

**BONUS
SESSION**

**LC
Oscillation**

ALTERNATING CURRENT L-5

GRADE 12 PHYSICS

MRINAL SIR

<https://t.me/neetaakashdigital>

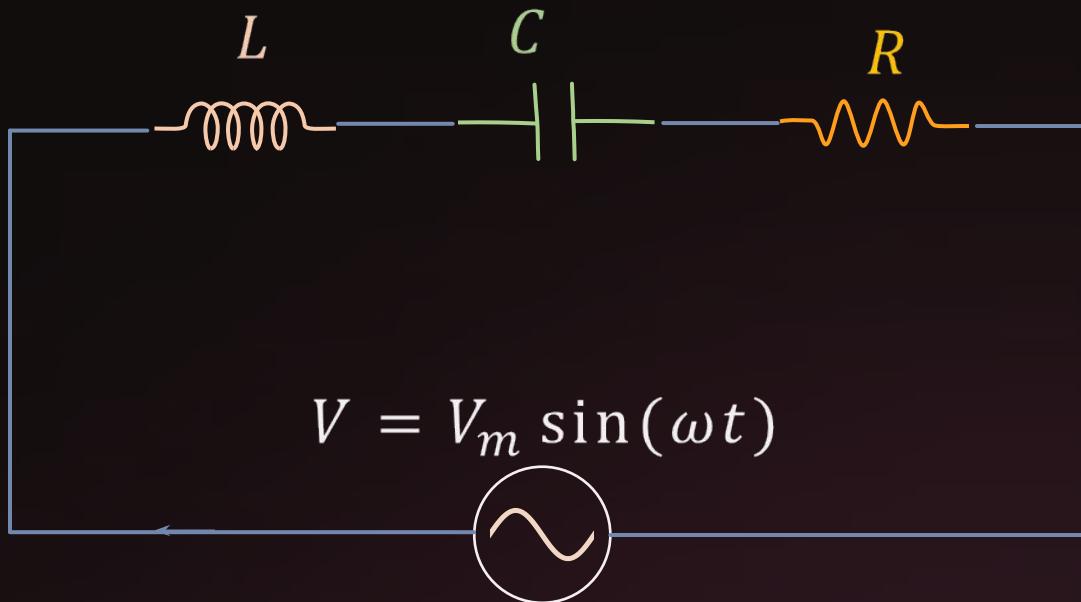
CONTENTS

Resonance

Resonance in Radio tuning

Lc oscillation

RESONANCE



$$i_m = \frac{V_m}{\sqrt{R^2 + (X_C - X_L)^2}}$$

$$X_C = \frac{1}{\omega C}$$

$$X_L = \omega L$$

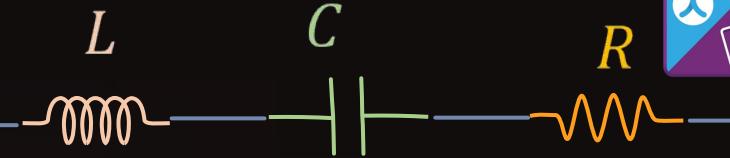
If ω is varied, then at a particular frequency (ω_0), $X_C = X_L$

RESONANCE

$$i_m = \frac{V_m}{\sqrt{R^2 + (X_C - X_L)^2}}$$

$$X_C = \frac{1}{\omega C}$$

$$X_L = \omega L$$



$$V = V_m \sin(\omega t)$$

If ω is varied, then at a particular frequency (ω_0), $X_C = X_L$

ω_0 is resonant angular frequency

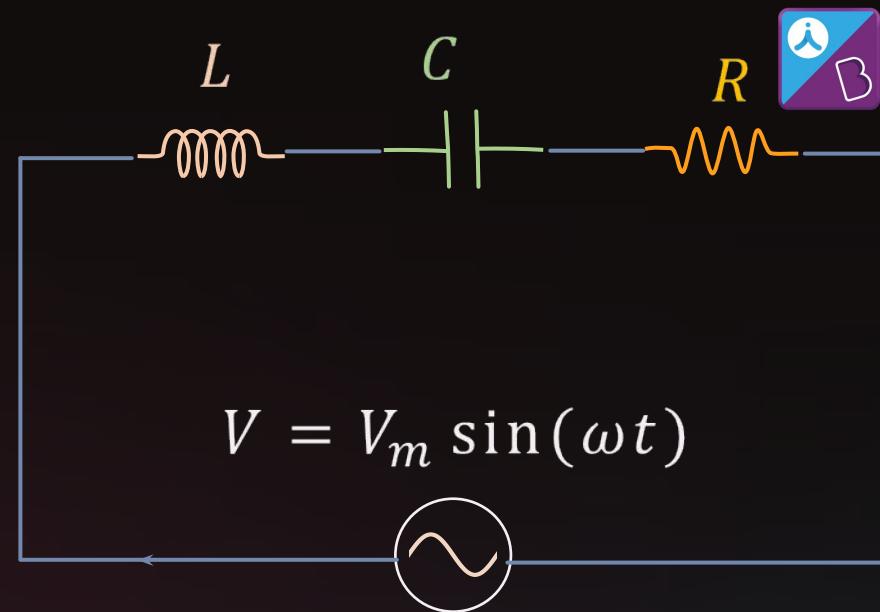
Impedance is minimum ($Z = \sqrt{R^2 + 0^2} = R$)
and purely resistive circuit

Current is maximum ($i_m = V_m / R$)

RESONANCE

$$X_C = \frac{1}{\omega C}$$

$$X_L = \omega L$$



RESONANCE

$$X_C = \frac{1}{\omega C}$$

$$X_L = \omega L$$

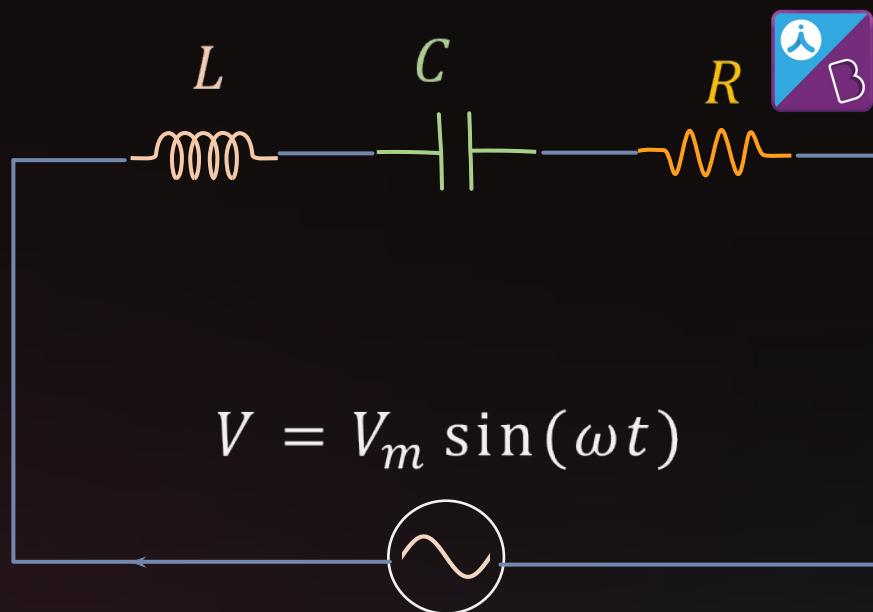
For resonance condition, $X_C = X_L$

$$\frac{1}{\omega_0 C} = \omega_0 L$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Resonant frequency



RESONANCE Graphical representation

X_L, X_C, R

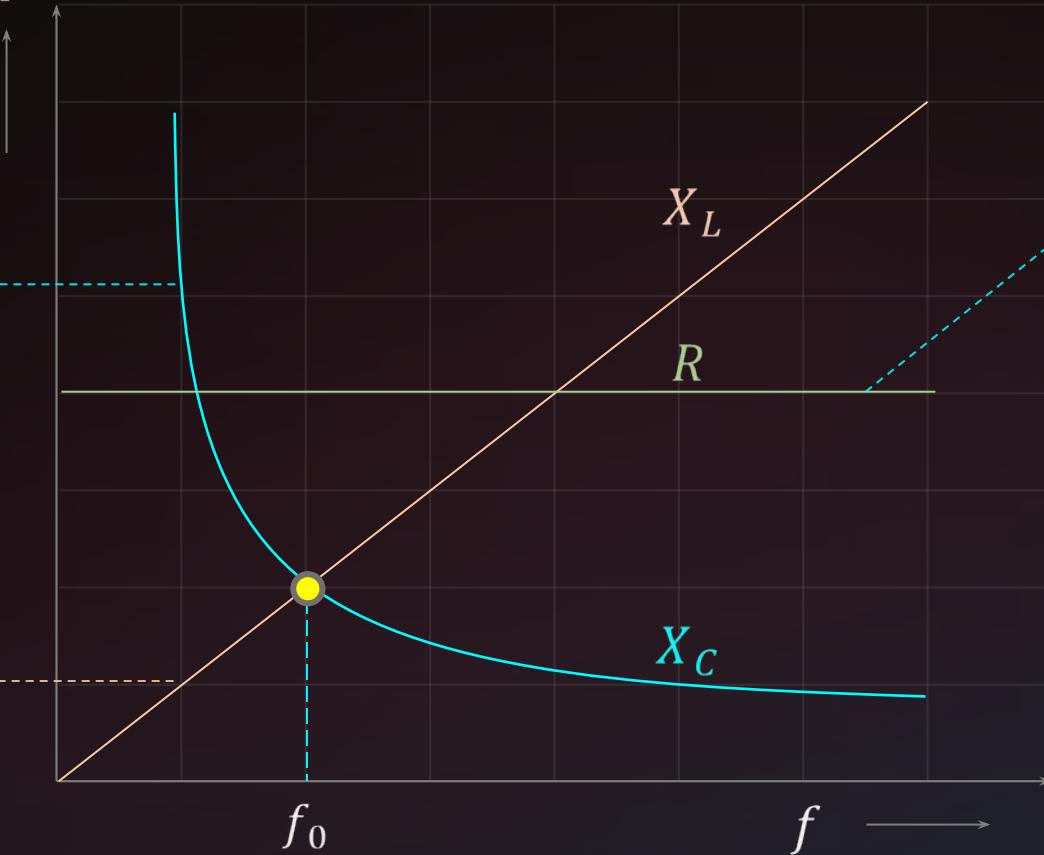
Resonance condition, $X_C = X_L$

RESONANCE Graphical representation

X_L, X_C, R

$$X_C = \frac{1}{2\pi f C}$$

$$X_L = 2\pi f L$$

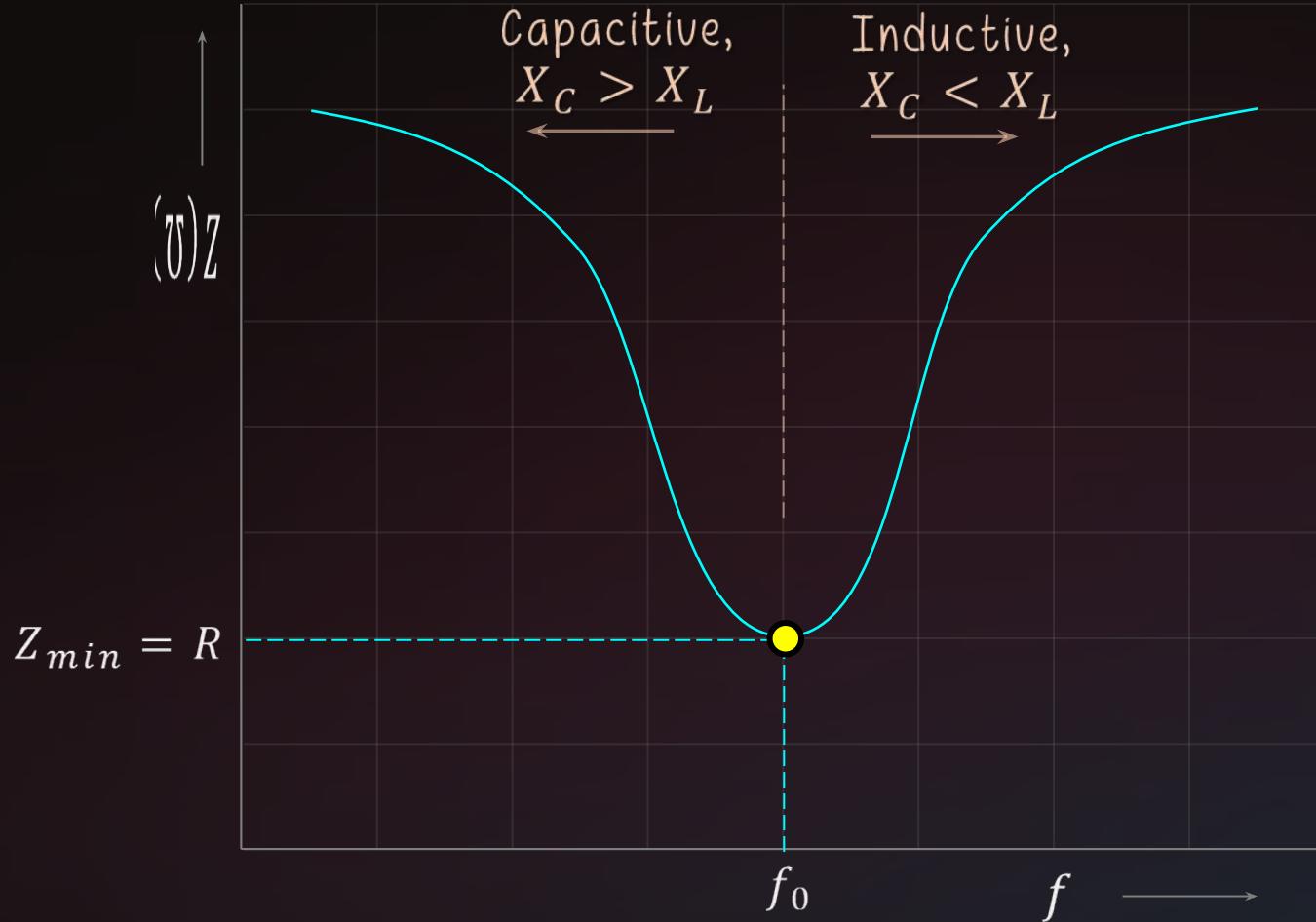


Resonance condition, $X_C = X_L$

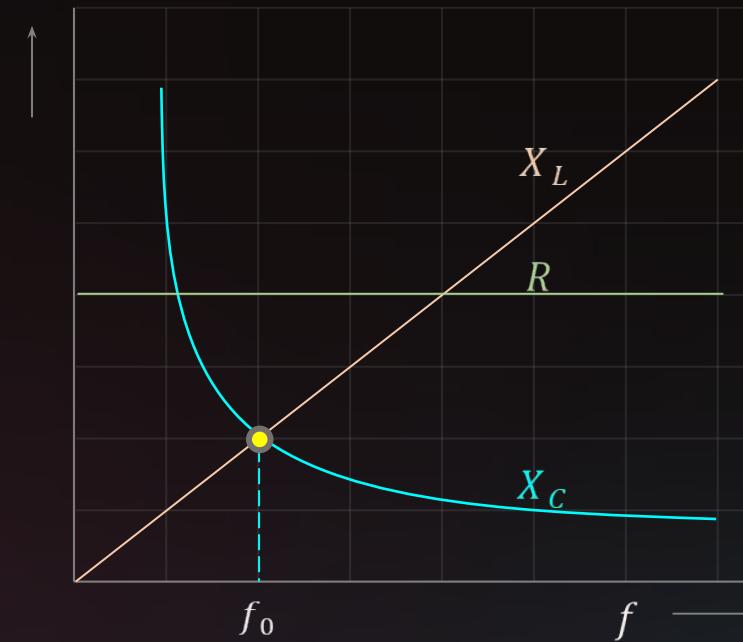
Independent
of frequency

RESONANCE Graphical representation

$$Z = \sqrt{R^2 + \left(\frac{1}{2\pi f C} - 2\pi f L \right)^2}$$



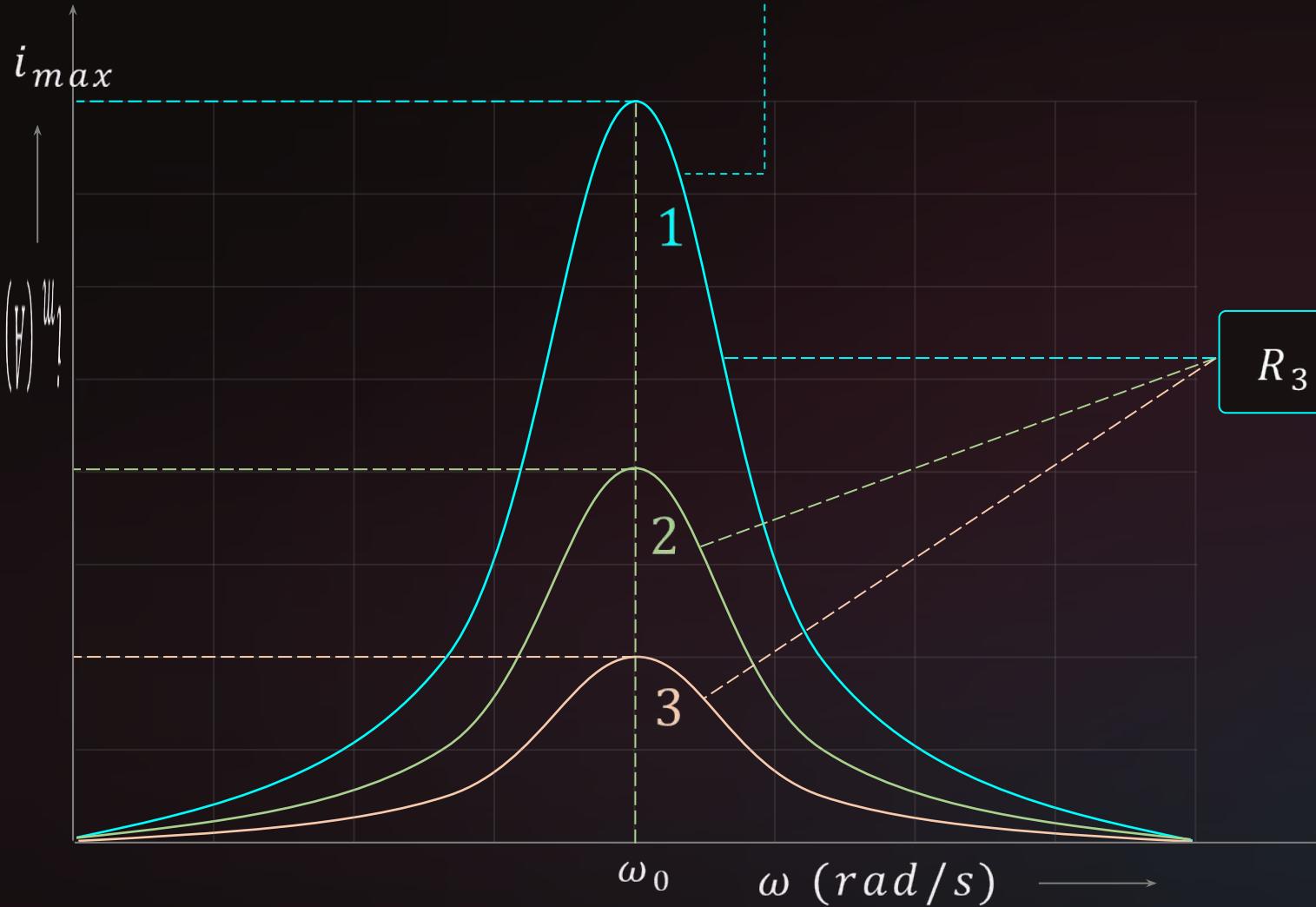
Resonance condition, $X_C = X_L$



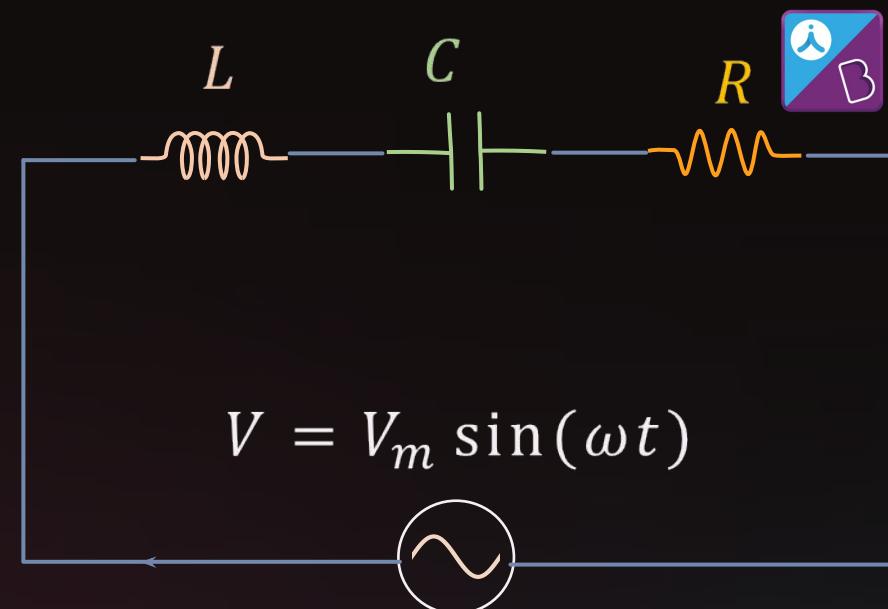
RESONANCE

$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C} - \omega L \right)^2}$$

$$i_m = V_m / Z$$



$$R_3 > R_2 > R_1$$



Question

What is the value of inductance L for which the current is maximum in a series LCR circuit with $C = 10 \mu F$ and $\omega = 1000 \text{ s}^{-1}$?

a

1 mH

b

10 mH

c

100 mH

d

Cannot be calculated
unless R is known

For maximum current in series LCR circuit,

$$X_L = X_C \Rightarrow \omega L = \frac{1}{\omega C}$$

Y

For maximum current in series LCR circuit,

$$X_L = X_C \Rightarrow \omega L = \frac{1}{\omega C}$$

$$L = \frac{1}{\omega^2 C} = \frac{1}{(1000)^2 \times 10 \times 10^{-6}}$$

$$L = \frac{1}{10} = 0.1 \text{ } H = 100 \text{ } mH$$

Answer

What is the value of inductance L for which the current is maximum in a series LCR circuit with $C = 10 \mu F$ and $\omega = 1000 s^{-1}$?

a
 $1 mH$

b
 $10 mH$

c
 $100 mH$

d
Cannot be calculated
unless R is known

Tuning

To hear one particular radio station, radio tuning is required.

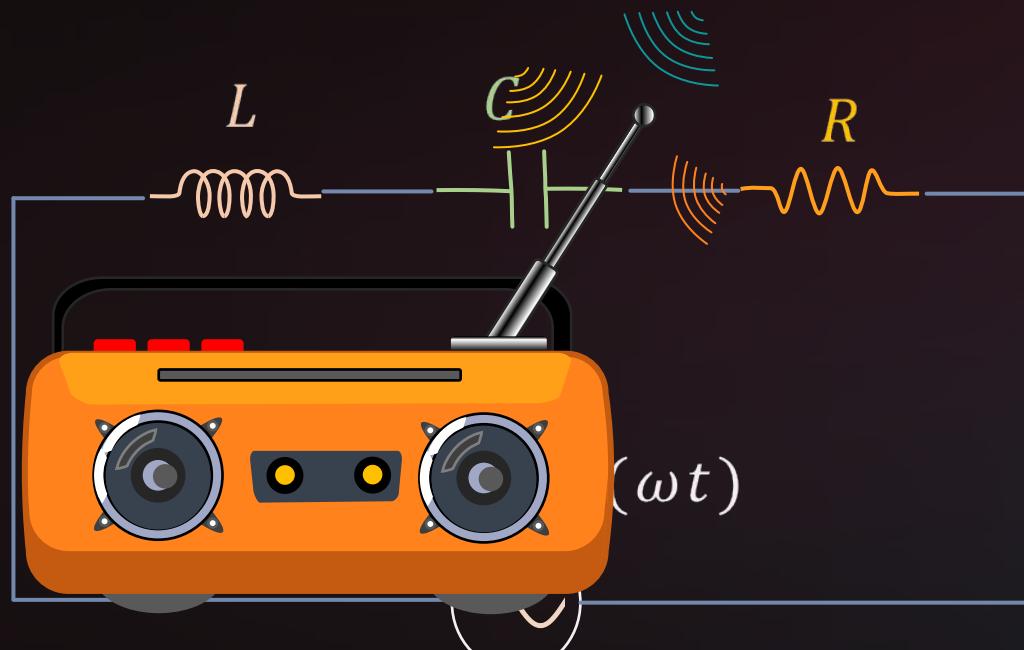
BIG FM
(92.7)

RADIO
MIRCHI

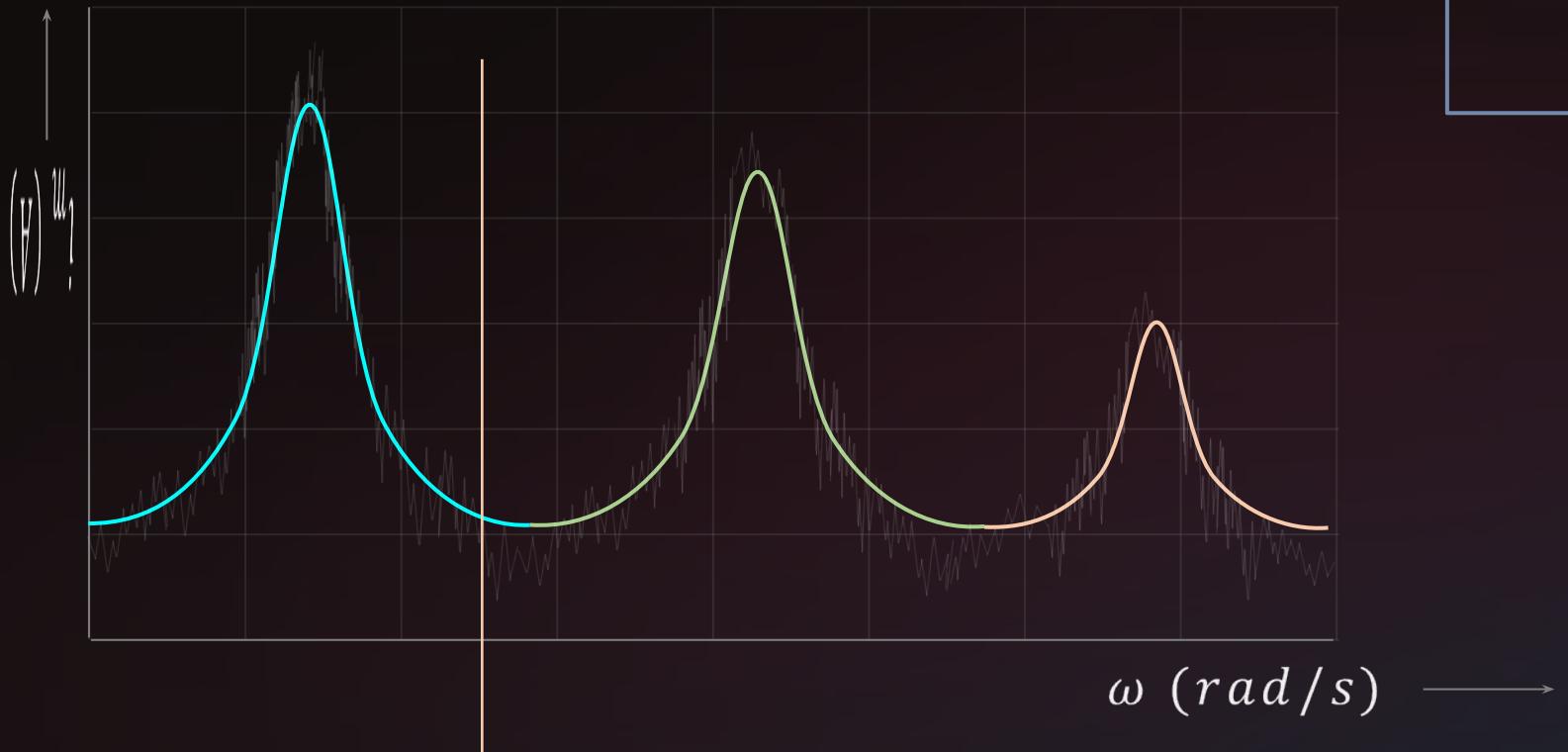
RADIO
MANGO

RESONANT Radio

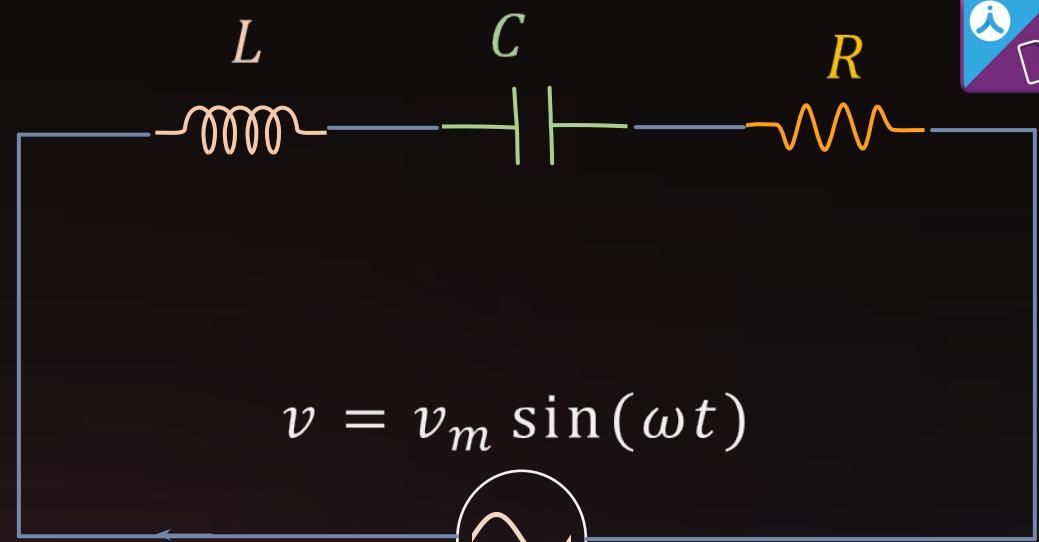
Tuning



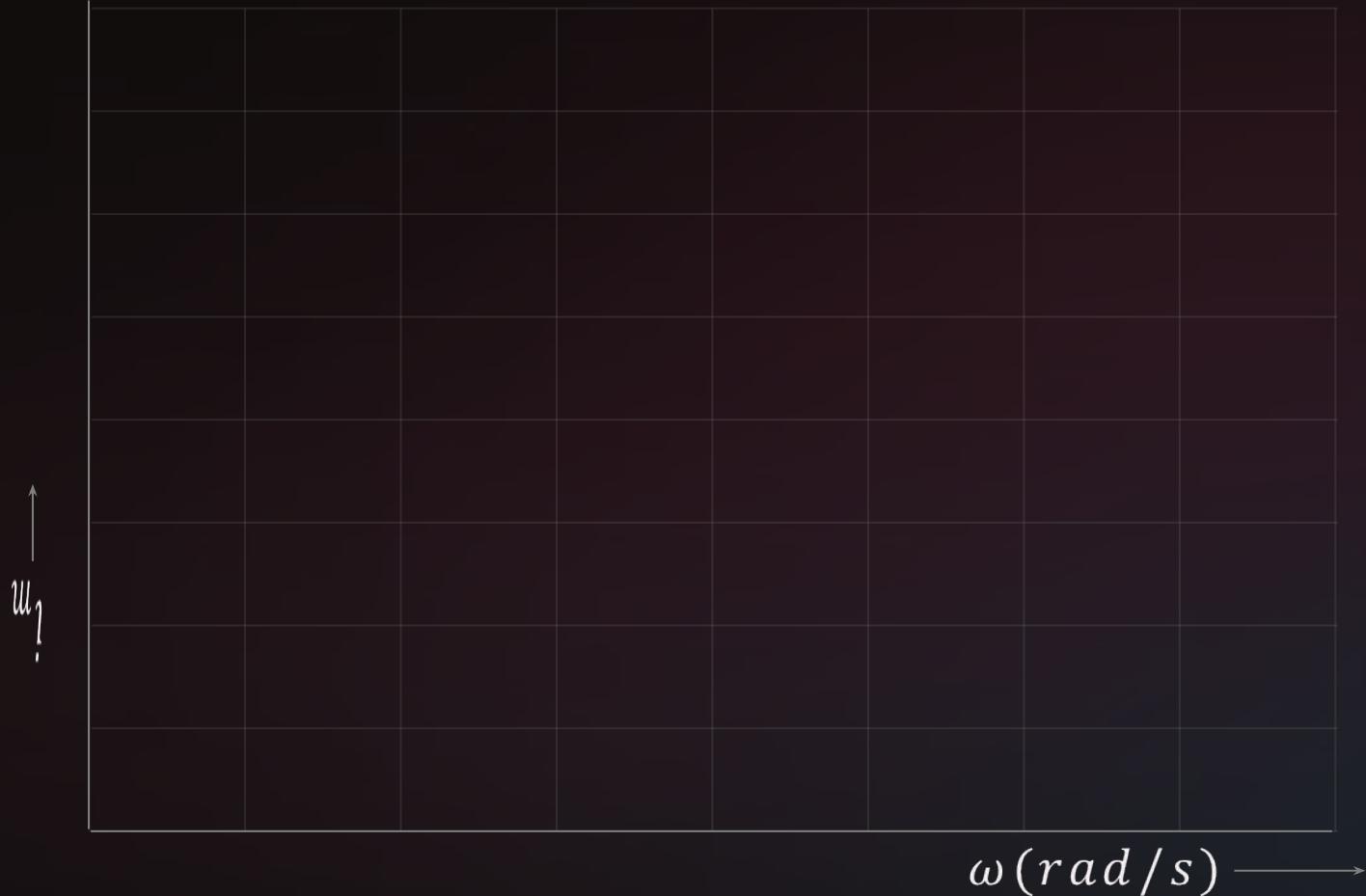
RESONANT Radio Tuning



$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

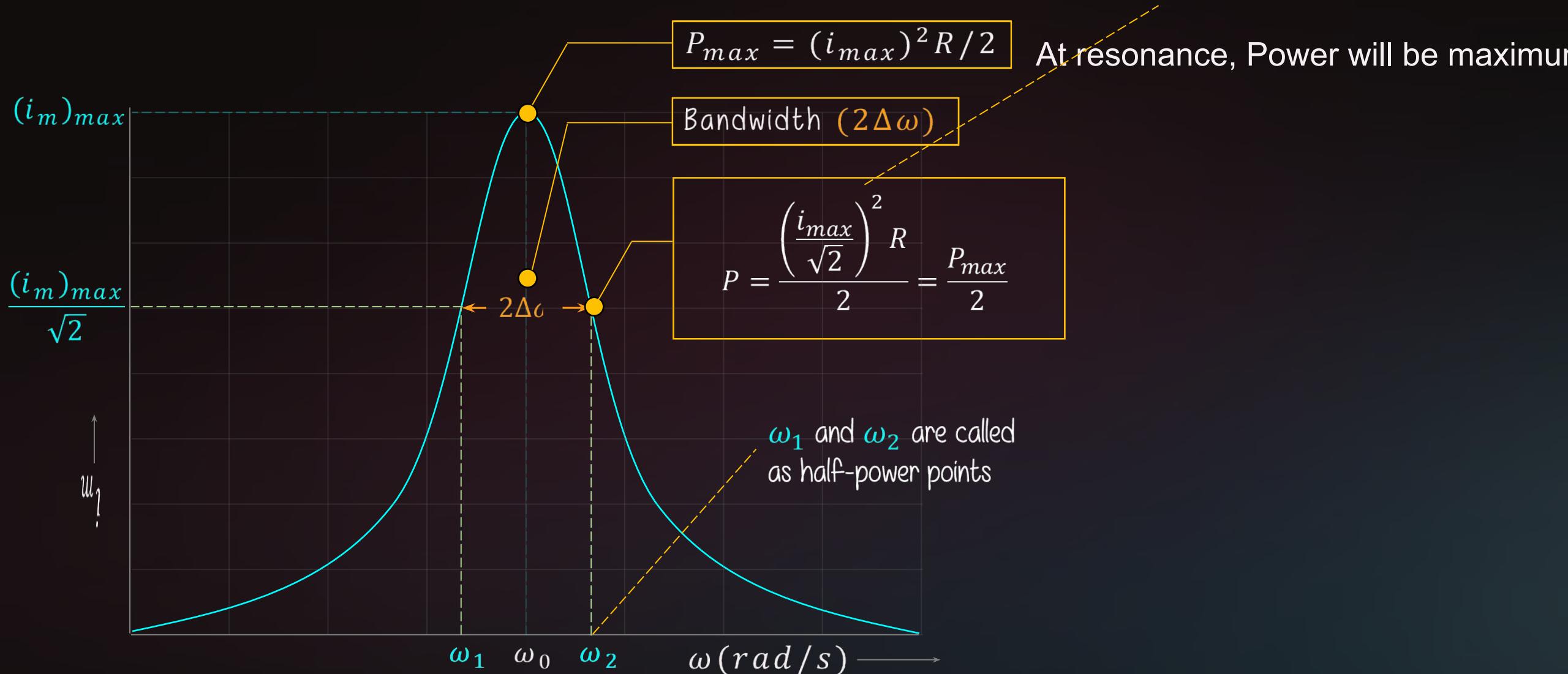


RESONANCE BANDWIDTH & POWER

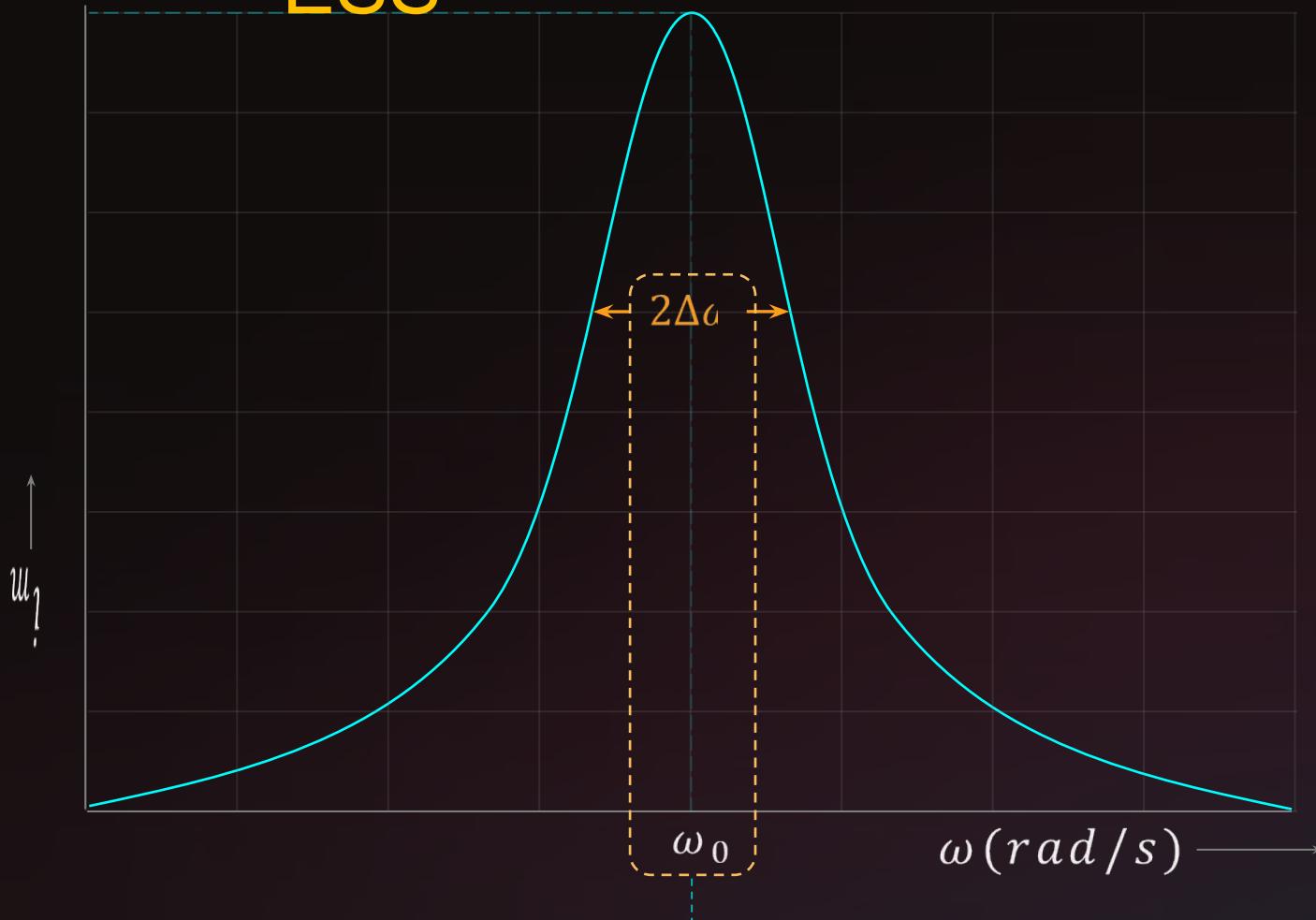


RESONANCE BANDWIDTH & POWER

- The current will be $1/\sqrt{2}$ times the maximum value of current at ω_1 and ω_2 .



RESONANCE SHARPNESS



$$\Delta\omega = \frac{R}{2L}$$

The quantity $(\omega_0/2\Delta\omega)$ is regarded as a measure of sharpness of resonance.

SMALL $\Delta\omega$

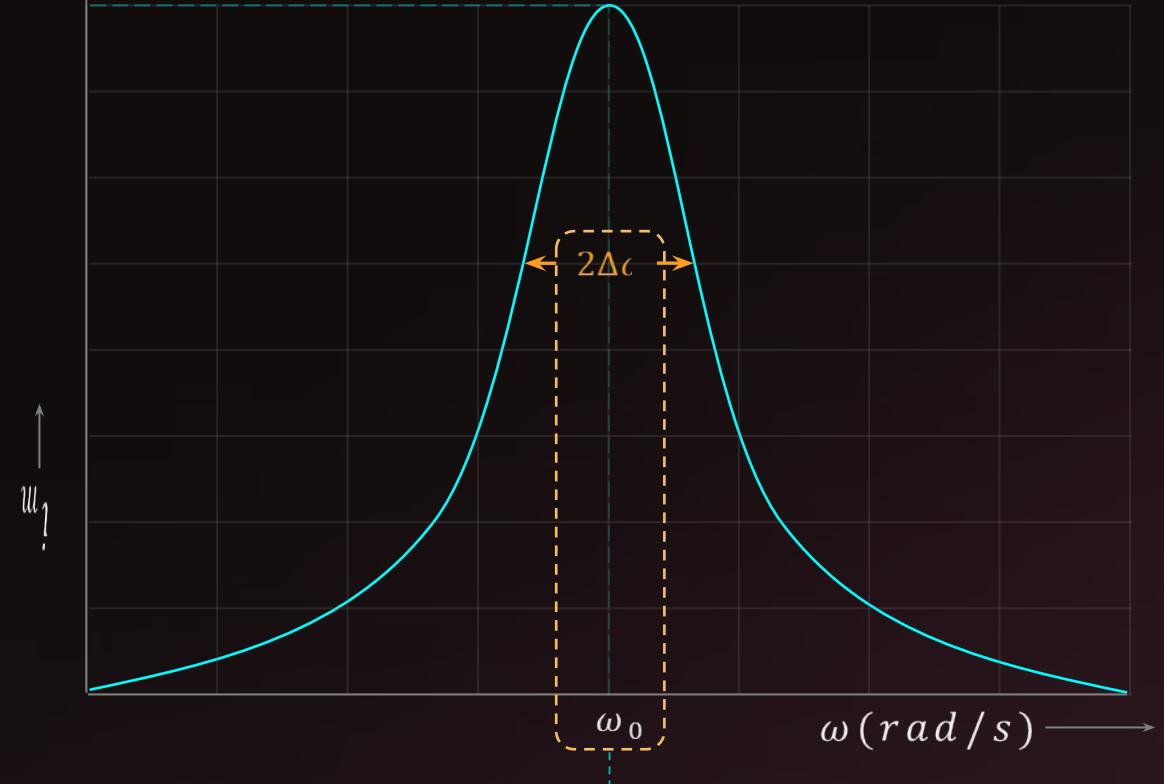
GOOD
TUNNING

HIGH
SHARPNESS

LOW
BANDWIDTH

RESONANCE SHARPNESS

ESS



The quantity $(\omega_0/2\Delta\omega)$ is regarded as a measure of sharpness of resonance.

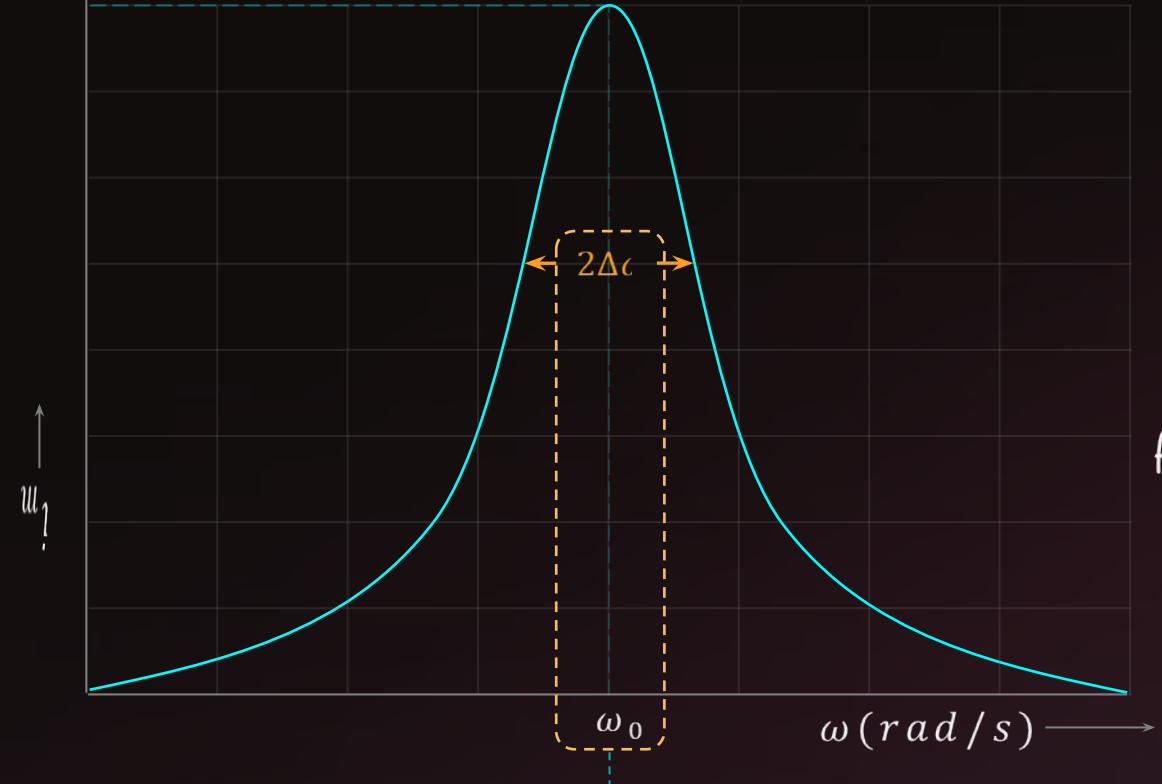
$$\Delta\omega = \frac{R}{2L}$$

Sharpness of resonance $\frac{\omega_0}{2\Delta\omega} = \frac{\omega_0 L}{R}$

Quality Factor, Q

RESONANCE SHARPNESS

ESS



The quantity $(\omega_0/2\Delta\omega)$ is regarded as a measure of sharpness of resonance.

$$\Delta\omega = \frac{R}{2L}$$

Sharpness of resonance $\frac{\omega_0}{2\Delta\omega} = \frac{\omega_0 L}{R}$

Quality Factor, Q

At resonance, Q can also be defined as

$$Q = \frac{V_L}{V_R} = \frac{V_C}{V_R}$$

$$Q = \frac{i_0 \omega_0 L}{i_0 R} = \frac{i_0}{\omega_0 C i_0 R}$$

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 R C} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

RESONANCE QUALITY FACTOR

$$Q = \frac{\omega_0}{2\Delta\omega}$$

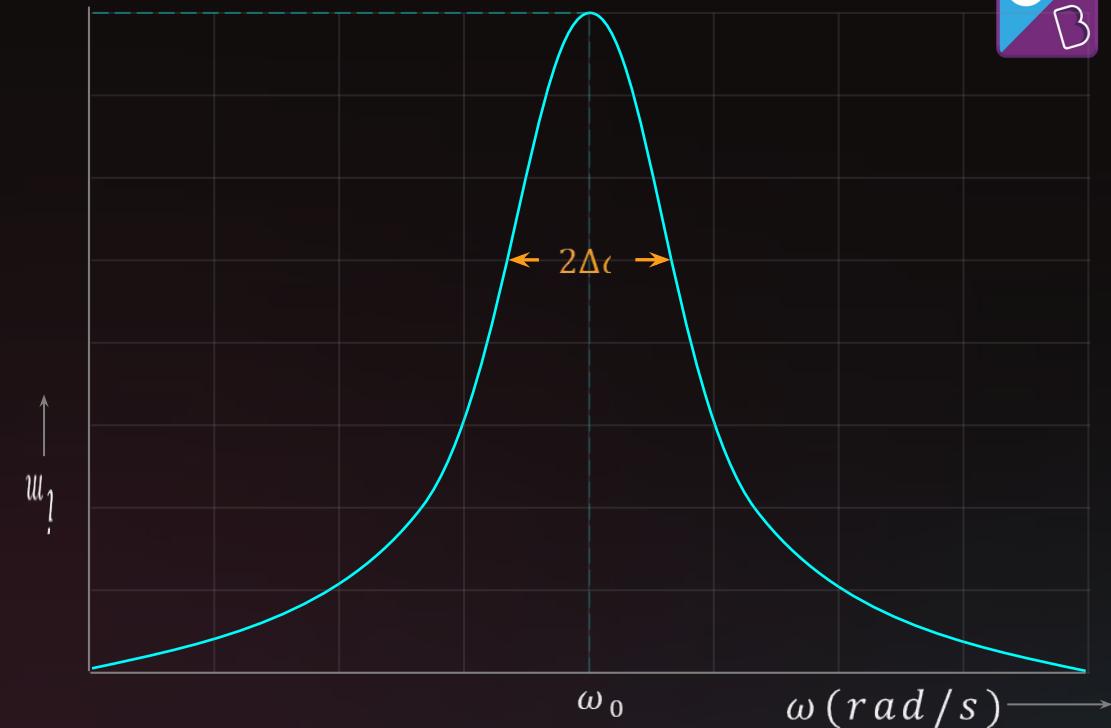
$$(\because \Delta\omega = \frac{R}{2L})$$

$$Q = \frac{\omega_0 L}{R}$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$(\because \omega_0^2 = 1/LC)$$

$$Q = \frac{1}{\omega_0 R C}$$



Question

Which of the following combination should be selected for better tuning of an L-C-R circuit used for communication?

a

$$R = 25 \Omega, \\ L = 1.5 H, \\ C = 45 \mu F$$

b

$$R = 20 \Omega, \\ L = 1.5 H, \\ C = 35 \mu F$$

c

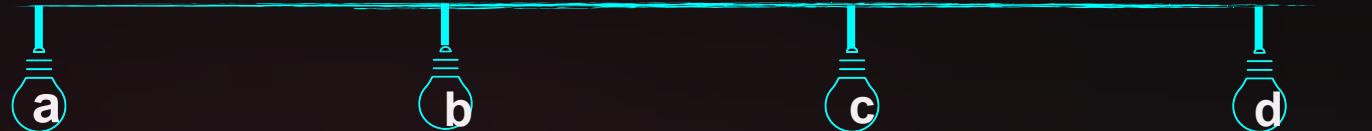
$$R = 25 \Omega, \\ L = 2.5 H, \\ C = 45 \mu F$$

d

$$R = 15 \Omega, \\ L = 3.5 H, \\ C = 30 \mu F$$

Y

For better tuning, the quality factor of the circuit should be high.



$R = 25 \Omega$,
 $L = 1.5 H$,
 $C = 45 \mu F$

$R = 20 \Omega$,
 $L = 1.5 H$,
 $C = 35 \mu F$

$R = 25 \Omega$,
 $L = 2.5 H$,
 $C = 45 \mu F$

L should be high.

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Value of R and C should be minimum

Answer

Which of the following combination should be selected for better tuning of an L-C-R circuit used for communication?

a

$$R = 25 \Omega, \\ L = 1.5 H, \\ C = 45 \mu F$$

b

$$R = 25 \Omega, \\ L = 1.5 H, \\ C = 35 \mu F$$

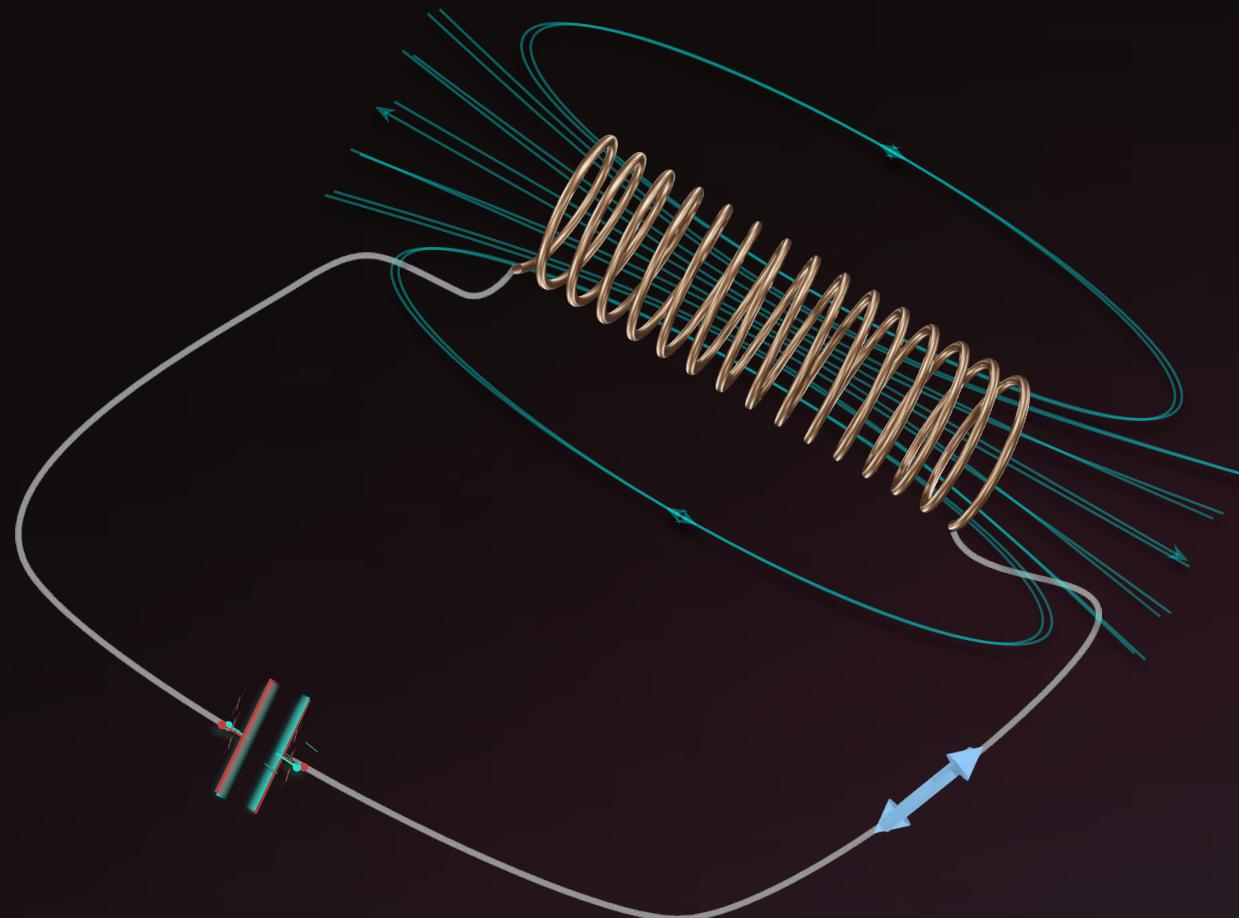
c

$$R = 25 \Omega, \\ L = 2.5 H, \\ C = 45 \mu F$$

d

$$R = 15 \Omega, \\ L = 3.5 H, \\ C = 30 \mu F$$

LC OSCILLATION)



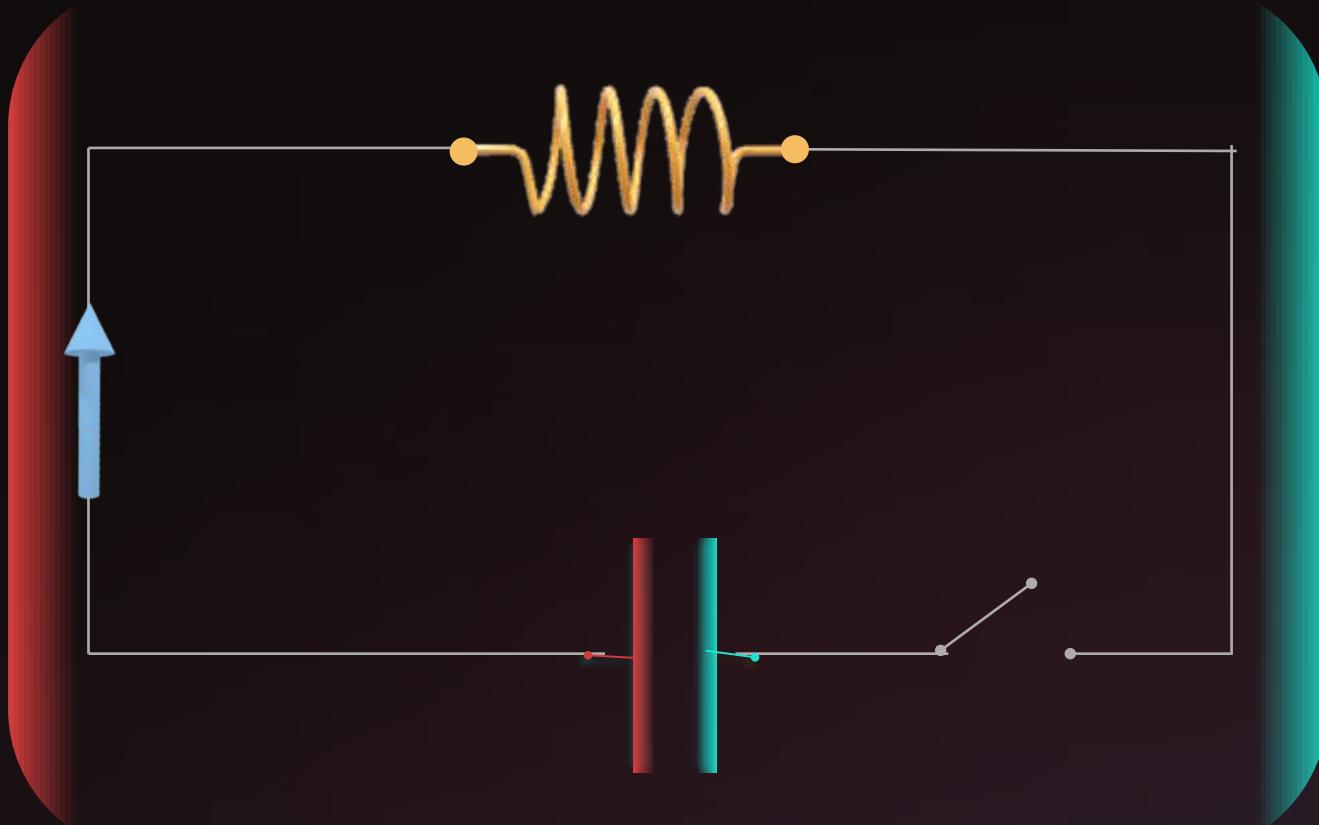
Electric

Energy

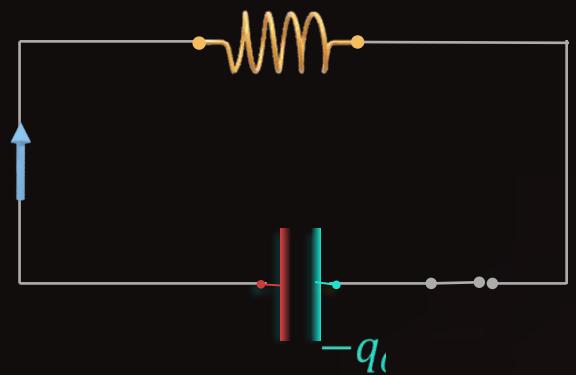
Magnetic

Energy

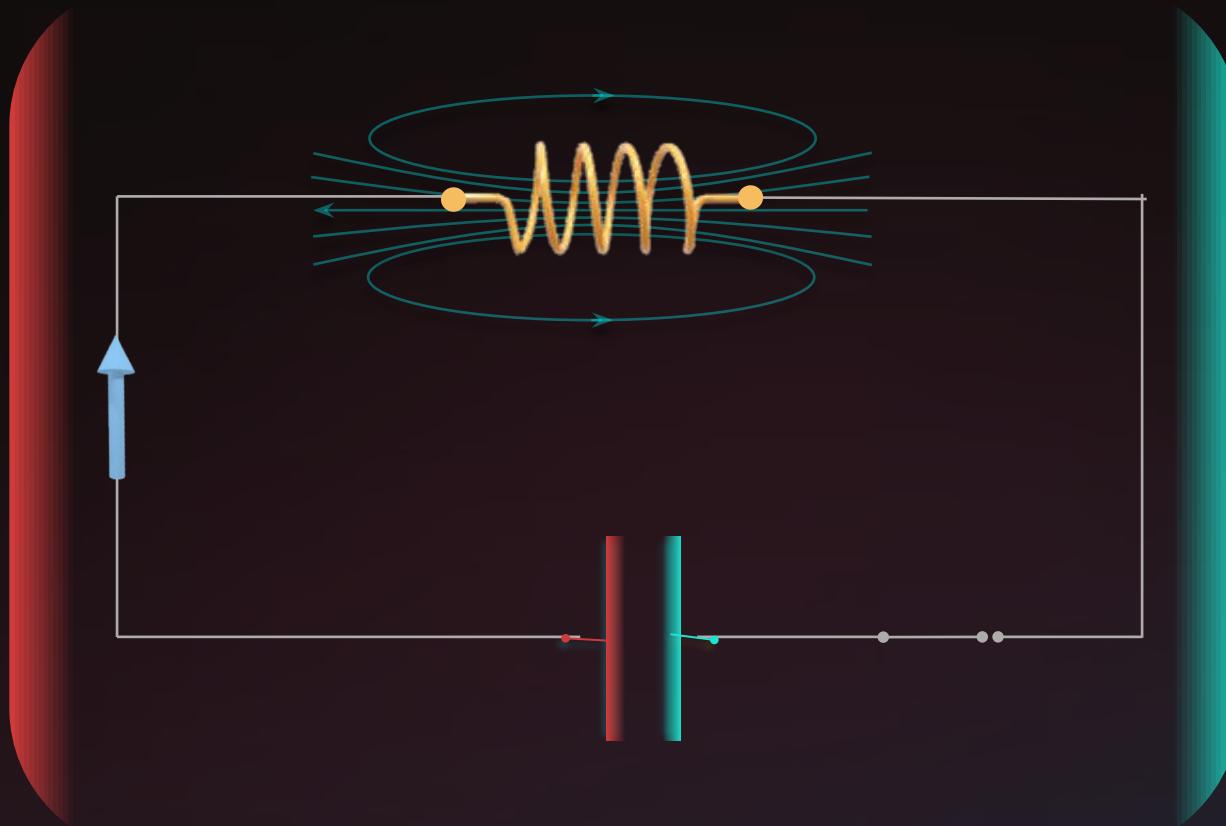
LC OSCILLATION)



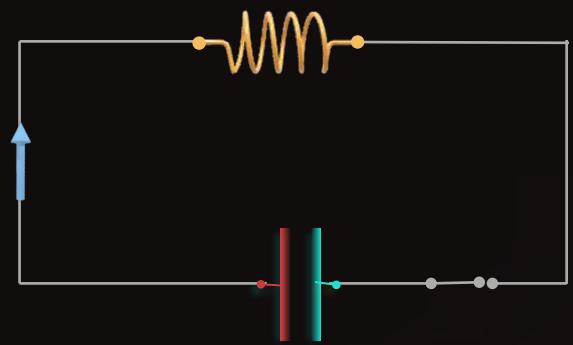
LC OSCILLATION)



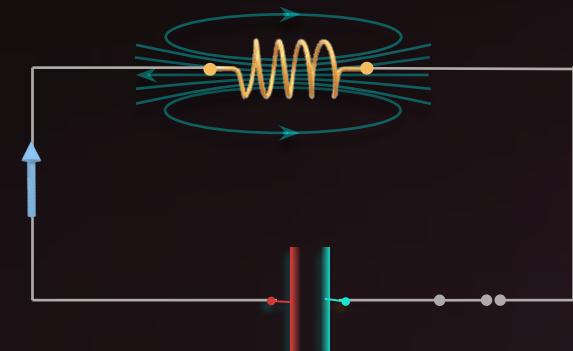
Step 1



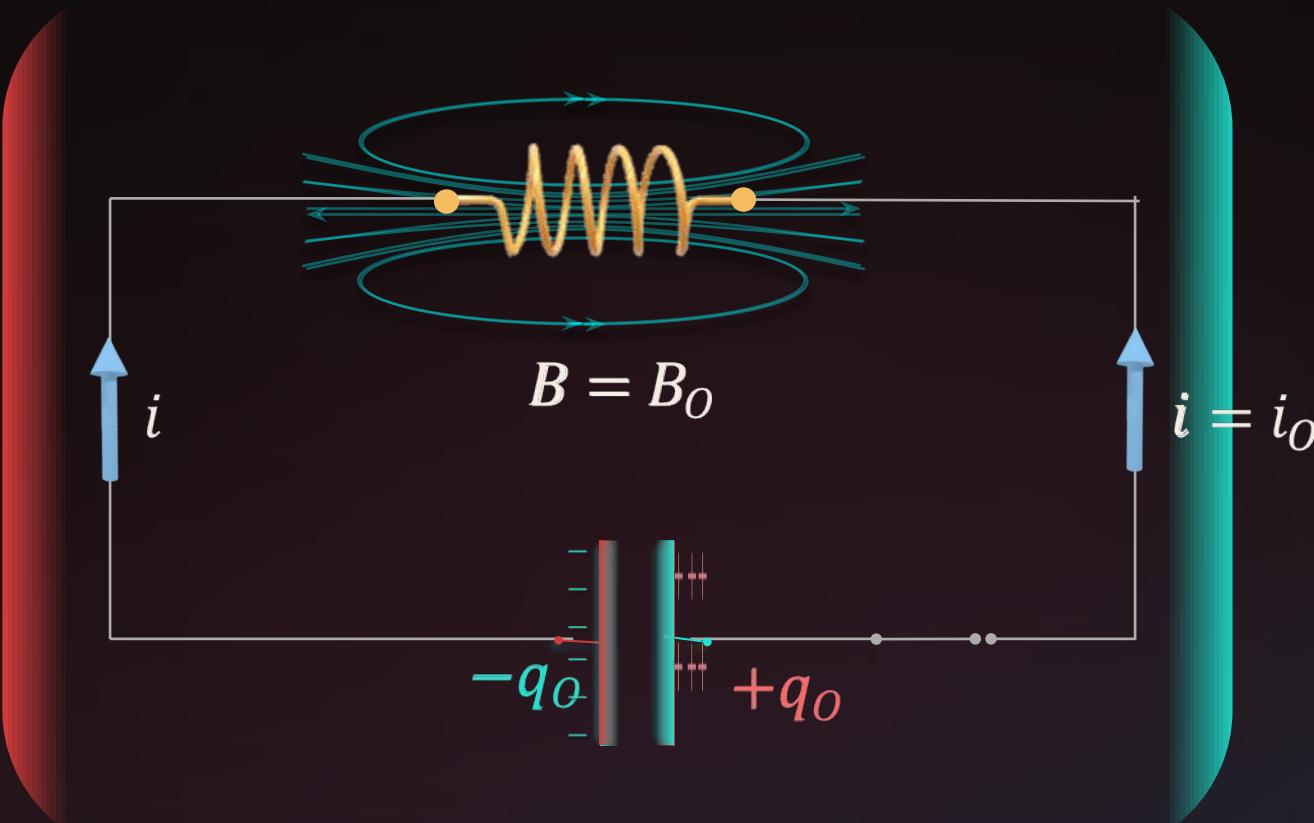
LC OSCILLATION)



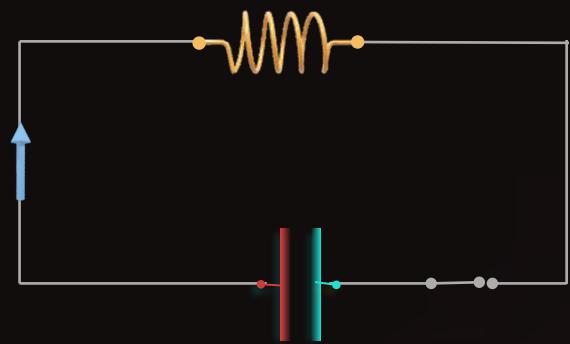
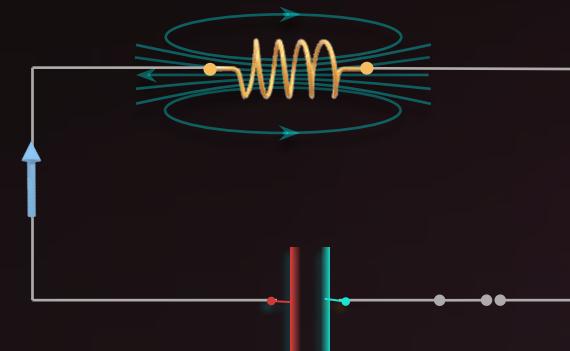
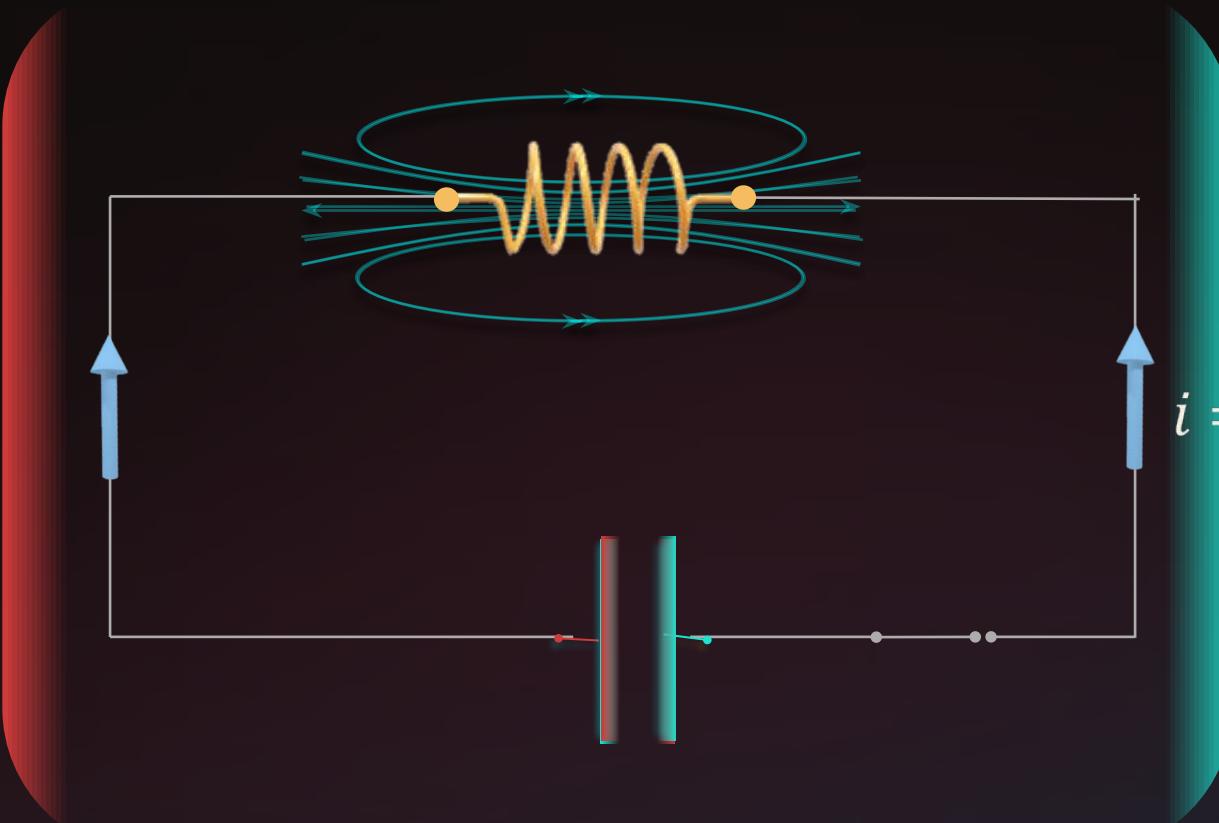
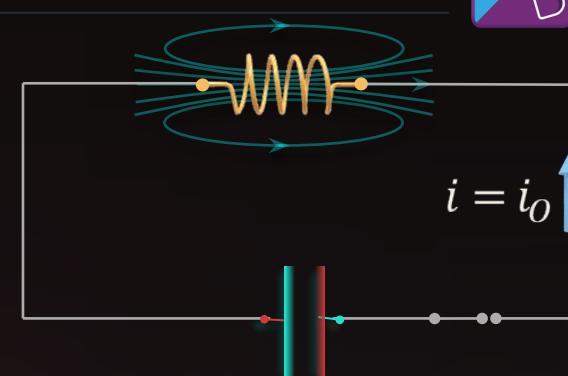
Step 1



Step 2



LC OSCILLATION)



Now the same oscillation and steps
will occur

LC OSCILLATION

period

At $t = 0$,

Current, $i = 0$

Charge on capacitor, $q = q_m$

Induced emf across the inductor, $L \frac{di}{dt} = 0$

LC OSCILLATION

period

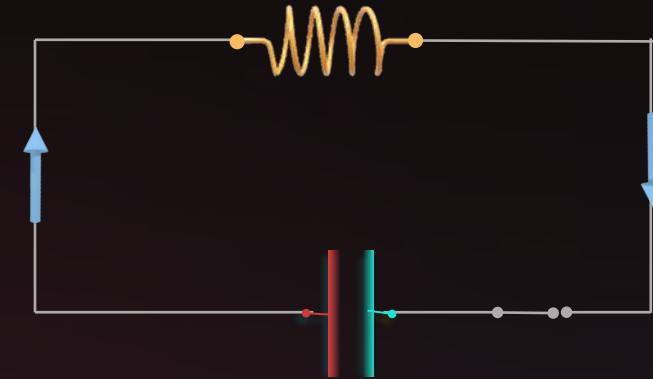
At time, t

Current = i

Charge on capacitor = q

Potential difference = $\frac{q}{c}$

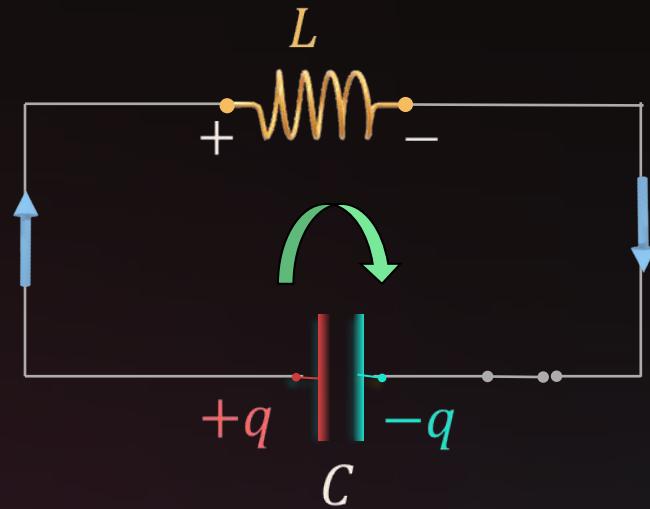
Induced emf across the inductor, $L \frac{di}{dt} = 0$



LC OSCILLATION

period

Applying Kirchhoff's Law



LC OSCILLATION

period

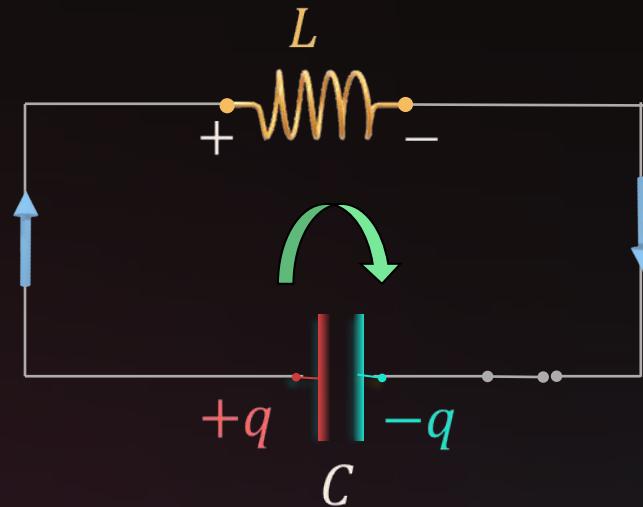
Applying Kirchhoff's Law

$$\frac{q}{C} - L \frac{di}{dt} = 0 \dots (1)$$

$$i = -\frac{dq}{dt}$$

$$\frac{q}{C} - L \frac{d\left(-\frac{dq}{dt}\right)}{dt} = 0 \Rightarrow \frac{q}{LC} + \frac{d^2q}{dt^2} = 0$$

$$\textcircled{\small 1} \quad \frac{d^2q}{dt^2} + \frac{q}{LC} = 0 \quad \textcircled{\small 2}$$



For a particle in SHM

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0 \dots (3)$$

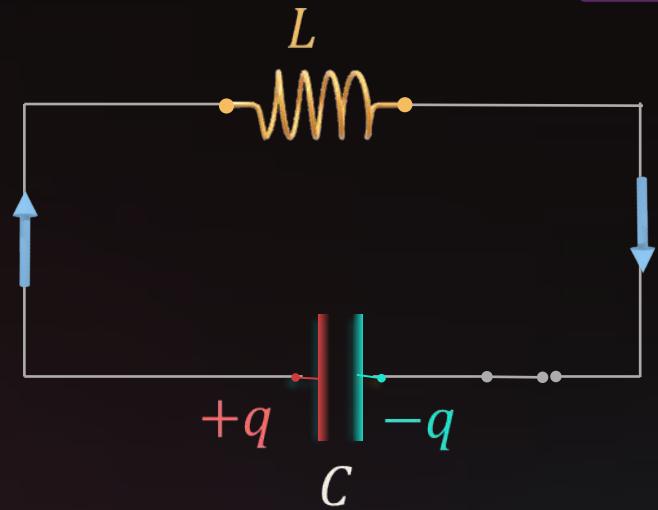
$$\omega = \sqrt{\frac{k}{m}}$$

$$\omega^2 = \frac{1}{LC} \Rightarrow \omega = \frac{1}{\sqrt{LC}}$$

LC OSCILLATION

period

$$\frac{d^2 q}{dt^2} + \frac{q}{LC} = 0 \dots (2)$$



LC OSCILLATION

period

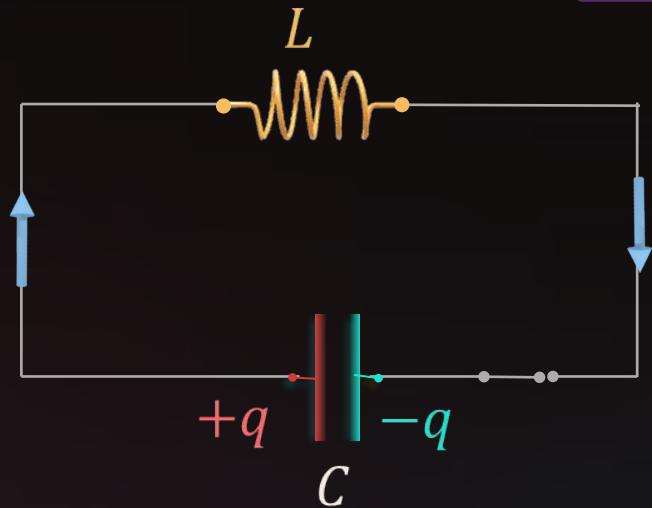
$$\frac{d^2 q}{dt^2} + \frac{q}{LC} = 0 \dots (2)$$

For a particle in SHM

$$\frac{d^2 x}{dt^2} + \omega_0^2 x = 0 \dots (3)$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$\omega^2 = \frac{1}{LC} \Rightarrow \omega = \frac{1}{\sqrt{LC}}$$

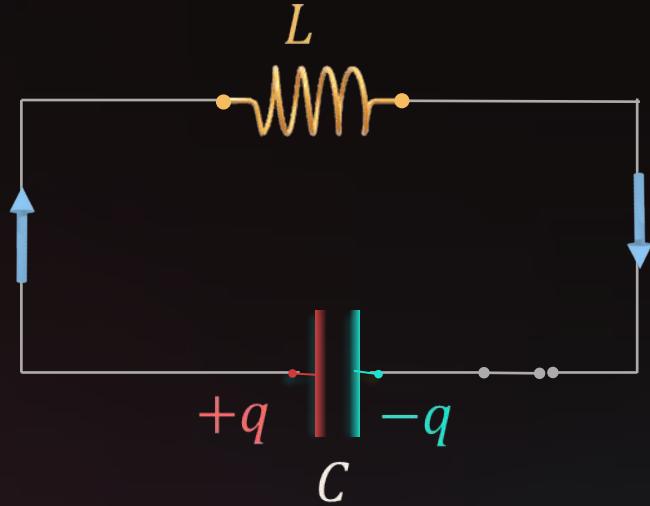


LC OSCILLATION

period

$$\frac{d^2x}{dt^2} + \omega_o^2 x = 0 \dots (3)$$

$$\omega = \frac{1}{\sqrt{LC}}$$



LC OSCILLATION

period

$$\frac{d^2x}{dt^2} + \omega_o^2 x = 0 \dots (3)$$

$$\omega = \frac{1}{\sqrt{LC}}$$

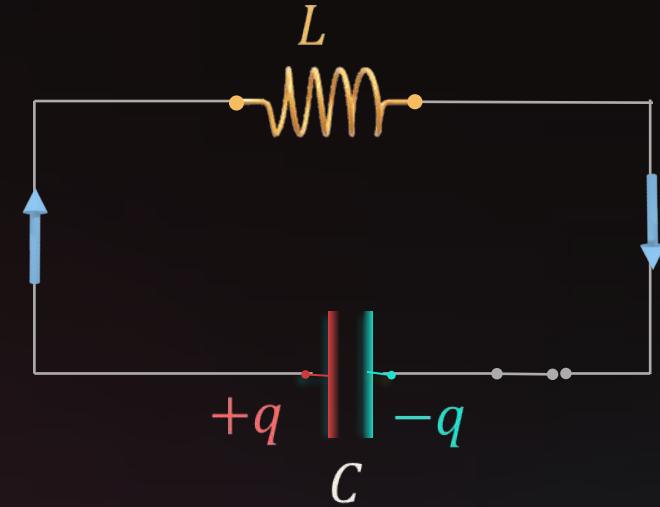
$$x = A \cos(\omega_o t + \phi)$$

$$q = q_m \cos(\omega_o t + \phi) \dots (4)$$

At $t = 0, q = q_m$

$$\Rightarrow q_m = q_m \cos(\phi)$$

$$\Rightarrow \cos(\phi) = 1 \Rightarrow \phi = 0$$

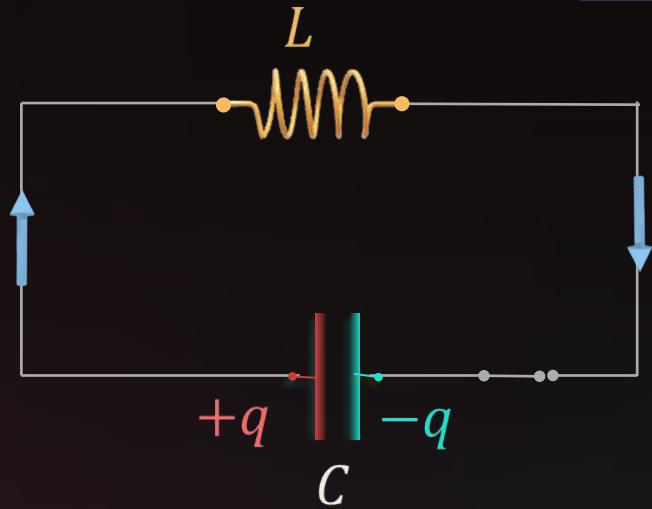


$$\textcircled{\textstyle \sim} q = q_m \cos(\omega_o t) \textcircled{\textstyle \sim}$$

LC OSCILLATION

$$q = q_m \cos(\omega_o t) \dots (5)$$

$$\omega = \frac{1}{\sqrt{LC}}$$



LC OSCILLATION

$$q = q_m \cos(\omega_o t) \dots (5)$$

$$\Rightarrow i = -\frac{d}{dt} [q_m \cos(\omega_o t)]$$

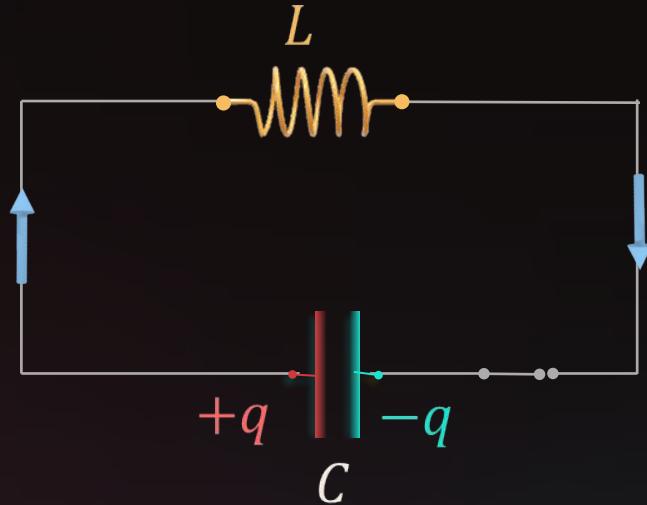
$$\Rightarrow i = \omega_o q_m \sin(\omega_o t)$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$i = -\frac{dq}{dt}$$

$$\textcircled{1} \quad i = i_m \sin(\omega_o t) \quad \textcircled{2}$$

$$i_m = \omega_o q_m$$



LC OSCILLATION

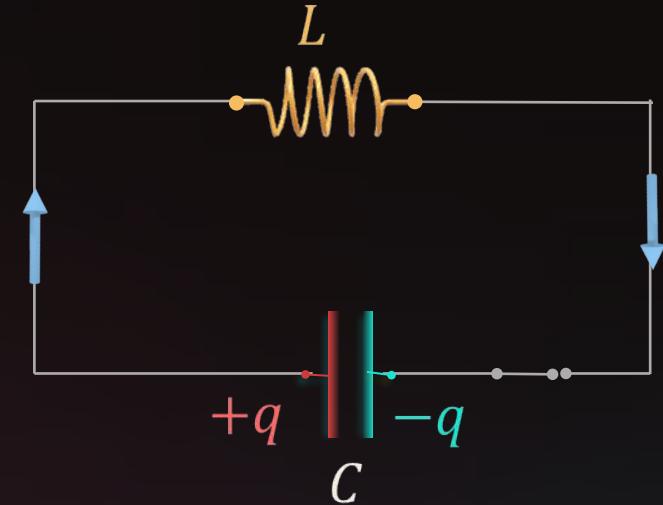
period

$$q = q_m \cos(\omega_o t) \dots (5)$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$i = i_m \sin(\omega_o t) \dots (6)$$

$$i_m = \omega_o q_m$$



LC OSCILLATION

$$q = q_m \cos(\omega_o t) \dots (5)$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$i_m = \omega_o q_m$$

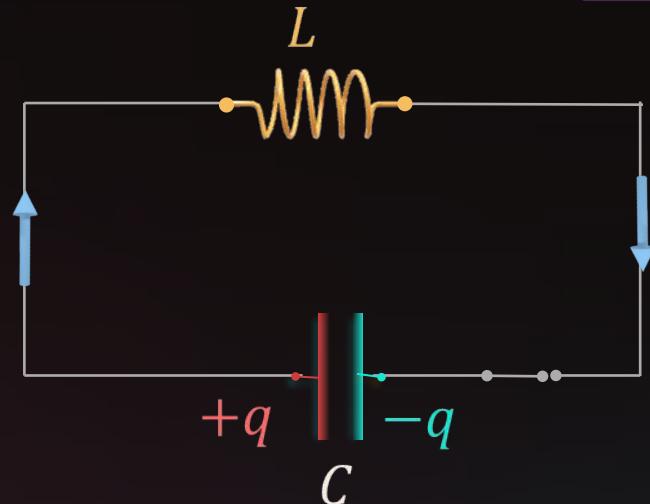
$$i = i_m \sin(\omega_o t) \dots (6)$$

$$U = \frac{q^2}{2C}, \quad U' = \frac{1}{2} L i^2$$

$$L = \frac{1}{\omega_o^2 C}$$

$$U_{Total} = U + U'$$

$$\sim U_{Total} = \frac{q^2}{2C} + \frac{1}{2} L i^2 \sim$$



LC OSCILLATION

period

$$q = q_m \cos(\omega_o t) \dots (5)$$

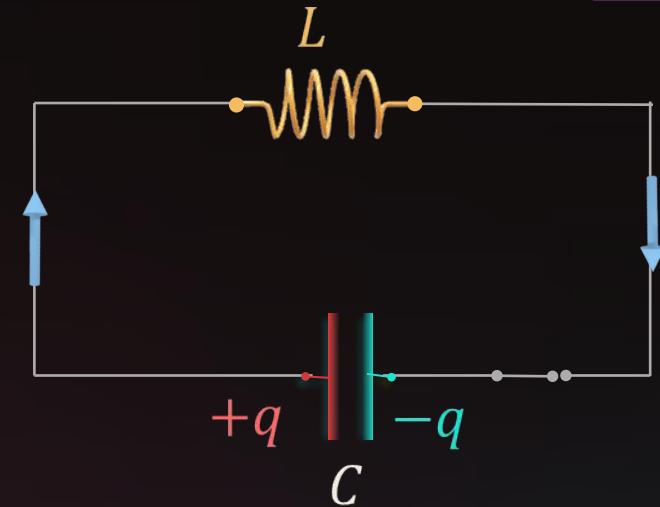
$$\omega = \frac{1}{\sqrt{LC}}$$

$$i = i_m \sin(\omega_o t) \dots (6)$$

$$L = \frac{1}{\omega_o^2 C}$$

$$U_{Total} = \frac{q^2}{2C} + \frac{1}{2} L i^2$$

$$i_m = \omega_o q_m$$



LC OSCILLATION

$$q = q_m \cos(\omega_o t) \dots (5)$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$i = i_m \sin(\omega_o t) \dots (6)$$

$$L = \frac{1}{\omega_o^2 C}$$

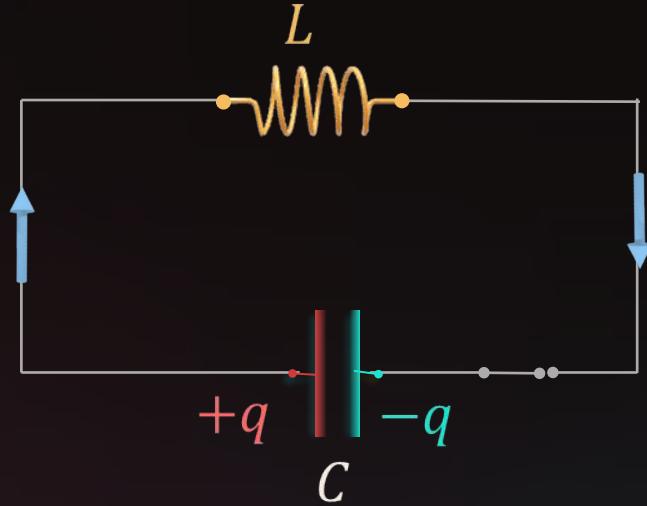
$$U_{Total} = \frac{q^2}{2C} + \frac{1}{2} L i^2$$

$$U_{Total} = \frac{[q_m \cos(\omega_o t)]^2}{2C} + \frac{1}{2} \frac{1}{\omega_o^2 C} [i_m \sin(\omega_o t)]^2$$

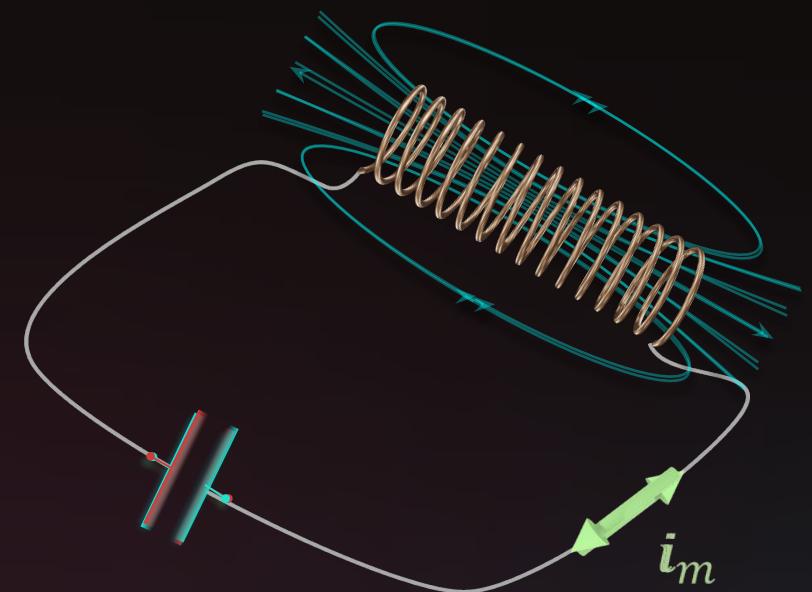
$$U_{Total} = \frac{(q_m)^2}{2C} [(\cos^2 \omega_o t) + (\sin^2 \omega_o t)]$$

$$\sim U_{Total} = \frac{q_m^2}{2C} \sim$$

$$i_m = \omega_o q_m$$



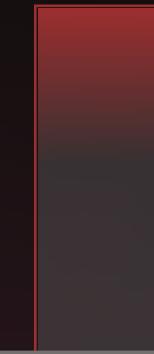
LC OSCILLATION GRAPHS



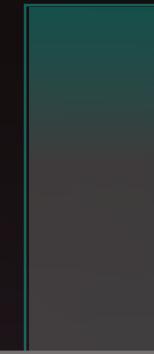
LC OSCILLATION



Capacitor



Inductor



Energy