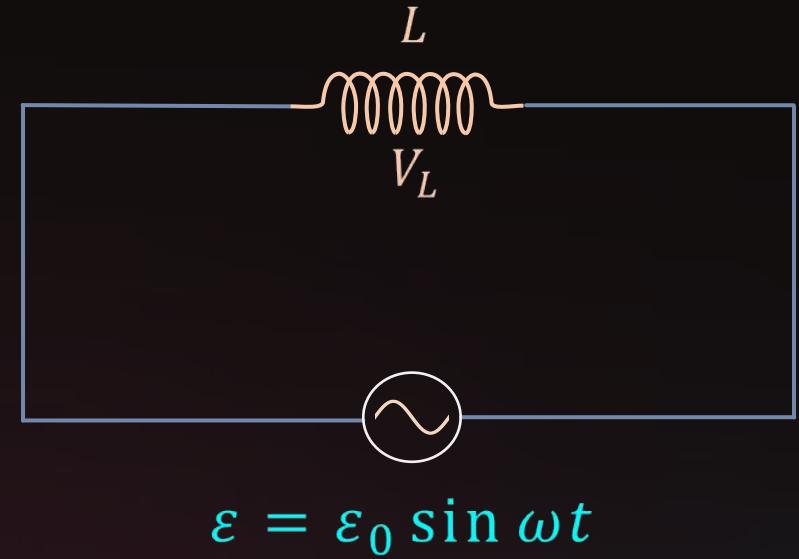
$$i_0 = \frac{\varepsilon_0}{L\omega} = \frac{\varepsilon_0}{X_L}$$



$$X_L = L\omega$$

Inductive reactance

SI Unit : Ohm ( $\Omega$ )



$$\varepsilon = \varepsilon_0 \sin \omega t$$

# Circuit



$$\text{Phase difference } (\phi) = \left( \omega t - \frac{\pi}{2} \right) - \omega t = -\frac{\pi}{2}$$

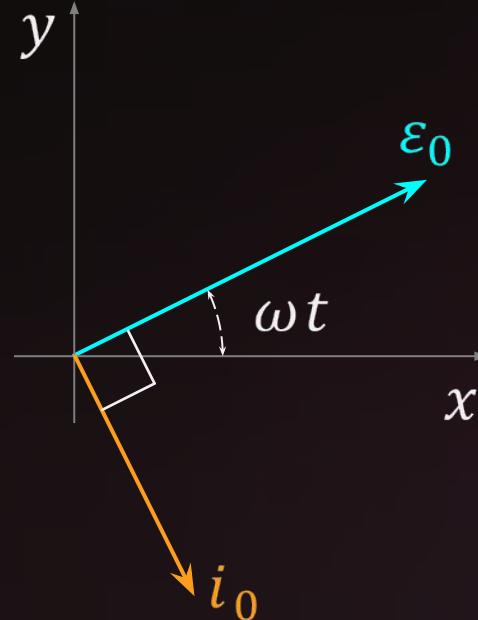
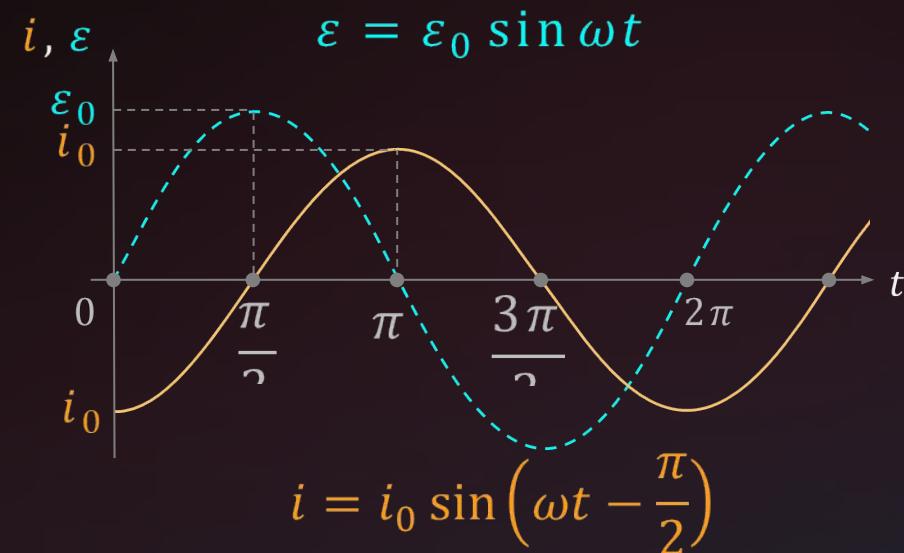
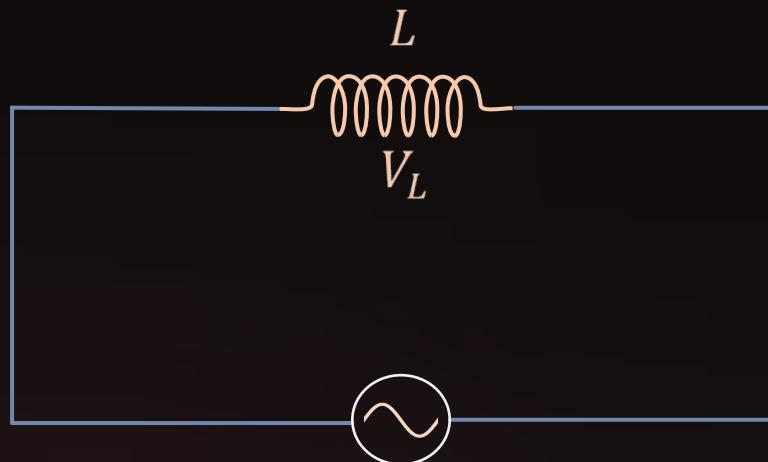
Current lags potential by  $90^\circ$



Phasor diagram



Wave diagram



$$\varepsilon = \varepsilon_0 \sin \omega t$$

$$i = i_0 \sin \left( \omega t - \frac{\pi}{2} \right)$$

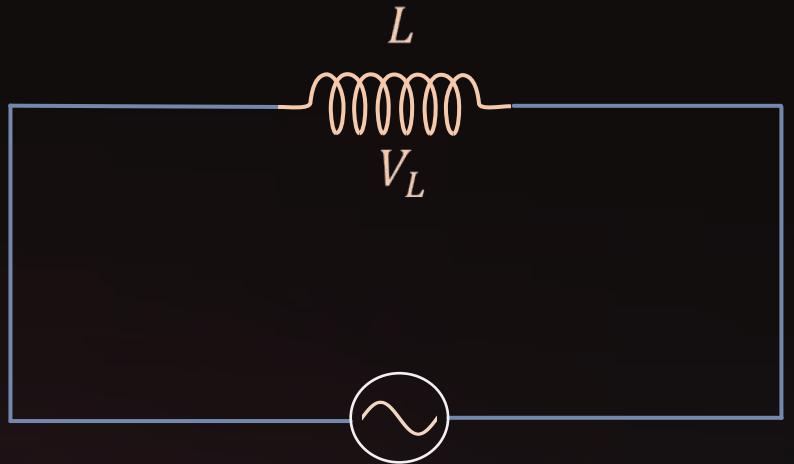
# Circuit



$X_L$  v/s frequency ( $f$ )

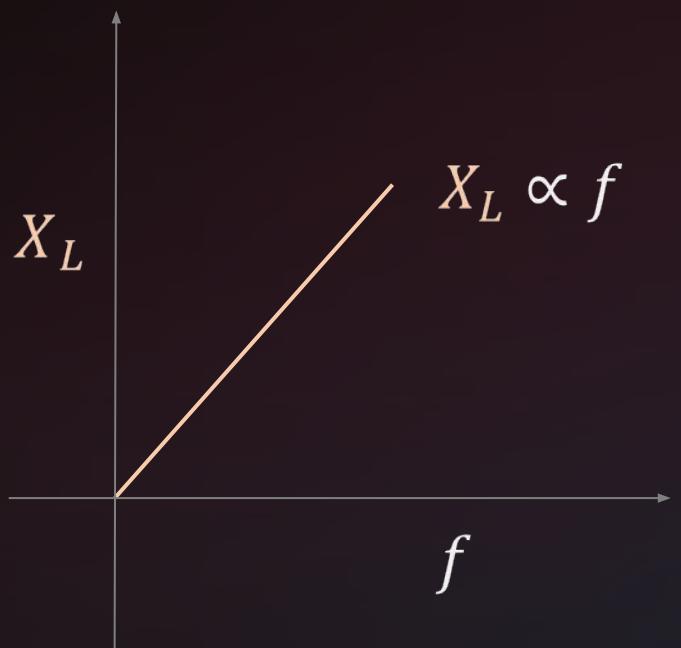
$$X_L = L\omega$$

$$X_L = L \times 2\pi f \quad (\because \omega = 2\pi f)$$



$$\varepsilon = \varepsilon_0 \sin \omega t$$

$$i = i_0 \sin \left( \omega t - \frac{\pi}{2} \right)$$





# Question



Find  $i_{avg}$  and  $i_{rms}$  of given circuit.



$$i_{avg} = 0$$



$$i_{avg} = \frac{1}{\pi} A$$



$$i_{avg} = 0$$



$$i_{avg} = \frac{2}{\pi} A$$

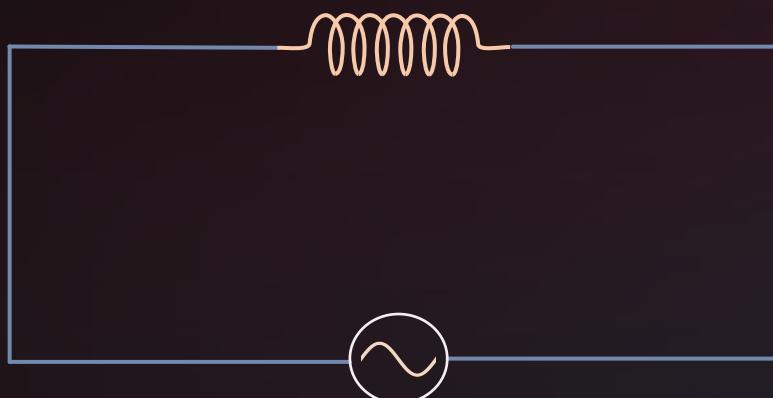
$$i_{rms} = 0$$

$$i_{rms} = \frac{0.5}{\sqrt{2}} A$$

$$i_{rms} = \frac{0.5}{\sqrt{2}} A$$

$$i_{rms} = 0$$

$$L = 2 H$$



$$\varepsilon = 10 \sin(10t + 30^\circ)$$



Y



$$\varepsilon = \varepsilon_0 \sin(\omega t + \phi)$$

$$\varepsilon_0 = 10 \text{ V}$$

$$\omega = 10 \text{ s}^{-1}$$

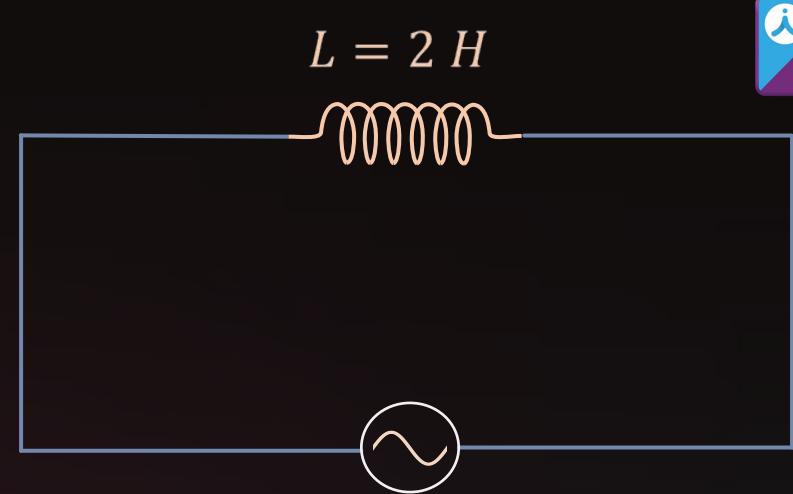
$$i_0 = \frac{\varepsilon_0}{X_L}$$

$$i_0 = \frac{\varepsilon_0}{L\omega}$$

$$i_0 = \frac{10}{2 \times 10} = 0.5 \text{ A}$$

$$i_{avg} = 0 \quad (\text{For full cycle of AC } i_{av} = 0)$$

$$i_{rms} = \frac{i_0}{\sqrt{2}} = \frac{0.5}{\sqrt{2}} \text{ A}$$



$$\varepsilon = 10 \sin(10t + 30^\circ)$$



# ANSWER



Find  $i_{avg}$  and  $i_{rms}$  of given circuit.

**a**

$$i_{avg} = 0$$

$$i_{rms} = 0$$

**b**

$$i_{avg} = \frac{1}{\pi} A$$

$$i_{rms} = \frac{0.5}{\sqrt{2}} A$$

**c**

$$i_{avg} = 0$$

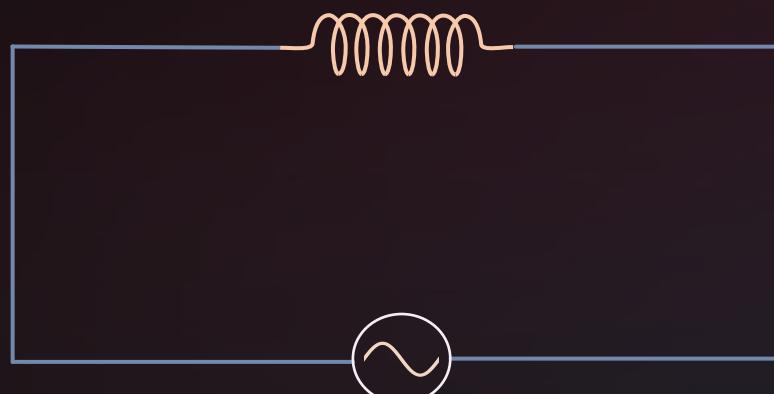
$$i_{rms} = \frac{0.5}{\sqrt{2}} A$$

**d**

$$i_{avg} = \frac{2}{\pi} A$$

$$i_{rms} = 0$$

$$L = 2 H$$



$$\varepsilon = 10 \sin(10t + 30^\circ)$$