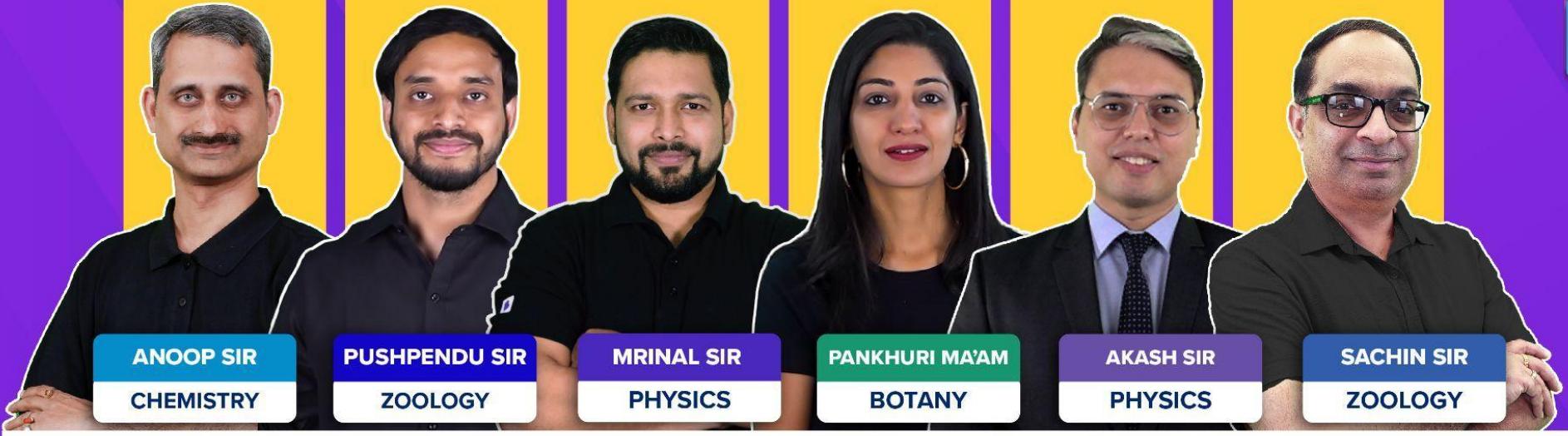


ELECTROCHEMISTRY - L6

CHEMISTRY

ANOOP SIR

NEET SCHOLAR COURSE


FOR CLASS 12th

VALID
till May
2023

SCHEDULE
10 LIVE sessions/Week,
2 classes/day

GET BYJU'S
SD Card, Books
& Mentor Support

FORM LINK GIVEN IN DESCRIPTION

**MISSION
MBBS**

**BIO की
रण NEETi**

**CHEMISTRY
SUPER 30**

**PHY की
रण NEETi**

MON - SAT | 12 PM - 8 PM

Aakash **Live** Webinars

Aakash
+
BYJU'S

6 Months NEET Strategy till May 2023

 20th November, 2022

 12:30 pm

Dr. Sachin Kapur
Biology Expert - NEET

FREE FOR 14 DAYS!

ANTHE

AAKASH NATIONAL TALENT HUNT EXAM

Your Gateway To Success

For Class VII to XII

Current Students & Passouts

FREE

SMART PLAYLIST

**FREE NEET RESOURCES
MISSION MBBS 2023 & 2024**

ALL YOUTUBE LECTURES

ANNOTATED SESSION NOTES

DAILY PRACTICE QUESTION & ANSWERS

**LINK IN
DESCRIPTION**

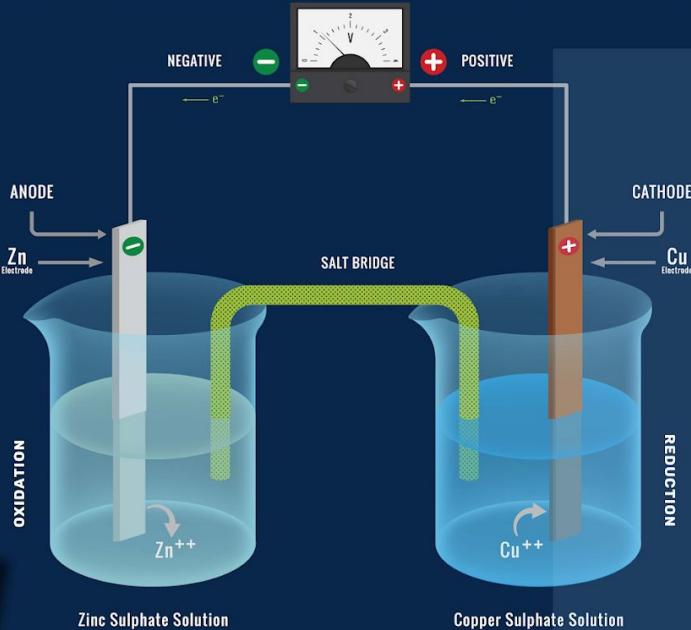
Aakash
+ BYJU'S

Aakash
+ BYJU'S

NEET

STUDENTS' SURVEY

**LINK IN
DESCRIPTION**



<https://t.me/neetaakashdigital>

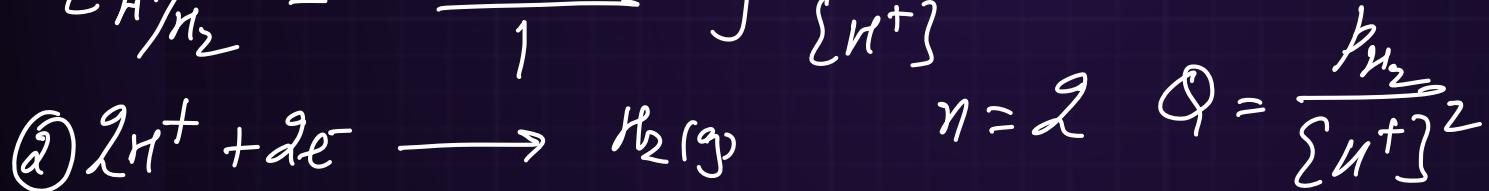
ELECTROCHEMISTRY - L6

CHEMISTRY

ANOOP SIR

Nernst equation

$$E = E^\ominus - \frac{0.0591}{n} \log Q \quad \text{at } 298K$$


Hydrogen electrode

$$n = 1$$

$$Q = \frac{P_{\text{H}_2}}{[\text{H}^+]}^{\frac{1}{2}}$$

$$E_{\text{H}^+/\text{H}_2} = - \frac{0.0591}{1} \log \frac{P_{\text{H}_2}}{[\text{H}^+]}^{\frac{1}{2}}$$

$$E_{\text{H}^+/\text{H}_2} = - \frac{0.0591}{2} \log \frac{P_{\text{H}_2}}{[\text{H}^+]^2}$$

Q. Calculate the potential of hydrogen electrode under a constant pressure of 1 Bar H_2 and dipped in

a) $10^{-2} M$ HCl

$$P_{H_2} = 1$$

$$E_{H^+/H_2} = -0.0591 \log \frac{1}{10^{-2}} \quad [H^+] = 10^{-2} M$$

$$E_{H^+/H_2} = -0.0591 \log \frac{1}{10^{-2}}$$

$$= -0.0591 \log 10^2$$

$$= -0.0591 \times 2 \checkmark$$

$$= -0.1182 V$$

b) a solution of pH 4

$$E_{H^+/H_2} = -0.0591 \log \frac{(P_{H_2})^{1/2}}{[H^+]} \quad \text{if } P_{H_2} = 1$$
$$E_{H^+/H_2} = -0.0591 \log \frac{1}{[H^+]} \quad \log \frac{1}{[H^+]} = -\log[H^+]$$

$$E_{H^+/H_2} = -0.0591 \text{ pH} \rightarrow P_{H_2} = 1 \text{ Bar}$$
$$T = 298 \text{ K}$$

$$E_{H^+/H_2} = -0.0591 \times 4 = -0.236 \text{ V}$$

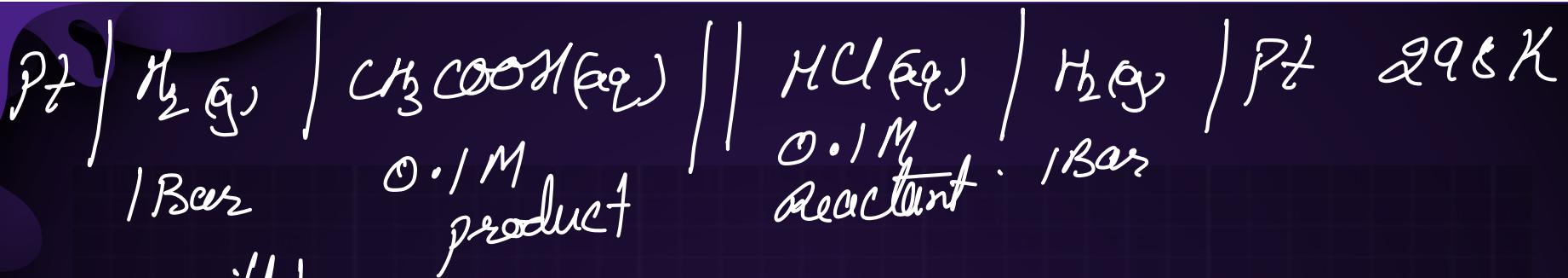
c) Pure water

pH of pure water at 298K = 7

$$E_{H^+/H_2} = -0.0591 \times 7 \text{ V}$$

d) 0.1M NaOH $\rightarrow \rho \chi = 13$

$$E_{H^+/H_2} = -0.0591 \times 13$$



Q What should be the partial pressure of hydrogen so that a hydrogen electrode dipped in pure water has potential 0 V

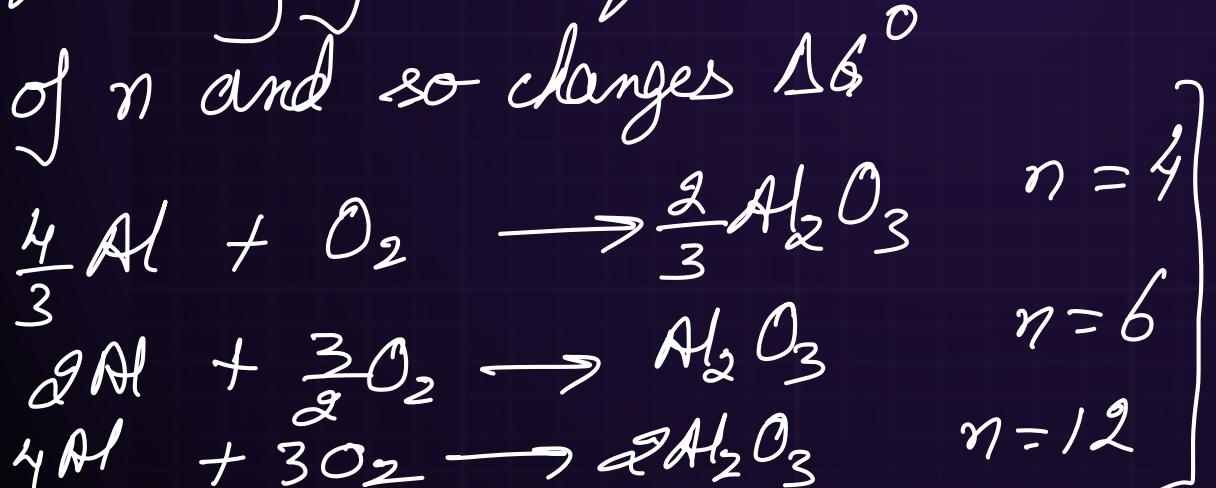
$$E_{H^+/H_2} = -0.0591 \log \frac{(P_{H_2})^{1/2}}{[H^+]} = -\frac{0.0591}{2} \log \frac{P_{H_2}}{[H^+]^2}$$

$$0 = -0.0591 \log \frac{(P_{H_2})^{1/2}}{10^{-7}} \quad \text{Anti log}(0) = 1$$

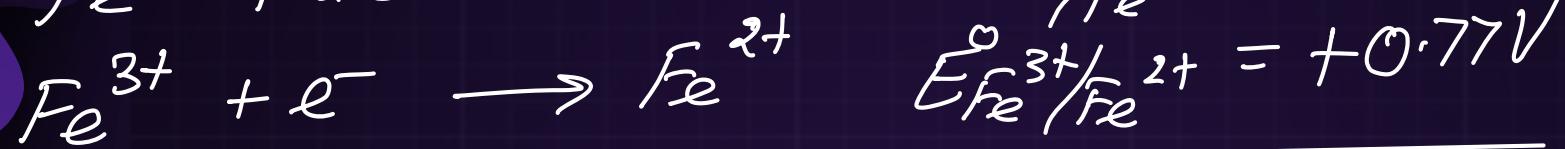
$$\log \frac{(P_{H_2})^{1/2}}{10^{-7}} = 0 \quad \left| \begin{array}{l} (P_{H_2})^{1/2} = 10^{-7} \\ P_{H_2} = (10^{-7})^2 \\ P_{H_2} = 10^{-14} \text{ Bar} \end{array} \right.$$

Cell will be

a) zero as both acids have same concentration.
 b) positive | concentration cell in which
 c) negative | H^+ concentration is different in
 d) cannot be determined. two half cells.


CH_3COOH is weak acid so $[\text{H}^+]$ is
 less.

To find ΔG° from E_{cell} .


$$\Delta G^\circ = -nFE^\circ$$

$\Delta G^\circ \rightarrow$ standard Gibb's energy change
 $n =$ number of electron transferred
 $E^\circ \rightarrow$ standard cell potential.

ΔG° is an extrinsic quantity, so the change in balancing of the equation changes the value of n and so changes ΔG°

Never change the balancing of equation -

Electrode potentials are intrinsic quantities so cannot be directly added or subtracted. It becomes possible if the final equation does not have any remaining electron.

If both equations are reduction or oxidation, we must convert electrode potentials to ΔG° .

$$\Delta G_3^\circ = \Delta G_1^\circ + \Delta G_2^\circ$$

$$-3FE_3^\circ = -2F(-0.44) + (-1F(0.77))$$

$$E_3^\circ = \frac{2E_1^\circ + E_2^\circ}{3} = \frac{-0.88 + 0.77}{3}$$

$$= -\frac{0.11}{3} \approx -0.036V$$

Relation between $\Delta_r G$ and E_{cell}

Relation between $\Delta_r G$ and E_{cell}

The **maximum non-expansion (electrical) work** that a system (the cell) can do is equal to the decrease in Gibbs free energy.

$$W_{e, \text{max}} = |\Delta G|$$

ΔG identified with the Gibbs energy of the cell reaction, $\Delta_r G$

Relation between $\Delta_r G$ and E_{cell}

Maximum electrical work obtained from a cell = $|I\Delta_r G|$

$$\Delta_r G = -q \times V = -nFE$$

where F is Faraday's constant

- n = Number of moles of electrons
- E = Electrode potential or cell EMF
- $\Delta_r G$ = Change in Gibbs energy for half-cell or cell

Relation between $\Delta_r G$ and E_{cell}

1 F

=

Charge present on
1 mole of electrons

=

96,485 C/mol

\approx

96,500 C/mol

Note

By knowing the $\Delta_r G$ at a specified composition, the **cell emf** at that composition can be stated.

Spontaneous cell reaction

$$\Delta_r G < 0$$

$$E_{\text{cell}} > 0$$

Non-spontaneous cell reaction

$$\Delta_r G > 0$$

$$E_{\text{cell}} < 0$$

Any redox reaction would occur **spontaneously**, if:

a

$\Delta_r G^0$ is negative

b

$\Delta_r G^0$ is positive

c

E^0 is negative

d

All of these

The Gibbs energy for the decomposition of Al_2O_3 at 500°C is as

follows: $\frac{2}{3}\text{Al}_2\text{O}_3 \rightarrow \frac{4}{3}\text{Al} + \text{O}_2$; $\Delta_r G = + 966 \text{ kJ mol}^{-1}$. The potential difference needed for electrolytic reduction of Al_2O_3 at 500°C is at least:

$$\Delta G = -4FE^\circ$$

a

4.5 V

b

3.0 V

c

2.5 V

d

5.0 V

Given: $\frac{2}{3} \text{Al}_2\text{O}_3 \rightarrow \text{Al} + \text{O}_2$; $\Delta_r G = + 966 \text{ kJ mol}^{-1}$ (at 500°C)

To find: Minimum potential difference needed for electrolytic reduction of Al_2O_3 at 500°C

For the reduction of silver ions with copper metal, the standard cell potential was found to be $\underline{+0.46\text{ V}}$ at $\underline{25^\circ\text{C}}$. The value of standard Gibbs energy, $\underline{\Delta G^0}$, will be:
($F = 96500\text{ C mol}^{-1}$)

AIPMT 2010

a

-89.0 kJ

b

-89.0 J

c

-44.5 kJ

d

-98.0 kJ

“Stay Positive, Work Hard, Make It Happen”

THANK YOU