CHEMISTRY - JEE ADVANCED PAPER - 1

SECTION - 1

1. Which of the following set represent correct formula for Malachite, Magnetite, Calamine \& Cryolite?
(a) $\mathrm{CuCO}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{ZnO}, \mathrm{Al}_{2} \mathrm{O}_{3}$
(b) $\mathrm{CuCO}_{3}, \mathrm{Cu}(\mathrm{OH})_{2}, \mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{ZnCO}_{3}, \mathrm{Na}_{3} \mathrm{AlF}_{6}$
(c) $\mathrm{CuCO}_{3}, \mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{ZnCO}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$
(d) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{ZnCO}_{3}, \mathrm{Na}_{3} \mathrm{AlF}_{6}$

Solution:

(B)

Malachite $\rightarrow \mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$

Magnetite $\rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$

Calamine $\rightarrow \mathrm{ZnCO}_{3}$

Cryollite $\rightarrow \mathrm{Na}_{3} \mathrm{AlF}_{6}$
2. Find the correct acidic strength order:
(i) $\mathrm{HC}=\mathrm{C}-\mathrm{COOH}$
(ii) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{COOH}$ (iii)

(iv) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$
(a) i $>$ ii $>$ iv $>$ iii
(b) i $>$ ii $>$ iii $>$ iv
(c) ii $>$ ii $>$ i $>$ iv
(d) iii $>$ i $>$ iv $>$ ii

Solution:

(B)
3. Sodium stearate is a strong electrolyte. Which of the following plot is correct regarding its conductance:
(a)

(b)

(c)

(d)

Solution:

(B)

By definition, $\lambda m \alpha \frac{1}{\sqrt{C}}$

CHEMISTRY - JEE ADVANCED PAPER - 1

4. Which green coloured compound of chromium is formed in borax bead test?
(a) $\mathrm{Cr}\left(\mathrm{BO}_{2}\right)_{3}$
(b) $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(c) CrB
(d) CrBO_{3}

Solution:

(A)
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$

$\mathrm{NaBO}_{2}+\mathrm{B}_{2} \mathrm{O}_{3}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{B}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Cr} \underset{\text { green }}{\left(\mathrm{BO}_{2}\right)_{3}}$

SECTION - 2

5. Choose the reaction, for which the standard enthalpy of reaction is equal to the standard enthalpy of formation:
(a) $2 C_{(g)}+3 H_{2(g)} \rightarrow C_{2} H_{6(g)}$
(b) $\frac{3}{2} O_{2(g)} \rightarrow O_{3(g)}$
(c) $\frac{1}{8} S_{8(s)}+O_{2(g)} \rightarrow S O_{2(g)}$
(d) $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)$

Solution:

(B, C)
By definition,
Enthalpy of formation is defined as the Enthalpy change occurring when, a compound is formed from its constituent elements in standard state.
6. A Tin - chloride ' P ' gives following reaction (unbalanced reaction)
$\mathrm{P}+\mathrm{Cl}^{-} \longrightarrow X$ [Monoanion pyramidal geometry]
$P+M e_{3} N \longrightarrow Y$
$\mathrm{P}+\mathrm{CuCl}_{2} \longrightarrow \mathrm{Z}+\mathrm{CuCl}$
Then which of the following is/are correct.
(a) Y contains co-ordinate bond
(b) X is sp^{3} hybridised.

CHEMISTRY - JEE ADVANCED PAPER - 1

(c) Oxidation state of Sn is X is +1 .
(d) X contain lone pair on central atom.

Solution:

(A, B, D)

$\underset{(P)}{\mathrm{SnCl}_{2}}+\mathrm{Me}_{3} \mathrm{~N} \longrightarrow \mathrm{SnCl}_{2}\left[\mathrm{NMe}_{(Y)}\right]$

7. ${ }_{92}^{238} \mathrm{U} \xrightarrow{x_{1}}{ }_{90}^{234} \mathrm{Th} \xrightarrow{x_{2}}{ }_{91}^{234} \mathrm{~Pa} \xrightarrow{x_{3}}{ }^{234} \mathrm{Z} \xrightarrow{x_{4}}{ }_{90}^{230} \mathrm{Th}$
$x_{1}, x_{2}, x_{3}, x_{4}$, are either particles or radiation. Then
(a) x_{1} is deflected toward negatively charged plate.
(b) x_{2} is β-particle.
(c) x_{3} is γ-radiation.
(d) z is isotope of ${ }^{238} U$

Solution:

(A, B, D)
$\mathrm{X}_{1} \rightarrow \alpha$ - decay
$X_{2} \rightarrow \beta$ - decay
$\mathrm{X}_{3} \rightarrow \beta$ - decay
$\mathrm{X}_{4} \rightarrow \alpha$ - decay
8. Fusion of MnO_{2} along with KOH and O_{2} forms X . Electrolytic oxidation of X yields Y . X undergoes disproportionation reaction in acidic medium to MnO_{2} and Y . The Manganese in X and Y is in the form $\mathrm{W} \& \mathrm{Z}$ respectively, then
(a) $\mathrm{W} \& \mathrm{Z}$ are coloured
(b) W is diamagnetic and Z is paramagnetic
(c) Both $\mathrm{W} \& \mathrm{Z}$ are tetrahedral in shape
(d) Both $\mathrm{W} \& \mathrm{Z}$ involve $\mathrm{p} \pi-\mathrm{d} \pi$ bonding for π bond

Solution:
(A, C, D)

9. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O} \xrightarrow\left[\left({ }^{(2) \mathrm{H}_{2} \mathrm{O}}\right]{{\text { (1) } \mathrm{CH}_{3} \mathrm{Mg} r}^{\text {(Major })}} \xrightarrow{\text { Conc.HCl }} \underset{(\text { Major })}{S}\right.$

(a)

(b)

(c)

(d)

Solution:
(C, D)

CHEMISTRY - JEE ADVANCED PAPER - 1

10. Which of the following are true.
(a) Monosachharides can not be hydrolysed to give polyhydroxy aldehydes and ketones.
(b) Hydrolysis of sucrose gives dextrorotatory glucose and laevorotatory fructose
(c) Oxidation of glucose with bromine water gives glutamic acid.
(d) The two six membered hemiacetal form of $\mathrm{D}(+)$ glucose are anomers.

Solution:

(A, B, D)
11. Identify the option where all four molecules possess permanent dipole moment at room temperature.
(a) $B F, O_{3}, S F_{6}, X e F_{6}$
(b) $\mathrm{BeCl}_{2}, \mathrm{CO}_{2}, \mathrm{BCl}_{3}, \mathrm{CHCl}_{3}$
(c) $\mathrm{SO}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{BrF}$
(d) $\mathrm{NO}_{2}, \mathrm{NH}_{3}, \mathrm{POCl}_{3}, \mathrm{CH}_{3} \mathrm{Cl}$

Solution:

(C, D)
(C) \rightarrow

(D) \rightarrow

CHEMISTRY - JEE ADVANCED PAPER - 1

12. Which of the following is/are correct regarding root mean square speed ($\mathrm{U}_{\mathrm{rms}}$) \& average translation K.E. (E_{av}) of molecule in a gas at equilibrium.
(a) E_{av} is doubled when its temperature is increased 4 times
(b) $\mathrm{U}_{\mathrm{rms}}$ is inversely proportional to the square root of its molecular mass
(c) E_{av} at a given temperature doesn't depend on its molecular mass
(d) $\mathrm{U}_{\mathrm{rms}}$ is doubled when its temperature is increased 4 times

Solution:

(B, C, D)
$E_{a v}=\frac{3}{2} R T \quad$ (independent of Mass)
$u_{r m s}=\sqrt{\frac{3 R T}{M}}$

SECTION - 3

13. $\mathrm{XeF}_{4}+\mathrm{O}_{2} \mathrm{~F}_{2} \longrightarrow$ product. The total number of lone pairs on the xenon containing product is: (l)

Solution:

$\mathrm{XeF}_{4}+\mathrm{O}_{2} \mathrm{~F}_{2} \longrightarrow \mathrm{XeF}_{6}+\mathrm{O}_{2}$

Distorted octahedral shape
14. For the following reaction, equilibrium constant K_{c} at 298 K is 1.6×10^{17}

$$
F e_{(a q)}^{2+}+S_{(a q)}^{2-} \rightleftharpoons F e S(s)
$$

When equal volume of $0.06 \mathrm{M} \mathrm{Fe}^{+2}$ and $0.2 \mathrm{M} \mathrm{S}^{-2}$ solution are mixed, then equilibrium concentration of Fe^{+2} is found to be $\mathrm{Y} \times 10^{-17} \mathrm{M}$. Y is:

Solution:

8.93 or 8.92

$$
F e^{2+}+S^{2-} \longrightarrow F e S
$$

$\begin{array}{llll}\text { ini } & 0.06 & 0.2 & 0\end{array}$
$\begin{array}{lll}\text { After mix } & 0.03 \quad 0.1\end{array}$

At $0 \mathrm{q} / \mathrm{m} \quad \mathrm{x} \quad 0.07$

$$
\begin{aligned}
& K_{C}=\frac{1}{(x)[0.07]}=1.6 \times 10^{17} \\
& \therefore\left[F e^{2+}\right]=8.928 \times 10^{-17} \\
& \quad=y \times 10^{-17}
\end{aligned}
$$

$$
\therefore y=8.93 \text { or } 8.92
$$

15.

(1) aq. Br_{2}
(2) $\mathrm{NaNO}_{2} / \mathrm{HCl}$
(O)
(3) CuCN/KCN
(4) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{\oplus}$
(5) SOCb

Number of atoms of Br in compound ' T '
Solution:
(4)

(R)

(T)

Total Br atoms $=4$
16. Which of the following compounds contain bond between same type of atoms.

$$
\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{~B}_{2} \mathrm{H}_{6}
$$

Solution:

$\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

17. $\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow$ Product

Ex. No	$[\mathbf{A}]$	$[\mathbf{B}]$	$[\mathbf{C}]$	Rate of reaction
$\mathbf{1 .}$	0.2	0.1	0.1	6×10^{-5}
$\mathbf{2 .}$	0.2	0.2	0.1	6×10^{-5}
$\mathbf{3 .}$	0.2	0.1	0.2	1.2×10^{-4}

4.	0.3	0.1	0.1	9×10^{-5}

When $[\mathrm{A}]=0.15$

$$
\begin{aligned}
& {[B]=0.25} \\
& {[C]=0.15}
\end{aligned}
$$

Rate of reaction is $\mathrm{Y} \times 10^{-5} \mathrm{M} / \mathrm{s}$ Find Y .

Solution:

(6.75)

Let $r=K[A]^{x}[B]^{y}[C]^{z}$

From (1), (2) $\rightarrow \mathrm{y}=0$

$$
\text { (1), (3) } \rightarrow \mathrm{z}=1
$$

(1), (4) $\rightarrow x=1$
\therefore rate law becomes

$$
r=K[A]^{1}[B]^{0}[C]^{1}
$$

From (2)

$$
K=3 \times 10^{-3}
$$

When $[A]=0.15,[B]=0.25,[C]=0.15$

$$
\begin{aligned}
& r=3 \times 10^{-3}[0.15]^{1}[0.15]^{1} \\
& =6.75 \times 10^{-5} \mathrm{moll}^{-1} \mathrm{~s}^{-1} \\
& \Rightarrow y \times 10^{-6} \\
& \therefore y=6.75
\end{aligned}
$$

CHEMISTRY - JEE ADVANCED PAPER - 1

18. On dissolving 0.5 g of non-volatile, non-ionic solute to 39 g of benzene, its vapour pressure decreases from 650 mm of Hg to 640 mm of Hg . The depression of freezing point of benzene (in K) upon addition of the solute is
\qquad .
[Given data: Molar mass \& molar freezing point depression of benzene is $78 \mathrm{~g} \mathrm{~mol}^{-1} \& 5.12 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$]

Solution:

(1.02)

$$
\begin{aligned}
& \frac{P^{\circ}-P_{S}}{P_{S}}=\frac{n_{\text {solute }}}{n_{\text {solvent }}} \\
& \frac{650-640}{640}=\frac{1 \times 0.5 \times 78}{M \times 39} \\
& \therefore M=64 g \\
& \Delta T_{f}=K_{f} m=5.12 \times \frac{0.5 \times 1000}{64 \times 39} \\
& \therefore \Delta T_{f}=1.02
\end{aligned}
$$

