Straight Lines

A straight line is a line that is not curved or bent. All the basic and advanced concepts related to straight lines are covered here on this page. This lesson can also be downloaded as a PDF which helps students to refer to the concepts in offline mode.

Table of Contents:

- Definition
- Equation
- Intercept Form
- Point Form
- Slope Point Form
- Relation Between Two Lines
- Angle Between Two Straight Lines
- Length of Perpendicular from a Point on a Line
- Angle Bisector
- Family of Lines
- Concurrency of Three Lines
- Pair of Straight Lines
- Formulas
- Solved Problems
- Video Lessons
- FAQs

What is a Straight Line?

A line is a geometry object characterized under zero width object that extends on both sides. A straight line is just a line with no curves. So, a line that extends to both sides to infinity and has no curves is called a straight line.

Equation of Straight Line

The general equation of the straight line is given below:
$a x+b y+c=0$
Where x and y are variables, a, b, and c are constants.

Slope:-

The equation of a straight line in slope-intercept form is given by:
$y=m x+c$
Here, m denotes the slope of the line, and c is the y -intercept.

When the angle with + ve x-axis ' $\tan \theta$ ' is called the slope of a straight line.

Note 1 - If the line is Horizontal, then slope $=0$

Note 2 - If the line is perpendicular to the x-axis, i.e. vertical, then the slope is undefined.

Slope $=1 / 0=\infty=\tan \pi / 2$
Note 3 - If the line is passing through any of two points, then the slope is
$\tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Intercept Form

The equation of the line with x-intercept as ' a ' and y-intercept as ' b ' can be written as;

$$
\frac{x}{a}+\frac{y}{b}=1
$$

- x - coordinate of the point of intersection of the line with the x-axis is called the x-intercept
- y-intercept will be the y-coordinate of the point of intersection of the line with the y-axis

For example,

Along the x -axis: $\mathrm{x}-$ Intercept $=5$ and $\mathrm{y}-$ Intercept $=0$
Along y -axis: $\mathrm{y}-$ Intercept $=5$ and $\mathrm{x}-$ Intercept $=0$
Also,
Length of x -intercept $=\left|\mathrm{x}_{1}\right|$
Length of y-intercept $=\left|y_{1}\right|$
Note: Line passes through the origin, intercept $=0$
$\mathrm{x}-$ Intercept $=0$
$\mathrm{y}-$ Intercept $=0$
Again,

$\mathrm{ON}=\mathrm{P}$
$\angle \mathrm{AON}=\alpha$
Let the length of the perpendicular from origin to straight line be ' P ' and let this perpendicular make an angle with + vex- axis ' α ', then the equation of a line can be:

$$
\begin{aligned}
& x \cos \alpha+y \sin \alpha=p \\
& \frac{x}{p \sec \alpha}+\frac{y}{p \operatorname{cosec} \alpha}=1 \\
& x \cos \alpha+y \sin \alpha=P
\end{aligned}
$$

Learn More: Different Forms Of The Equation Of Line

Point form

Equation of line with slope ' m ' and which passes through ($\mathrm{x}_{1}, \mathrm{y}_{1}$) can be given as
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
Slope Point form (Equation of a Line with 2 Points)

Equation of a line passing through two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given as

$$
y-y_{1}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)
$$

Example: Find the equation of the line that passes through the points $(-2,4)$ and $(1,2)$.

Solution:

We know that the general equation of a line passing through two points is:

$$
y-y_{1}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)
$$

Now,
$\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=(2-4) /(1-(-2))=-2 / 3$
Thus, the equation of the line is:
$y-4=(-2 / 3)[x-(-2)]$
$3(y-4)=-2(x+2)$
$3 y-12=-2 x-4$
$2 x+3 y-8=0$
Which is the required equation of the line.

Relation between two Lines

Let L_{1} and L_{2} be the two lines as
$\mathrm{L}_{1}: \mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{L}_{2}: \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$

- For Parallel lines

Two lines are said to be parallel if the below condition is satisfied,

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
$$

- For Intersecting lines

Two lines intersect at a point if

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

- For Coincident Lines

Two lines coincide if
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Angle between Straight lines
Let $L_{1} \equiv y=m_{1} x+c_{1}$
and

$$
L_{2} \equiv y=m_{2} x+c_{2}
$$

Angle $=\theta=\tan ^{-1}\left|\left(\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right)\right|$
Special Cases:

$$
\begin{aligned}
& \Rightarrow m_{2}=m_{1} \quad \rightarrow \quad \text { lines are parallel } \\
& \Rightarrow m_{1} m_{2}=-1, \quad \text { lines } L 1 \& L 2 \text { are perpendicular to each other }
\end{aligned}
$$

Length of Perpendicular from a Point on a Line

The length of the perpendicular from $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is

$$
\ell=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

$B(x, y)$ is the foot of perpendicular is given by

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{-\left(a x_{1}+b y_{1}+c\right)}{\left(a^{2}+b^{2}\right)}
$$

$A^{\prime}(h, k)$ is mirror image, given by
$\frac{h-x_{1}}{a}=\frac{k-y_{1}}{b}=\frac{-2\left(a x_{1}+b y_{1}+c\right)}{\left(a^{2}+b^{2}\right)}$

Angular Bisector of Straight lines

An angle bisector has an equal perpendicular distance from the two given lines.

The equation of line L can be given as

$$
\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}{ }^{2}}}
$$

Family of Lines:

The general equation of the family of lines through the point of intersection of two given lines, $\mathrm{L}_{1} \& \mathrm{~L}_{2}$, is given by $L_{1}+\lambda L_{2}=0$

Where λ is a parameter.

Concurrency of Three Lines

Let the lines be

$$
\begin{aligned}
& L_{1} \equiv a_{1} x+b_{1} y+c_{1}=0 \\
& L_{2} \equiv a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

and

$$
L_{3} \equiv a_{3} x+b_{3} y+c_{3}=0
$$

So, the condition for the concurrency of lines is

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
$$

Pair of Straight Lines

Join equation of lines L1 \& L2 represents P. S. L $\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)=0$
i.e. $f(x, y) \cdot g(x, y)=0$

Let's define a standard form of the equation:-
$a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$ represent conics curve equation

Condition for curve of being P.O.S.L $\Delta=\mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$

If $\Delta \neq 0$, (i) parabola $h^{2}=\mathrm{ab}$
(ii) hyperbola $\mathrm{h}^{2}<\mathrm{ab}$
(iii) circle $\mathrm{h}^{2}=0, \mathrm{a}=\mathrm{b}$
(iv) ellipse $h^{2}>a b$

Now, let's see how did we get $\Delta=0$
General equation $\mathrm{ax}^{2}+2 \mathrm{gx}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{fy}+\mathrm{c}=0$
$a x^{2}+(2 g+2 h y) x+\left(b y^{2}+2 f y+c\right)=0$
we can consider the above equation as a quadratic equation in x , keeping y constant.

$$
\begin{aligned}
& x=\frac{-(2 g+2 h y) \pm \sqrt{(2 g+2 h y)^{2}-4 a\left(b y^{2}+2 f y+c\right)}}{2 a} \\
& \text {,so } \\
& x=\frac{-(2 g+2 h y) \pm \sqrt{Q(y)}}{2 a}
\end{aligned}
$$

Now, $\mathrm{Q}(\mathrm{y})$ has to be a perfect square then only, we can get two different line equations $\mathrm{Q}(\mathrm{y})$ in the perfect square for that Δ value of $\mathrm{Q}(\mathrm{y})$ should be zero.

From there $\mathrm{D}=0$
$\mathrm{abc}+2 \mathrm{fgh}-\mathrm{bg}^{2}-\mathrm{af}^{2}-\mathrm{ch}^{2}=0$
Or
$\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|=0$

Note:

1. Point of intersection

To find point of intersection of two lines (P.O.S.L), solve the P.O.S.L, factorize it in $\left(\mathrm{L}_{1}\right) \cdot\left(\mathrm{L}_{2}\right)=0$ or $\mathrm{f}(\mathrm{x}$, y) . $g(u, y)=0$
2. Angle between the lines:

$$
\tan \theta=\left(\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|\right)
$$

Special cases:
$h^{2}=a b \rightarrow$ lines are either parallel or coincident
$\mathrm{h}^{2}<\mathrm{ab} \rightarrow$ imaginary line
$h^{2}>a b \rightarrow$ Two distinct lines
$\mathrm{a}+\mathrm{b}=0 \Rightarrow$ perpendicular line
3. P.O.S.L passing through the origin, then

$$
\Rightarrow\left(\mathrm{y}-\mathrm{m}_{1} \mathrm{x}\right)\left(\mathrm{y}-\mathrm{m}_{2} \mathrm{x}\right)=0
$$

$$
\mathrm{y}^{2}-\mathrm{m}_{2} \mathrm{yx}-\mathrm{m}_{1} \mathrm{xy}-\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{x}^{2}=0
$$

$$
\mathrm{y}^{2}-\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{xy}-\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{x}^{2}=0
$$

$$
\Rightarrow \mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}=0
$$

$$
\Rightarrow y^{2}+\frac{2 h}{b} x y+\frac{a b}{b} x^{2}=0
$$

$$
\Rightarrow m 1+m 2=\frac{2 h}{b}
$$

$$
m_{1} m_{2}=\frac{a}{b}
$$

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{\sqrt{\left(m_{1}+m_{2}\right)^{2} 4 m_{1} m_{2}}}{1+m_{1} m_{2}}\right|=\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|
$$

Straight Lines Formulas

All Formulas Related to Straight Lines

Equation of a Straight Line

$$
a x+b y+c=0
$$

General form or Standard

$$
y=m x+c
$$

Form
Equation of a Line with 2
Points (Slope Point Form)

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

Here, $\mathrm{m}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$

Angle Between Straight lines

$$
\theta=\tan ^{-1}\left|\left(\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right)\right|
$$

Problems on Straight Lines

Question 1:

Find the equation to the straight line which passes through the point $(-5,4)$ and is such that the portion of it between the axes is divided by the given point in the ratio $1: 2$.

Solution:

Let the required straight line be:

$$
\frac{x}{a}+\frac{y}{b}=1
$$

Using the given conditions,

$$
P\left(\frac{2 a+1.0}{2+1}, \frac{2.0+1 . b}{2+1}\right)
$$

is the point which divides $(a, 0)$ and $(0, b)$ internally in the ratio $1: 2$.
But P is $(-5,4)$
Hence $-5=2 \mathrm{a} / 3,4=\mathrm{b} / 3$
$a=-15 / 2, b=12$.
Hence, the required equation is;

$$
\frac{x}{(-15 / 2)}+\frac{y}{12}=1
$$

Question 2:

Find the equation of the straight line which passes through the point $(1,2)$ and makes an angle θ with the positive direction of the x -axis where $\cos \theta=-1 / 3$.

Solution:

Here $\cos \theta=-1 / 3$. (a negative number) so that $\pi / 2<\theta<\pi$

$$
\Rightarrow \tan \theta=-\sqrt{8}
$$

$=$ slope of line
We know that the equation of the straight line passing through the point $\left(x_{1}, y_{1}\right)$ having slope m is
$y-y_{1}=m\left(x-x_{1}\right)$
Therefore the equation of the required line is

$$
\begin{aligned}
& y-2=-\sqrt{8}(x-1) \\
& \Rightarrow \sqrt{8} x+y-\sqrt{8}-2=0 .
\end{aligned}
$$

Question 3:

Find the equation of the line joining the points $(-1,3)$ and $(4,-2)$.

Solution:

Equation of the line passing through the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

Hence equation of the required line will be

$$
y-3=\frac{-2-3}{4+1}(x+1) \Rightarrow x+y-2=0
$$

Question 4:

Which line is having greatest inclination with positive direction of x -axis?
(i) line joining points $(1,3)$ and $(4,7)$
(ii) line $3 x-4 y+3=0$

Solution:

(i) Slope of line joining points $A(1,3)$ and $B(4,7)$ is

$$
\frac{7-3}{4-1}=\frac{4}{3}=\tan \alpha
$$

(ii) Slope of line is

$$
-\frac{3}{-4}=\frac{3}{4}=\tan \beta
$$

Now $\tan \alpha>\tan \beta$. So line (i) has more inclination.

Question 5:

The angle of the line positive direction of the x -axis is θ. The line is rotated about some point on it in an anticlockwise direction by an angle of 45°, and its slope becomes 3 . Find the angle θ.

Solution:

Originally slope of the line is $\tan \theta=\mathrm{m}$
Now the slope of the line after rotation is 3 .
The angle between the old position and the new position of the lines is 45°.
\therefore we have [latex] $\tan 45\left\}^{\wedge} \backslash\right.$ circ $=\backslash$ frac $\{3-\mathrm{m}\}\{1+3 \mathrm{~m}\}[/$ latex $]$
$1+3 \mathrm{~m}=3-\mathrm{m}$
$4 \mathrm{~m}=2$
$\mathrm{m}=1 / 2=\tan \theta$
$\theta=\tan ^{-1}(1 / 2)$

Question 6:

If line $3 x-a y-1=0$ is parallel to the line $(a+2) x-y+3=0$, then find the values of a.

Solution:

Slope of line $3 x-$ ay $-1=0$ is $3 / a$.
Slope of line $(a+2) x-y+3=0$ is $(a+2)$.
Since lines are parallel then we have;
$a+2=3 / a$
or

$$
a^{2}+2 a-3=0
$$

or
$(a-1)(a+3)=0$
$\mathrm{a}=1$ or $\mathrm{a}=-3$.

Question 7:

Find the value of x for which the points $(\mathrm{x},-1),(2,1)$ and $(4,5)$ are collinear.

Solution:

If points $A(x,-1) B(2,1)$, and $C(4,5)$ are collinear, then
Slope of AB = Slope of BC

$$
\begin{aligned}
& \Rightarrow \frac{1-(-1)}{2-x}=\frac{5-1}{4-2} \\
& \Rightarrow \frac{2-}{2-x}=2 \Rightarrow x=1
\end{aligned}
$$

Question 8:

The slope of a line is double of the slope of another line. It tangent of the angle between them is $1 / 3$. Find the slopes of the lines.

Solution:

Let m_{1} and m be the slopes of the two given lines such that $\mathrm{m}_{1}=2 \mathrm{~m}$
We know that if θ is the angle between the lines l_{1} and l_{2} with slopes m_{1} and m_{2}, then

$$
\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|
$$

It is given that the tangent of the angle between the two lines is $1 / 3$.

$$
\begin{aligned}
& \therefore \frac{1}{3}=\left|\frac{m-2 m}{1+(2 m) \cdot m}\right| \Rightarrow \frac{1}{3}=\left|\frac{-m}{1+2 m^{2}}\right| \\
& \Rightarrow 2|m|^{2}-3|m|+1=0 \\
& \Rightarrow(|m|-1)(2|m|-1)=0 \\
& \Rightarrow|m|=1 \text { or }|m|=1 / 2 \\
& \Rightarrow|m| \pm 1 \text { or } m= \pm 1 / 2
\end{aligned}
$$

Another slope will be $-2,-1,2,1$.

Question 9:

Find the equation of the line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2,3)$.

Solution:

Line parallel to the line $3 x-4 y+2=0$ is $3 x-4 y+t=0$
It passes through the point $(-2,3)$, so $3(-2)-4(3)+t=0$ or $t=18$.
So the equation of the line is $3 x-4 y+18=0$.

Question 10:

Find the coordinates of the foot of the perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16=0$.

Solution:

Let (a, b) be the coordinates of the foot of the perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16$ $=0$.

Slope of the line joining $(-1,3)$ and (a, b)
$m_{1}=\frac{b-3}{a+1}$
Slope of the line $3 x-4 y-16=0$ is $3 / 4$.
Since these two lines are perpendicular, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$\therefore\left(\frac{b-3}{a+1}\right) \times\left(\frac{3}{4}\right)=-1$
$\Rightarrow 4 \mathrm{a}+3 \mathrm{~b}=5$....(1)
Point (a, b) lies on line $3 x-4 y=16$.
$\Rightarrow 3 \mathrm{a}-4 \mathrm{~b}=16$
On solving equations (1) and (2), we obtain
$a=\frac{68}{25}$
and
$b=-\frac{49}{25}$
Thus, the required coordinates of the foot of the perpendicular are (68/25, -49/25).

Question 11:

Three lines $x+2 y+3=0, x+2 y-7=0$, and $2 x-y-4=0$ form 3 sides of two squares.

Find the equations of the remaining sides of these squares.
Solution:
Distance between the two parallel lines is

$$
\frac{|7+3|}{\sqrt{5}}=2 \sqrt{5}
$$

The equations of the sides forming the square are of the form $2 \mathrm{x}-\mathrm{y}+\mathrm{k}=0$.
Since the distance between sides A and B = Distance between sides B and C

$$
\frac{|k-(-4)|}{\sqrt{5}}=2 \sqrt{5} \Rightarrow \frac{k+4}{\sqrt{5}}= \pm 2 \sqrt{5} \Rightarrow k=6,-14
$$

Hence the fourth side of the two squares is
(i) $2 x-y+6=0$
or
(ii) $2 x-y-14=0$

Question 12:

For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the
(i) bisector of the obtuse angle between them,
(ii) bisector of the acute angle between them,
(iii) bisector of the angle which contains $(1,2)$.

Solution:

Equations of bisectors of the angles between the given lines are

$$
\begin{aligned}
& \frac{4 x+3 y-6}{\sqrt{4^{2}+3^{2}}}= \pm \frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}} \\
& \Rightarrow 9 x-7 y-41=0 \text { and } 7 x+9 y-3=0
\end{aligned}
$$

If θ is the angle between the line $4 x+3 y-6=0$ and the bisector $9 x-7 y-41=0$, then
$\tan \theta=\left|\frac{-\frac{4}{3}-\frac{9}{7}}{1+\left(\frac{-4}{3}\right) \frac{9}{7}}\right|=\frac{11}{3}>1$.
Hence
(i) The bisector of the obtuse angle is $9 x-7 y-41=0$.
(ii) The bisector of the acute angle is $7 x+9 y-3=0$.
(iii) For the point $(1,2)$

$$
\begin{aligned}
& 4 x+3 y-6=4 \times 1+3 \times 2-6>0 \\
& 5 x+12 y+9=5 \times 1+12 \times 2+9>0
\end{aligned}
$$

Hence equation of the bisector of the angle containing the point $(1,2)$ is

$$
\frac{4 x+3 y-6}{5}=\frac{5 x+12 y+9}{13} \Rightarrow 9 x-7 y-41=0 .
$$

Question 13:

Find the value of λ if $2 x^{2}+7 x y+3 y^{2}+8 x+14 y+\lambda=0$ will represent a pair of straight lines.

Solution:

The given equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of lines if its descriminant $=$ 0 .
i.e., if $a b c+2 f g h-a f^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$

$$
\begin{aligned}
& 6 \lambda+2(7)(4)\left(\frac{7}{2}\right)-2(7)^{2}-3(4)^{2}-\lambda\left(\frac{7}{2}\right)^{2}=0 \\
& \Rightarrow 6 \lambda+196-98-48-\frac{49 \lambda}{4}=0 \\
& \Rightarrow \frac{49 \lambda}{4}-6 \lambda=196-146=50 \\
& \Rightarrow \frac{25 \lambda}{4}=50 \\
& \lambda=\frac{200}{25}=8
\end{aligned}
$$

Question 14:

If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the positive direction of the axes, then find the relation for a, b and h.

Solution:

Bisector of the angle between the positive directions of the axes is $\mathrm{y}=\mathrm{x}$.
Since it is one of the lines of the given pair of lines $a x^{2}+2 h x y+b y^{2}=0$.
Let's apply $\mathrm{y}=\mathrm{x}$.
We have

$$
\begin{aligned}
& x^{2}(a+2 h+b)=0 \\
& \text { or } \\
& a+b=-2 h .
\end{aligned}
$$

Question 15:

If the angle between the two lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is $\tan ^{-1}(m)$, then find the value of m.

Solution:

The angle between the lines $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is given by

$$
\begin{aligned}
& \tan \theta=\frac{ \pm 2 \sqrt{\frac{25}{4}-6}}{2+3} \\
& \theta=\tan ^{-1}\left|\left(\frac{1}{5}\right)\right|
\end{aligned}
$$

Question 16:

The pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ are rotated about the origin by $\pi / 6$ in the anticlockwise sense. Find the equation of the pair in the new position.

Solution:

The given equation of pair of straight lines can be rewritten as:

$$
(\sqrt{3} x-y)(x-\sqrt{3} y)=0
$$

Their separate equations are $y=\sqrt{ } 3 x$ and $y=(1 / \sqrt{3}) x$
or $\mathrm{y}=\tan 60^{\circ} \mathrm{x}$ and $\mathrm{y}=\tan 30^{\circ} \mathrm{x}$
After rotation, the separate equations are
$y=\tan 90^{\circ} x$ and $y=\tan 60^{\circ} x$
or $x=0$ and $y=\sqrt{3} x$
The combined equation in the new position is

$$
\begin{aligned}
& x(\sqrt{3} x-y)=0 \\
& \text { or } \\
& \sqrt{3} x^{2}-x y=0
\end{aligned}
$$

Frequently Asked Questions

Give the general equation of a straight line.

The general equation of a straight line is $a x+b y+c=0$. (x, and y are variables and a, b, c are constants.)

What do you mean by the slope of a straight line?
The angle formed by a line with a positive x -axis is the slope of a line. It is denoted by $\tan \theta$.
What is the equation of the straight line passing through $\left(x_{1}, y_{1}\right)$ with slope m ?
Equation of the straight line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with slope m is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$.

